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Abstract

Accurate forecasting of the spread of pandemics is necessary for policy makers
to adequately respond to it. As a response to the COVID-19 outbreak, various
sophisticated epidemic and machine learning models were deployed to take on
this task. These models, however, rely on expert knowledge, carefully selected
architectures and detailed data that is often only available for specific regions.
Automated machine learning (AutoML) tackles this issue by automatically
creating pipelines in a data-driven manner, resulting in high quality predictions.
In this work we adapt the AutoML framework of auto-sklearn to the time series
forecasting task. We compare two methods, a multi-output and a repeated
single-output, for multi-step-ahead forecasting. We also study the usefulness of
open mobility data sets published by Apple and Google to complement the open
incidence data set of the ECDC. To combat concept drift, we experiment with
three drift adaptation strategies, refitting our models on part of the data, the
full data, or retraining the models completely. We compare our methods with
six baselines over two sets, a global set composed of 58 countries around the
world and a European set composed of 26 countries. We evaluate and compare
the performance of methods in early, intermediate and late forecasting scenarios.
We find that a simple persistence baseline is a strong competitor for this task.
Our results over three scenarios separated in time show that the comparative
performance of our models increase as more data becomes available. In the late
forecasting scenario, our best method, a multi-output ensemble refitted on recent
data and using Google mobility data alongside incidence data, outperforms all
other methods and baselines for each country.
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Chapter 1

Introduction

It has become apparent that disease outbreaks can have a major impact on
society globally. In December 2019, a coronavirus disease (COVID-19), caused
by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged
in the city of Wuhan, China. Despite efforts in containing the disease, by the
end of January World Health Organization estimated the virus to be interna-
tionally spread, advising governments to prepare for active surveillance and
case management [1]. Governments have stood for the challenge to implement
efficient containment strategies. There is an important trade-off here, as strict
containment strategies are necessary to restrict the spread of COVID-19, but
they come with repercussions. Economic sectors like restaurants and hospitality
[2] have crippled due to a lack of demand, and food and agriculture [3] due to
a lack of workforce. In order for policy makers to respond adequately to the
pandemic, accurate forecasting of the spread of epidemics is necessary.

The oldest but still popular way to give insights in the dynamics of disease
outbreaks are compartmental models, such as the SIR model [4]. The population
of a region to which such a model is applied gets assigned to compartments.
Through transition functions people may transgress through compartments. In
case of the SIR model the compartments are named susceptible, infectious and
removed. People within the susceptible compartment are healthy and can be
infected by people in the infectious compartment. People in the removed com-
partment are either recovered and deemed immune, or have died from the disease.
The transition functions consist of rates that are carefully selected by domain
experts. To this end, approximations are made of the transmissibility, incubation
time and recovery period. Compartmental models are great to simulate the
course of epidemics under controlled circumstances. A disadvantage is that they
require the unrealistic assumption that the full population is homogeneously
mixed, such that every individual has an equal amount of contact with every
other individual. To alleviate this issue compartmental models may be extended
with contact networks. These networks use individuals or sub-populations as
nodes which are connected when these are in contact with each other [5]. With
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these networks a form of spatial awareness is introduced, making the simulations
more informative. Contact networks may be constructed using several types
of data, like contact tracing networks where infected people are asked to share
their recent contacts or movement networks where the travel patterns of people
are captured [6]. In the case of contact tracing networks a major disadvantage
is that the infection process drives the construction of the network, meaning
large parts of the population are not mapped. Additionally, constructing such
network data sets is labour intensive, and individuals within these networks
are not anonymous.Movement networks map the movement of all individuals
in a population, disregarding whether or not they are ill. The data for these
networks is typically retrieved from mobile phone locations, making it possible
to access large quantities of anonymised data. As part of Data for Good initia-
tives, large tech companies like Apple, Facebook, Foursquare and Google have
provided mobility data sets. Nevertheless, the data in these sets is often not
detailed enough to create realistic networks. In the case of Apple, Facebook and
Google the data recorded contains increases or decreases in movement within
the population. This data is highly aggregated, making it impossible to create
networks on the individual or even regional level. The Foursquare data set is
more detailed, storing venue locations and the number of people moving between
such locations over a period of time, but is only available for specific regions,
such as the country the United States of America or states within this country.

A different approach to disease forecasting involves analysis of regressive models.
These include the widely used ARIMA auto-regressive models and deep learning
methods such as LSTMs. As many country governments across the world
share data of the number of cases and deaths, it becomes possible to make
forecasts for many countries at once. These models have the advantage over the
aforementioned disease models that they do not rely on disease transmission
variables. Instead, they are data-driven, meaning they can make forecasts
depending on underlying patterns in the data. Still, these regressive models
introduce new challenges. Constructing machine learning pipelines consists
of many steps, such as data pre-processing, feature extraction and selection,
model fitting, and the construction of model ensembles. For each of these steps
choices need to be made and corresponding hyperparameters need to be tuned.
Well tuned pipelines may yield faster training of models and higher forecasting
quality. However, for each step many options are available and each of these have
their own hyperparameter search space, resulting in a large combined algorithm
and hyperparameter search space. Manual tuning often relies on simplifying
assumptions, which may not fully capture the underlying characteristics of the
data. Utilising the strengths of automated machine learning (AutoML), we
can find solutions to this challenge. AutoML enables users to construct full
classification or regression pipelines without requiring expert machine learning
knowledge. AutoML is proven to extract competitive and high quality models
automatically, often outperforming manually tuned models.
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In this work, we adapt the AutoML framework auto-sklearn [7] to the task of
COVID-19 forecasting. This framework fully automates the constructing and
tuning of regression pipelines and supports multi step-ahead prediction since a
recent update. We apply various disease and mobility data sets, analysing how
they can best be used. There are two main challenges to this approach. Firstly,
as auto-sklearn was not designed specifically for the task of time series regression,
adjustments must be made to allow for suitable input windows and forecasting
horizons. Secondly, because the data is collected while the pandemic progresses,
inconsistencies in data quality may occur within the time series. Also, since the
virus mutates over time, the underlying concept generating the data changes.
When this concept drifts away, adaptations are needed to ensure high quality
forecasts.

Our contributions are as follows:

• We adapt auto-sklearn to perform on time-series data for the purpose of
forecasting COVID-19 mortality.

• We explore and evaluate the use of various open disease and mobility data
sets and investigate if they can improve the COVID-19 forecasting task.
To this end we introduce two methods of multi-step ahead forecasting:
multi-output and repeated single-output.

• We experiment with different combinations of mortality data features and
mobility data features derived from open data sets published by Apple,
Google and the ECDC.

• We expose our ensembles to various concept drift adaptation techniques,
and show that high forecast quality may be achieved by re-tuning ensembles
created on older data with new data. This way we can outperform all
baselines.

• We compare our methods against 6 baselines in terms of root mean squared
error on a global dataset composed of data from 58 countries.

• We experiment on three scenarios, different in time and progression of the
pandemic.

• We make our work and code publicly available1.

The rest of this thesis is structured as follows. Chapter 2 covers related work on
epidemic forecasting and AutoML. In Chapter 3 we provide a formal definition
of time series forecasting. In Chapter 4 we give an overview of the used data
sets and describe our implementation of and adjustments to auto-sklearn. Our

1https://github.com/jacotetteroo/AutoML4COVID-19
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experimental set-up and evaluation is described in Chapter 5, of which we discuss
the results in Chapter 6. We conclude in Chapter 7, suggesting directions for
future work.
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Chapter 2

Related work

2.1 Compartmental models

Traditionally epidemics are charted using compartmental models, like the SIR
model [4]. This model splits the population of individuals in different compart-
ments based on their health status. At each time step, the flow of individuals
transitioning from one compartment to the other is described by differential
equations, as shown in Equation 2.1. The S compartment holds healthy people
that are susceptible to being infected. The I compartment holds infected and
infectious people. The R compartment, finally, holds all people removed from the
simulation, either because they recovered and gained immunity, or because they
died. The total of the compartments is the total population N , which does not
change over time. The transition parameters determine how many individuals
move between compartments. The contact rate β is a measure that captures
how many people individuals meet. The recovery rate γ captures how long it
takes for people to recover.

dS

dt
= −βIS

N
,

dI

dt
=
βIS

N
− γI,

dR

dt
= γI.

(2.1)

Given more knowledge about the to be simulated disease, more complex com-
partmental models may be created by adding compartments. The SEIR model
[8] extends the SIR model by injecting the exposed compartment, holding people
infected by the disease but not yet capable of infecting others. Basic compart-
mental models require the unrealistic assumption that the full population is
homogeneously mixed, such that every individual has an equal amount of contact
with every other individual. To alleviate this issue compartmental models may
be extended with contact networks. Liu et al. [9] argue that the assumption
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of homogeneous contact needed for the compartmental models is not realistic
enough. They use a multi-layered contact network – where each layer entails a
mode of contact – and a SIR model to simulate the propagation of flu and show
that this approach gives more insights in underlying dynamics of the spread of
diseases. Balcan et al. [10] similarly used a multi-scale network to simulate an
influenza-like illness. Instead of individuals, they used sub-populations as nodes
and gravitational flow derived from commuting and flight data as weights for
the edges. This introduces a form of spatial awareness to the compartmental
models, making the simulations more informative. In order to create realistic
contact networks detailed mobility data sets are compulsory. Ideally, data sets
encompass the entire population of a region, detailing where and how people
have come in contact with each other. In reality, data sets are snapshots, often
samples of a population, and recorded interactions are not enriched with duration
or intensity [6]. Contact networks where individuals are simulated as a basis for
the spread of diseases are called agent-based networks. To create agent-based
networks one needs data sets containing movement patterns of individuals. For
some regions such data sets are available; Aleta et al. [11] for instance create
an agent-based network using a data set containing place visits published by
Foursquare to simulate the spread of COVID-19 through a synthetic population
in the Boston metropolitan area. In [12] Zhang et al. created a framework to
visualise the effects of mobility on the spread of COVID-19. For this they used
detailed trajectory data to simulate the mobility within the population. While
for some countries the mobility data is detailed enough to create realistic contact
networks, for most this is not the case. In our work, we make predictions for a
large number of countries. Instead of detailed mobility data on the individual
level, we use aggregated mobility data on a national level. This is not nearly
detailed enough to construct contact networks but can still inform our data
driven models.

2.2 Bayesian inference

Often, epidemic models suffer from missing or censored data. The effect of
mobility, or the use of government interventions on the spread of the disease
may be unknown. These effects can be inferred from data when using Bayesian
inference. This is the reason why the Bayesian framework is quite useful for
epidemic modeling [13]. This framework aims to find the posterior distribution
for unknown parameters θ given observational data D as shown in Equation
2.2. Here f(θ) is the prior knowledge and f(D|θ) is the likelihood. As epidemics
are continuous processes but available data is most often discrete, the Bayesian
inference can account for the missing time steps.

f(θ|D) ∝ f(D|θ)f(θ) (2.2)

Applied to COVID-19 Flaxman et al. [14] used a Bayesian hierarchical model
to estimate the effect of governmental countermeasures . In their work they
created a death forecast model that depends on the infections of the previous day
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and an infection forecast model that depends on the infections of the previous
day as well as on the reproduction number. They estimate the reproduction
number as the effect of government interventions aimed to reduce the spread
of the disease. Using Bayesian inference with daily deaths observational data
D the effects of interventions θ are approximated, which are in turn used to
create the models to forecast the infections and deaths. This method was able to
forecast early during the epidemic for multiple European countries. While the
Bayesian inference is a data driven procedure, the model proposed by Flaxman et
al. relies on a lot of manually tuned parameters. The distribution modelling the
daily deaths, the infection-fatality ratio, the infection-to-death distribution and
the distribution modelling the infections need to be carefully selected. Manual
setting of parameters is typically done based on simplifying assumptions that
might not hold in all scenarios. In our work, the underlying characteristics
of the pandemic are treated as unknown and we avoid setting parameters but
rely mainly on fully automated and data-driven approaches for modelling the
underlying distribution.

2.3 Regressive models

Autoregression. Another classic approach is to use autoregressive methods.
An autoregressive model is a regression model where the input variables are
observations from previous time steps. It is referred to as AR(p), of order p,
and is shown in Equation 2.3. Here, φ are parameters that are set by fitting
the model as a linear regression on the training data, and ε is noise following a
normal distribution.

yt+1 = c+ φ1 · yt + φ2 · yt−1 + ...+ φp · yt−p+1 + εt (2.3)

For this model the only parameter to tune is p. This model can be extended by us-
ing integrated moving averages of the observed errors, which is an ARIMA(p, d, q)
model, with p the order of the autoregression, d the degree of first differencing
and q the order of the moving average. We show it in Equation 2.4. Here y′t is the
differenced series and is the combination of both lagged values of y and lagged
errors ε of which χ are the coefficients [15]. In the ARIMA model parameters p,
d and q can be tuned to make the time series stationary and control how many
time steps are used for fitting.

y′t+1 = c+ φ1 · y′t + ...+ φp · y′t−p+1 + χ1 · εt + ...+ χq · εt−q+1 + εt (2.4)

ARIMA models were successfully deployed to forecast COVID-19. Kumar et al.
[16] used the ARIMA model to analyse the trend of 15 countries during the first
three months of the pandemic. Alzahrani et al. [17] compared the ARIMA model
with the simpler AR, MA and ARMA models making forecasts for four weeks
for Saudi Arabia and found that ARIMA outperformed the others. They tuned
p, d and q parameters of the ARIMA model using a grid search and evaluated
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performance gain via the Akaike Information Criterion [18]. Chakraborty and
Gosh [19] extended an ARIMA model by adding a wavelet transformation on
the residuals of the model. This improves the forecasts and is tested for Canada,
France, India, South Korea, and the UK on a forecasting range of ten days.

Deep learning. Deep learning was first applied in the epidemiology field
just three years ago . Wu et al. [20] predicted flu in the United States using a
combination of a CNN, RNN and residual links. They were able to achieve robust
improvement over autoregressive models using multiple real-world data sets.
Aiken et al. [21] compared autoregressive models with a GRU RNN to predict
flu prevalence. They found that on larger prediction horizons the RNN was able
to achieve significantly lower RMSE. Fu et al. [22] predicted influenza using an
attention based LSTM. One of the observations they made was that the sequence
length of their training data highly influenced the performance of their model.
Applied to COVID-19, many work is done using LSTMs [23, 24, 25, 26]. Shahid
et al. [27] perform a comparative study using a GRU, LSTM and Bi-directional
LSTM. To train deep neural networks, one needs a lot of training instances. As
for early epidemics the number of instances is limited, it may be challenging to
create sufficiently detailed models. Typically, the architecture used has great
influence on the performance of the model and should be carefully constructed.
In our work this is not necessary as we use the underlying characteristics of the
pandemic to automatically create our models.

2.4 Automated machine learning

The creation of regression pipelines encompasses many steps; data pre-processing,
feature pre-processing, hyperparameter optimisation and algorithm selection.
Sequential Model Based Optimisation (SMBO) is a black box optimisation
framework that has been used for the purpose of hyperparameter optimization.
Hutter et al. [28] used (SMBO) to automatically optimise hyperparameters
of machine learning algorithms. SMBO stood as a basis for sequential model
based optimisation and algorithm configuration (SMAC) [29]. This is a general
purpose algorithm configurator, which made it possible to both select algorithms
and tune hyperparameters. Auto-WEKA [30] is an AutoML framework around
the WEKA software package using SMAC for its configuration. This framework
fully automated the creation and tuning of classification and regression pipelines.
Auto-sklearn [7] is an AutoML framework by Fuerer et al. around the popular
Python package scikit-learn [31]. This framework includes meta-learning as a
warm start for the configuration search and creates ensembles of pipelines. In
more recent updates, they extended their framework with multi-output regression.
This option makes it suitable for forecasting with a range of multiple days. TPOT
[32] is a tree-based pipeline optimization tool for AutoML. Similar to auto-sklearn,
it is build upon scikit-learn . Instead of using SMBO they use another approach
for hyperparameter optimisation which is genetic programming. To validate
pipelines internally, cross validation is used. This is also default in auto-sklearn.
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However, in auto-sklearn other validation schemes, like holdout validation, are
also possible. It is also possible to automatically construct deep neural networks.
Frameworks that support this are Auto-Keras [34] and Auto-PyTorch [35], build
Python packages. These frameworks find solutions to neural architecture search
(NAS), where they aim to find the optimal neural network, minimising a loss
function. Han et al. [36] used TPOT and H2O to forecast COVID-19 mortality
data from Ceará. In their study, they found that TPOT outperforms regression
models not automatically tuned, achieving an higher R2 score. Marques et al.
[37] compared H2O to an LSTM using the countries Brazil, China, the United
States of America, Italy and Singapore and found that H2O outperformed the
LSTM in terms of MAE, MSE and R2.

In this work, we adapt auto-sklearn to the task of COVID-19 forecasting. As
data is limited when forecasting the pandemic, using autoML systems generating
deep neural networks is unfeasible. TPOT and auto-sklearn are comparable to
each other, but because TPOT relies on cross validation to validate its pipelines,
this is less suitable for time series forecasting. The cross validation scheme splits
the data in k folds, training the models on k − 1 and evaluating on the one that
was left out. As this happens iteratively changing which fold to evaluate on,
the models are trained on future data to predict data in the past. Auto-sklearn
supports holdout sets as validation scheme, ensuring we can train our models
without relying on future data.

12



Chapter 3

Problem statement

We view the forecasting of COVID-19 a time series forecasting task. A time
series holds discrete observations indexed over time. In other time series the
sample rate may vary, but in our case this is constant, due to the availability
of daily case and death data. Considering a time series containing COVID-19
incidence numbers of length n as x = [x1, ..., xn] with x ∈ Rn, a time series
segmentation window of size w, a time step t and a forecasting horizon of size h,
we want to use a segment of historical observations [xt−w, ..., xt] from the time
series up to observation xt to forecast future data points [xt+1, ..., xt+h]. For the
task of COVID-19 forecasting the time series we consider are the mortality rate
of a country, where xt denote the number of new deaths at time step t. When
we consider using mobility time series m = [m1, ...,mn] alongside incidence
data x , we extend the notation to use [xt−w,mt−w..., xt,mt] for the forecasting
of [xt+1, ..., xt+h]. In our approach m holds the percentual increase of mobility
for a country in a given form, such as the increase of time spent driving, or the
increase of time spent visiting recreational areas. This format is dictated by the
mobility data, provided by Apple and Google, that we study in this work.

To make comparisons between different countries, areas or cities possible, we
normalize the incidence data by the size of its population N .

We formulate the configuration and selection of models as a Combined Algorithm
Selection and Hyperparameter (CASH) Optimisation problem [30]. Given a set
of algorithms A = A(1), ..., A(k) with hyperparameter spaces Λ(1), ...,Λ(k) we
search the optimal algorithm with optimal hyperparameter settings A∗λ∗ following
Eq. 3.1.

A∗λ∗ ∈ argmin
A(j)∈A,λ∈Λ(j)

1

k
·
k∑
i=1

L(A
(j)
λ ,D(i)

train,D
(i)
valid) (3.1)

Here L is the loss generated by algorithm A when trained using set Dtrain and
validated using set Dvalid. This loss is the mean squared error between the
forecast made by algorithm A with hyperparameter settings λ and the true
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observations in the validation set, unseen by algorithm A. As we are optimising
full pipelines, so optimising A means we are optimising the combination of
pre-processors P , features F and regressors R, or A = {P, F,M}. Part of this
process is optimising the input window size w, which is a newly added feature
pre-processing step.
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Chapter 4

Proposed methods

4.1 Data sets

The data used for our predictions comes from three sources: mortality data
from the European Centre for Disease Prevention and Control and mobility data
from Apple and Google. We show meta-data of these sources in Table 4.1 and
describe the sources in the subsequent subsections.

Table 4.1: Meta-data of data sources. The end dates marked with an asterisk
(*) are not actual end dates, as these data sets are at the date of writing still
updated regularly.

Data source Category Countries Start date End date
ECDC 1 [38] Mortality 214 2019-12-31 2020-12-14
ECDC 2 [39] Mortality 30 2021-02-28 2021-07-10*

Apple [40] Mobility 63 2020-01-13 2021-07-10*
Google [41] Mobility 135 2020-02-15 2021-07-10*

Early / Intermediate Combined 58 2020-02-15 2020-12-14
Late Combined 26 2020-03-01 2021-07-10

Mortality data

The mortality data is collected by the European Centre for Disease Prevention
and Control [38, 39]. The data is split into two sets, with the main difference
being the period over which time-series are collected and the number of countries.
Both data sets hold the daily number of new cases and the daily number of
new deaths. Additionally, they denote in which continent each country lies and
provide the country population size of the previous year. For the first data
set this is the population size of 2019 and for the second data set this is the
population size of 2020.
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The EDCD 1 data set has data from the December 31st, 2019 until December
14th, 2020. At the start of the data set not all countries appear, as COVID-19
was not first encountered in all countries at the same time. The data is provided
for 214 countries from all around the world. The ECDC 2 data set contains
more recent data starting on the first of March 2021 and is still daily updated.
The data in this set is collected for 28 countries in the European Union.

Both data sets are maintained and adjusted by ECDC when numbers are
deemed inaccurate, due to delays in reporting. We use the daily new deaths as
part of our input and as truth value to evaluate our estimations. To make sure
the date is comparable between countries we normalise the daily new deaths to
depict the number of daily new deaths per 1,000,000 people within the population.

Mobility data

We use two different mobility datasets, published by Apple and Google. Both
these data sets represent movement of a population as a percentual increase or
decrease as compared with a baseline established at a time step earlier than the
start of the data set.

Apple. The Apple Mobility Trend Reports [40] contain the percentual increase
or decrease of the use of modes of transportation as compared with a baseline
volume on January 13th, 2020. The modes of transportation they specify are
walking, driving and use of transit. This latter mode is not available for all
countries, however, so in our features we only use the increase or decrease in the
use of walking and driving as means of transportation. The data set includes
data starting from January 13th, 2020 and is still regularly updated with new
values. It holds data for 63 countries from all parts of the world. Many African
countries are, however, missing.

Google. The Google Community Mobility Reports [41] contain the percentual
increase or decrease of place visits as compared with a baseline period from
January 3th to February 6th, 2020. The places are categorised in the following six
categories: retail and recreation, grocery and pharmacy, parks, transit stations,
workplaces and finally residential. The data set starts at February 15th, 2020
and is still regularly updated with new values. It holds data for 135 countries
from all parts of the world.

Combined data

We merged the mortality data and the mobility data into two combined data
sets. The first combined data set captures the first year of the pandemic and
is studied in the early forecasting experiment and the intermediate forecasting
experiment in Chapter 5. We used the intersection of dates and countries of
the first ECDC data set and both mobility data sets. There were some missing
values, which we imputed by taking the average of the value 7 days before the
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missing data point and the value 7 days after the missing data point. This
way the imputed value fits well between the previous and next week and daily
trends are preserved. For the country of Serbia the number of missing values
exceeded 10%, which is why we omitted it from the data set. The resulting
combined data set contains data from February 15th, 2020 until December 14th,
2020. It holds the following 58 countries, which, for convenience, we call the
global collection of countries. Argentina, Australia, Austria, Belgium, Brazil,
Bulgaria, Cambodia, Canada, Chile, Colombia, Croatia, Czechia, Denmark,
Egypt, Estonia, Finland, France, Germany, Greece, Hungary, India, Indonesia,
Ireland, Israel, Italy, Japan, Latvia, Lithuania, Luxembourg, Malaysia, Mexico,
Morocco, Netherlands, New Zealand, Norway, Philippines, Poland, Portugal,
Romania, Russia, Saudi Arabia, Singapore, Slovakia, Slovenia, South Africa,
South Korea, Spain, Sweden, Switzerland, Taiwan, Thailand, Turkey, Ukraine,
United Arab Emirates, United Kingdom, United States, Uruguay and Vietnam.

The second combined data set is an extension of the first combined data set,
using the second ECDC mortality data set. This second set allows us to forecast
later in the pandemic and is studied in the late forecasting experiment in Chapter
5. For this data set, we used the intersection of dates and countries of the second
ECDC mortality data set and both mobility data sets. As there were countries
for which some early dates were not recorded, this combined data set starts
at March the 1st, 2021 and ends July the 10th, 2021. As the second ECDC
data set only contains countries within the European Union, this set ends up
with 26 countries. These countries are the following, which, for convenience we
call the European collection of countries. Austria, Belgium, Bulgaria, Croatia,
Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland,
Italy, Latvia, Lithuania, Luxembourg, Netherlands, Norway, Poland, Portugal,
Romania, Slovakia, Slovenia, Spain, and Sweden.

4.2 Methods

As the amount of possible pre-processors, feature pre-processors and regression
models with each their corresponding hyperparameter settings is huge, we utilise
auto-sklearn [7], an automation framework for configuring pipelines. Auto-sklearn
is a wrapper around the popular Python module Scikit-learn [31]. Scikit-learn is
used for regression and classification problems, providing ways to pre-process
data, select features, fit models and evaluate the results. A typical usage of
scikit-learn includes creating a pipeline linking these steps together. To create a
pipeline there are many choices to be made, such as the choice of pre-processing
steps, which models are used and what are the best hyperparameters for both
the models and the pre-processors. Different choices may vastly influence the
predictive performance of the pipeline, which is why we can benefit from making
these choices automatically. Auto-sklearn automates the process of creating
good pipelines. Within auto-sklearn, pipelines consisting of data pre-processors,
feature pre-processors and machine learning models are evaluated on a validation
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set. It is built upon Sequential Model-based optimization for general Algorithm
Configuration [29] (SMAC). SMAC constructs a model capable of predicting
the performance of an algorithm on the corresponding configuration space.
This model selects a list of promising configurations based on their expected
improvement over the incumbent, the best seen configuration. A local search
is performed near these promising configurations to find configurations with
even higher expected improvement. In each iteration the incumbent is updated
to store the best found configuration. The process of constructing an optimal
pipeline can be warm-started by means of a meta-learning module. Before the
search for good pipelines starts the input data set is compared with 140 data
sets from the OpenML [42] repository, speeding up the search. Strong pipelines
are saved in a resulting ensemble, which may subsequently be used for making
forecasts.

In the following sections we explain how we implement our framework. Vanilla
auto-sklearn does not support the time series of varying size as input, which is
why we implement a feature pre-processor that limits the size of input sequences.
We discuss the recent addition of multi-output regression that auto-sklearn
included in their framework. This enables us to make predictions with longer
forecasting horizons. This setting has no meta-learning available, which is why
we create a method that makes repeated single-output predictions to achieve
the same horizon of forecasts. Furthermore we detail our training strategy. We
discuss adaptation mechanisms used to handle concept drift. At the end of the
chapter we give an overview of the configuration search space.

Variable window size. To predict the value of [xt+1, ..., xt+h]we train the
models with sequences of the time series in the form of [xt−w, ..., xt]. In vanilla
auto-sklearn this window size w is unchangeable. The number of features
provided to the model is static, as each instance should normally be represented
by a combination of all features. This would mean that when we use lags of the
time series as features, the number of lags is predetermined as well. This may
however not be desirable. When making predictions with different regressors, not
all parts of the time series may be relevant and depending of the configuration
it can be good to use a longer or shorter time input sequence. This is why we
implement the variable window size feature pre-processor as proposed by Wang
et al. [43]. This pre-processor has hyperparameter w that is optimised within
auto-sklearn. The pre-processor takes the input sequence with predetermined
static length and cuts off the first values, resulting in an input sequence in the
form of [xt−w, ..., xt]. In their work they have experimented on a large set of
time series tasks and showed that the variable window size had major impact on
the accuracy of the framework. They have tested the pre-processor for generally
large (up to 200 time steps) windows. As larger windows limit the number of
data instances we can use, we limit our windows to a maximum of 30 days.
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Figure 4.1: Schematic overview of the multi-output ensemble, as implemented
by auto-sklearn. This ensemble creates multiple predictions at once, but has
no access to meta-learning. Within the framework pipelines are constructed to
form a forecasting ensemble. By feeding this ensemble test data predictions can
be made.

Figure 4.2: Schematic overview of the repeated single-output ensemble. This
ensemble creates one prediction at each time step. To create predictions for a
longer time period, for each new time step the predictions of previous steps are
used. This method has access to meta-learning, but can not use additional data
sources as input.

Forecast horizon. Since version 0.8 auto-sklearn supports multi-output regres-
sion, such that forecasts with forecast horizon h > 1 may be performed without
the need for training multiple models. We use this way of multi step-ahead
forecasting in our method we call multi-output. We show a schematic overview of
this method in Figure 4.1. To make a multi-output prediction, separate regressors
are fitted for each value of output. This means that each model consists of h
regressors. As this output format was implemented much later than others, there
is no meta-learning available for multi-output regression. This is why we create a
new way to make predictions with an horizon h > 1. The repeated single-output
forecasting scheme is a model trained for single-output regression, but once it
starts forecasting its output is appended to the input sequence. In a sense, the
model rolls over its own predictions. For instance, when we want to predict the
value of xt+2 we use the sequence [xt−w+1, ..., xt, x

′
t+1] as input. In this sequence

x′t+1 denotes the prediction of value xt+1. Note that when we append values to
the input sequence, we remove values at the start of the sequence. Each model
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uses one regressor. We show a schematic overview of this method in Figure
4.2. The advantage of this method over the multi-output regression method is
that it does gain the benefits of meta-learning. However, as it is not trained
specifically for forecasting multiple days in future, predictions further away may
suffer from errors made earlier. Another disadvantage is that this method can
not use external changing variables as input, as only one time series is predicted.

The distribution of the repeated single-output ensemble differs from the multi-
output regression ensembles. The repeated single-output ensemble generates one
prediction for each day in the horizon. The multi-output ensembles generate
multiple predictions for each day in the horizon. This is because each step, the
ensembles predict for a number of days equal to h. As the forecasting window
shifts h steps over the test set, the first day in the forecasting window yields
h predictions, the second h− 1, and so forth until the last day that receives 1
prediction. In the case of multi-output regression we take the mean prediction
for each day as final forecast.

Training strategy. As tuning many parameters requires lots of data instances
to prevent overfitting, we put together the time series of all countries in the data
set for training, as opposed to training separate models for separate countries.
This way we create a joint model capable of forecasting for many countries. We
normalised the incidence data by the size of the population of each country. The
mobility data depicts percentual changes in mobility, which does not require
further normalisation to make comparisons between countries possible. To make
sure it handles individual countries well, we pass the country name as categorical
feature to each instance. For testing, we separate time series per country again.
This way we can compare the forecasting quality between countries. The default
options of auto-sklearn shuffle the data while training. However, we do not
shuffle it to ensure the temporal integrity of the data set. Another default setting
is the use of cross validation as resampling strategy. Applied to time series this
would mean that for most folds future data is used to predict previous values.
To negate this problem we use a holdout set for validation. This set is situated
at the end of the training set, just previous to the start of the test set, to be sure
that the ensembles can’t learn future information. As optimisation metric we
use the mean squared error. This ensures the regressor line tries to fit the set of
points as close as possible. To make sure our ensembles are fully trained on the
data, we refit the ensembles on the full train and validation set after validation
is finished. This means that while the pipeline stays the same, the weights of
the regressors are updated with both the train and validation set. This way we
make sure there is no gap in knowledge just before the forecasting starts.

Drift adaptation mechanisms. Since the infectiousness of COVID-19 may
change over time, for instance due to mutations or vaccinations, the underlying
concept generating the data may change. When the concepts changes vastly,
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this is detrimental to the performance of machine learning algorithms. This
change is known as concept drift. In Equation 4.1 we show a formal definition
of concept drift between two time steps t0 and t1 [44].

∃X : pt0(X, y) 6= pt1(X, y) (4.1)

In this definition pt0 is the joint distribution between the set of input sequences
X and target values y at time t0. Currently, auto-sklearn has no drift detection
mechanism. However, as we use two data sets, separated in time, with a different
population size, we can be sure some concept drift exists in our time series.
After all, the population size is used to scale the death incidence data. Celik
and Vanschoren [45] created several concept drift adaptation mechanisms for
automated machine learning frameworks. We implement three methods based
on their work that do not use drift detection to cope with concept drift. For each
of the methods we first construct ensembles using the old data set. The full refit
method then uses the full combination of both data sets to refit the ensembles.
The partial refit method instead uses only the new data set to refit the ensembles.
The retrain method discards the ensembles and constructs new ones with the
new data set. These methods can be seen as a kind of forget mechanism, with
varying degrees of aptness to forget. The full refit method places most emphasis
on older data in comparison with the others. The partial refit method still uses
the older data in the form of ensembles, but the weights are only updated with
new data. The retrain method forgets the old data altogether and only uses new
data for its predictions. Depending on the magnitude of the concept drift there
can be merit for each method.

Configuration search space. Regression pipelines created in auto-sklearn
consist of data pre-processors, feature pre-processors and regressors. Each of
these components have their own hyperparameter search space. Each pipeline
is a configuration of two categorical data pre-processors, two numerical data
pre-processors, one feature pre-processor and one regressor. Each of these
components have their own hyperparameters that need to be tuned. We show
the components available in our framework with their corresponding number of
hyperparameters in Table 4.2. These are all the default auto-sklearn components
for regression, with the addition of our newly included variable window.
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Table 4.2: Configuration search space.

Name Category Number of hyperparameters
Categorical encoding Data pre-processor 1
Category coalescence Data pre-processor 2
Imputation strategy Data pre-processor 1
Rescaling Data pre-processor 5
Feature pre-processor Selector 1
Window size Feature pre-processor 1
Extra trees for regression Feature pre-processor 9
Fast ica Feature pre-processor 4
Feature agglomeration Feature pre-processor 4
Kernel pca Feature pre-processor 5
Kitchen sinks Feature pre-processor 2
Nystroem sampler Feature pre-processor 5
Pca Feature pre-processor 2
Polynomial Feature pre-processor 3
Random trees embedding Feature pre-processor 7
Regressor Selector 1
Decision tree Regressor 8
Extra trees Regressor 9
Gaussian process Regressor 3
K nearest neighbors Regressor 3
Random forest Regressor 9

22



Chapter 5

Experiments

The challenges of forecasting epidemics change over time. When an epidemic
is still novel, there is limited data available. Especially when using complex
methods, this limitation may hamper the forecasting quality. It is in this stage
highly beneficial to be able to create accurate estimations early, as the number
of infections follow an exponential growth. For instance, in the Chinese province
Hubei, where COVID-19 started, the doubling time was estimated at 2.5 days
[46]. Later on, when the epidemic is in full sway, more data is available, but the
differences between countries may also become larger. As the amount of data
enables our framework to train better, it is interesting to see to what extent
the performance improves over early forecasting. As the disease may mutate
over time and as the population may gain (partial) immunity due to vaccination,
there may arise a concept drift [47]. As we learn from observations generated by
the process of the epidemic, the observations change when the generative process
changes. It is interesting to see how to deal with such a change in concept.To
shed light on these challenges, we propose the following questions:

• Q1. How accurate is our modified AutoML system for the early forecasting
of COVID-19?

• Q2. Given more training data, can we improve the accuracy of COVID-19
forecasts?

• Q3. How accurate is our modified AutoML system when it is adapted to
concept drift?

To answer these questions, we design three scenarios, each answering one of
these questions. The scenarios are distinguishable by time. In the early scenario
we focus on forecasting when limited data is available. For the intermediate
scenario we use data for the first year of the pandemic. In the late scenario we
add an additional mortality data set, situated three months after the first one.
In the next section, we detail the different scenarios. Later in this chapter we
discuss our experimental setup.
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5.1 Scenarios

Early forecasting. The early forecasting scenario aims to test the performance
of our methods when the epidemic is still novel, thus answering question Q1. In
this scenario we use a train set with data from February the 15th, 2020 until
April the 21st, 2020, and evaluate the forecast on a test set of the next 14 days,
until May the 5th, 2020. We evaluate our methods using the 58 countries in the
global collection of countries. However, as we wish to compare with Bayesian
inference method as a baseline which is discussed in the next section, we limit
the countries to the following 11 countries when comparing with the Bayesian
inference model: Austria, Belgium, Denmark, France, Germany, Italy, Norway,
Spain, Sweden, Switzerland, United Kingdom.

Intermediate forecasting. The intermediate forecasting scenario aims to test
the performance of our methods with less data scarcity. By using more date
than the previous scenario we aim to answer Q2. In this scenario we use a train
set with data from February the 15th, 2020 until November the 14th, 2020. We
evaluate on a test set of the next 30 days, until December the 15th, 2020. Again,
we use the 58 countries in the global collection of countries.

Late forecasting. The late forecasting scenario aims to test our performance
when coping with concept drift, thus answering question Q3. To do this, we
use an additional mortality data set, situated about three months after the first.
Along with potential implicit underlying drift, there is explicit drift in the fact
that this set provides a new population size. We use this population size in our
methods to scale the mortality numbers. This means that when scaled values
are the same for both data sets, they actually denotes a growth in the number of
daily deaths when the population has grown. In this scenario we use a train set
with data from February the 15th, 2020 until December the 14th, 2020. After
ensembles are created, we use the data set from March the 1st, 2021 until June
the 10th, 2021 as additional train set for the drift adaptation mechanism and
evaluate on a test set of the next 30 days, until July the 10th, 2021. The data
between December 15th 2020 and February 28 2021 were not available, resulting
in a gap between data sets. We limit the countries in this scenario to the 26
European collection of countries, as the others are not available in the new data
set.

5.2 Experimental setup

Our framework is built on version 0.12.1 of auto-sklearn. All our ensembles are
run for 3 hours . For each iteration we limit the runtime to a maximum of 10% of
the total runtime, which comes down to 18 minutes. The majority of iterations,
however, finish much faster. This amount of time ensures hundreds of models
are compared to create the resulting ensembles. We run auto-sklearn in parallel
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on 8 cores, of an Intel(R) Xeon(R) CPU of 2.1 GHz with 10 GB of RAM. As
mentioned before in Chapter 4 we use a holdout set as validation strategy, and
make sure not to shuffle the data. As internal performance metric we use the
mean squared error. We use the full default regressor and pre-processor search
space, and extend the feature pre-processor search space by adding the variable
window size pre-processor. We limit the window pre-processor to a minimum of
three days and a maximum of 30 days.

Bootstrapping. As the Bayesian optimisation used by auto-sklearn is stochas-
tic, one run of the framework may optimise towards a locally optimal con-
figuration, thus not yielding the actual optimal configuration. We perform
bootstrapping to gain confidence in our predictions. For each estimator we
make, we run our framework 25 times. Repeating 1,000 times, we sample with
replacement five ensembles from the 25 runs, of which we select the one with
the lowest validation error. These 1,000 selected models form our bootstrap
distribution used to analyse results. For each day within the forecasting horizon,
we report on the mean forecast and the 95% confidence interval. We use our
bootstrapping approach not only for our methods, but also for the deep learning
baselines.

Performance metrics. To evaluate our methods we use the mean squared
error as defined in Equation 5.1. Here Y denotes true target values of our time
series and Ŷ the prediction of the model. As our ensemble creates multiple
predictions for each day, the daily average is used for Ŷ . When analysing how
the methods train, we compute the mean squared error of forecasts scaled by the
population size of each country. This way, the error resembles the scaled values
as they are used when training the models. To gain more insight in the quality of
our prediction we perform error decomposition, splitting the MSE in a bias term
and a variance term as shown in Equations 5.2 and 5.3. The bias is the difference
between the expected value of the prediction and the truth label. The variance
is the average of the squared deviation of the mean. Ideally, both the bias and
the variance are low. In this case predictions are accurate. If the bias is high and
the variance is low, it means that the estimator is quite confident, but misses
the target consistently. In this case the ensemble has learned false information.
If the bias is low and the variance high, the estimate makes predictions around
the truth label, but with a wide range. In this case estimators may benefit from
more training data, to narrow down the prediction interval. Analysing the error
decomposition gives us the ability to decide whether or not the methods are
capable to learn useful structures, allowing for improvement by adding more
data or changing the method completely. Finally, we present the performance of
all methods in form of root mean squared error, shown in Equation 5.4, over
unscaled forecasts. The unscaled forecast is the prediction of the number of
actual deaths in a country. We argue that these forecasts may be more useful
for policy makers interested in individual countries. By computing the root of
the mean squared error we translate the size of the error back to the unit.
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MSE =
1

n

n∑
i=1

(Yi − Ŷi)2 (5.1)

Bias2 = (Y − Ŷ )2 (5.2)

V ariance =
1

m

m∑
j=1

(Ŷj − Ŷj)2 (5.3)

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2 (5.4)

5.3 Methods and baselines

In this section, we discuss our ensembles and the baselines we compare them
with. Our proposed methods are the multi-output ensemble and the repeated
single-output ensemble. For the repeated single-output ensemble we use only
deaths data. For the multi-output ensemble we try different combinations of
deaths and mobility data, as well as additions in the form of spatial weights
and train data from countries not used in the test set. In the late forecasting
scenario we compare three drift adaptation techniques – fully refitting on all
data, partially refitting on only new data and retraining on only new data – for
both our methods. We compare our methods with the persistence, Bayesian
inference, and ARIMA wavelet, GRU, LSTM and Bi-LSTM baselines. Details
of these methods are found below.

Our methods. The repeated single-output ensemble uses single-output regres-
sion, enabling meta-learning for warm starting the algorithm configuration search.
As this ensemble uses its own predictions as input for future predictions, it is
not possible to use external time series data like mobility data. For each of
the scenarios, this methods uses only death incidence data as features. The
multi-output ensemble does not have this limitation, which is why we vary the
data sets used in combination with this method. For each of the scenarios we
use this method with and without mobility data. This data comes in the form
of percentual increase of the use of modes of transportation, like walking, or the
percentual increase of visits to place categories, like grocery stores. When these
values are negative we speak of a percentual decrease. In our intermediate and
late forecasting scenarios we split the mobility data set to see if Apple, Google
or the combined mobility data set is most informative.

As the spread of diseases does not happen only over time, but also over
space, we experiment with adding spatial lags to the data input sequences.
Countries that are closer to each other may have patterns that are more similar
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to each other than to countries farther away. Spatial weights allow us to take
spatial correlations into account. To this end, we use the PySAL module, a
Python library for spatial analysis [48]. Using a shapefile, we define neighbors
as countries that share a border. Using the Queens weighting scheme, we do
not apply limitations on the amount of neighbors that are considered. The
spatial weights have a smoothing effect over neighbors. When multiplied with
the daily new deaths, this will be smoothed across countries. In the combined
data set used with the other ensembles, we have only 58 countries. To be able
to create a spatial weights matrix where all countries have neighbours we need
more countries. In the original ECDC data set there are however more countries
available. By combining the ECDC data set with the shapefile we are able to
implement spatial weights for 212 countries worldwide. The spatial weights are
only applicable in the intermediate forecasting scenario, as only in this scenario
there are enough countries available in the data set.

In an effort to reduce the variance of the error, we compare the performance
of the multi-output ensemble in the intermediate scenario using death incidence
data of the 58 countries in the global set with the multi-output ensemble using
the death incidence data of the 212 countries worldwide used for creating spatial
weights. This way we can feed the ensemble more observations, bringing the
variance of the error down. Similar to the spatial weights, this addition of
countries is only applicable to the intermediate forecasting scenario, as only in
this scenario there are enough countries available in the data set.

In the late forecasting scenario, we experiment with drift adaptation tech-
niques. Both our methods use the techniques full refit, where the full combined
data set is used for refitting the old ensembles, partial refit, where only the new
part of the data set is used for refitting the old ensembles, and retrain, where
only the new part of the data set is used for training new ensembles.

Baselines. The persistence baseline is a naive baseline that forecasts the last
seen observation from the train data for all days in the forecasting window.
When forecasting the window [xt+1, ..., xt+h] each predicted value will have xt,
disregarding all previous values xi with i < t.

We compare against the ARIMA wavelet model [19] proposed by Chakraborty
and Gosh, as it showed improvement on the widely used ARIMA models. The
ARIMA wavelet model is the combination of an ARIMA model and a wavelet
based forecasting model. It fits an ARIMA model on the mortality data and then
models the residuals via the wavelet model. We use the model as implemented
by Chakraborty and Ghosh, but adjust the number of forecasting days to align
with the scenario. The parameters of the ARIMA model controlling the order of
autoregression, the order of differencing and the moving average are automatically
configured using a grid search and the Akaike Information Criterion. As the
drift adaptation techniques are not applicable to this model, we use only the
new data in the late forecasting scenario as train set.

The Bayesian inference model [14] proposed by Flaxman et al. was highly
influential in estimating the effects of government measures in containing the
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disease. It is an hierarchical model, including a model for the daily number of
deaths and one for the daily number of infections. The forecasted number of
deaths depends on the number of infections of the previous day. The forecasted
number of infections depends on the number of infections of the previous day
and the reproduction number, which in turn is a function of the effect of each
intervention. Through Bayesian inference the effects of the interventions are
estimated, which in turn is used to construct the prediction models. By chaining
predictions multiple days of forecasting can be achieved. We use the model
as implemented by Flaxman et al. but use an updated mortality data set, as
the data set they used was a previous version published by the ECDC. It is
important to note that for this baseline only 11 countries are available. This
is due to their dependency on detailed data like containment strategies and
the infection fatality for each country. These countries are Austria, Belgium,
Denmark, France, Germany, Italy, Norway, Spain, Sweden, Switzerland, United
Kingdom. Additionally, for this model the necessary data was only available until
May the 5th, 2020, making the model applicable to only the early forecasting
scenario. The model provides a 95% confidence interval but does not give insights
into its error decomposition.

To compare our framework with recurrent neural networks, we reproduce
the GRU, LSTM and Bi-LSTM as studied by Shahid et al. [27]. The different
algorithms differ from each other only by the type of neurons they consist of.
The GRU neuron has two gates: the reset and update gates. The LSTM neuron
has three gates: the input, output and forget gates. The Bi-LSTM has the same
neurons as the LSTM, but approaches the time series in two ways, once in time
order and once in reversed order. In our comparison, all three architectures share
the same architectures, as chosen by [27] and shown in Table 5.1. We did however
enlarge the batch size from 10 to the number of countries in the scenario: 58 for
the early and intermediate forecasting scenarios and 26 for the late forecasting
scenario. This allows the models to train for each country simultaneously without
them being able to see future time steps. Additionally we increased the number
of time steps used as input to 30, to match the other ensembles and baselines
in our comparison. To give these methods a fair comparison to our own, we
experiment with adding mobility data features in all scenarios by concatenating
mobility feature columns for each day in the input sequence, similar to our own
methods, as well as the retrain drift adaptation technique in the late forecasting
scenario.
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Table 5.1: Hyperparameter settings for the GRU, LSTM and Bi-LSTM.

Hyperparameters Values
No. of neurons {16, 32, 64, 128}
Learning rate 0.001
Optimiser Adam
Batch size No. of countries: 58 or 26
Epochs 300
Time steps 30
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Chapter 6

Results

In this chapter we present the results of our experiments. Each section presents
one of the three scenarios. The first section shows the early forecasting scenario.
We use a limited amount of data and answer Q1. In the second section we show
the intermediate forecasting scenario. Here we use a longer time period and
answer Q2. The third scenario is the late forecasting scenario. It introduces
concept drift and answers Q3. In each of the figures our methods are indicated
with an M and all baselines with a B.

6.1 Early pandemic forecasting

Because we want to compare the predictive performance of our methods for
many different countries, we create rankings of their performance based on MSE
relative to each other over all countries. When one method is consistently better
than the others over most countries, it gets assigned a lower average rank. The
average ranks of all methods give insight on how well the methods perform
compared to each other. When average ranks are close to each other, it is
not immediately obvious if the methods are significantly different. Using the
Nemenyi test [49] we can visualise the significant difference between average
ranks. This test defines a critical distance between average ranks. Any methods
within critical distance to another method is not significantly different. As a
preliminary result we compare the deep learning baselines with each other, each
including or excluding mobility features. We show this in Figure 6.1. The value
indicated by the line next to a method name is the average rank. A method is
better when it is more to the left of others. The horizontal lines linking methods
together indicate that these methods fall within critical distance and are thus
not significantly different. The LSTM and Bi-LSTM without mobility features
are the left-most methods linked by a bar, indicating they are the best methods
and on par with each other. For both the LSTM and Bi-LSTM it shows that
the models without mobility features are better than their counterparts with
mobility features. For the GRU the model with mobility features seems a bit
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better than the one without mobility features, but for this model the difference
is not signficant. For the rest of the results of the early forecasting scenario we
will consider the LSTM and Bi-LSTM without mobility features and the GRU
with mobility features.

1 2 3 4 5 6

B: LSTM (deaths)
B: Bi-LSTM (deaths)

B: LSTM (deaths + mobility) B: GRU (deaths + mobility)
B: GRU (deaths)
B: Bi-LSTM (deaths + mobility)

CD

Figure 6.1: Nemenyi test for the deep learning baselines based on MSE in the
early pandemic forecasting scenario, using 58 countries. Methods with lower
average rank (left) are better than those with higher rank (right). Connected
methods are not significantly different.

1 2 3 4 5 6 7 8 9

B: Persistence
B: ARIMA wavelet

M: Multi-output (deaths)
M: Multi-output (deaths + mobility)

B: LSTM (deaths)
B: GRU (deaths + mobility)
B: Bayesian inference
B: Bi-LSTM (deaths)
M: Repeated single-output (deaths)

CD

(a) Nemenyi test for early pandemic forecasting based on MSE, using 11 countries.

1 2 3 4 5 6 7 8

B: Persistence
B: ARIMA wavelet

M: Multi-output (deaths)
B: LSTM (deaths) B: Bi-LSTM (deaths)

M: Multi-output (deaths + mobility)
M: Repeated single-output (deaths)
B: GRU (deaths + mobility)

CD

(b) Nemenyi test for early pandemic forecasting based on MSE, using 58 countries.

Figure 6.2: Nemenyi tests for early pandemic forecasting based on MSE. Methods
with lower average rank (left) are better than those with higher rank (right).
Connected methods are not significantly different.

We show the comparative performance of our methods and baselines in Figure
6.2a, which shows comparison using the 11 countries for which the Bayesian
inference model is suitable., and Figure 6.2b, for which we use all 58 countries of
the global collection.. From the figures we see that in both cases the persistence
and ARIMA wavelet baselines perform best. In the comparison using 11 countries
(Figure 6.2a) our multi-output ensembles are on par with the more simple
persistence and ARIMA wavelet baselines. Our repeated single-output ensemble
gets clearly outperformed by these baselines. The deep learning and Bayesian
inference baselines are on par with our best models but are outperformed by
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the persistence baseline. If we look at the comparison with 58 countries (Figure
6.2b) the differences are more pronounced. Here our multi-output ensemble
without mobility features is again our best method, but is outperformed by both
the persistence and the ARIMA wavelet baselines. It is on par with the LSTM
baselines but outperforms the other methods. Our other methods perform worst
together with the GRU, LSTM and Bi-LSTM baselines. It is interesting to note
that in this comparison our method with mobility features performs worse than
in the comparison with 11 countries. A possible explanation for this is that in
many countries the pandemic had not started yet, and restrictions of mobility
would not yet be in place. For the reader interested in the model performance
with unscaled data, we show the results based on RMSE using unscaled deaths
in Table 8.1 in the Appendix.
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Early pandemic forecast error decomposition summary

Figure 6.3: Early error decomposition summary. Each box shows the mean MSE
and its decomposition in bias and variance on log scale over 58 countries.

Figure 6.3 shows a summary of the error decomposition of MSE into its bias
and variance components. Each box represents the mean MSE, mean bias and
mean variance of the 58 countries in the global collection. We do not show
the Bayesian inference baseline in this figure, as this model reported on its
mean predictions and 95% credible interval without showing the distribution of
predictions. The figure shows that for each of the methods the bias on average is
the main component of the MSE. The persistence and ARIMA wavelet methods
produce exactly one prediction, which is why for these models the MSE equals
the bias. The relatively high bias in combination with low variance may indicate
some underfitting. This is the case for both the deep learning baselines and our
own methods. Especially the repeated single-output ensemble shows no variance
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at all.
Overall, the most simple baselines – the persistence and ARIMA wavelet

baselines – dominate the early forecasting scenario. There are two main reasons
accountable for this. Firstly, because we use only a short forecasting horizon of
14 days, the persistence baseline is quite strong if the change in the truth values
is low. Especially early in the pandemic this is the case in many countries, where
the disease still had to pick up pace. To visualise this, we show the predictions
for Austria in Figure 6.4, but many other countries – like Denmark, Egypt,
Hungary or Sweden (Figures 8.1 to 8.4 shown in the Appendix) – show similar
behaviour. In the figure we see that the truth label is relatively steady. Here
the persistence and ARIMA wavelet baselines fit right through the average of
the truth, resulting in low MSE. In countries where COVID-19 was not yet
widely spread – for instance New Zealand, which is shown in Figure 6.5 (but
again, similar countries exist and are shown in the Appendix, like Argentina,
Chile, Malaysia and South Africa, Figures 8.5 to 8.8) – the baselines have a
similar advantage. For these countries our mobility ensemble tends to forecast
deaths that transcend the truth vastly. It may be that in this scenario mobility
patterns are a bad indicator of incidence, as high mobility in countries with lots
of contagion may have a different effect than high mobility in countries with
little to no contagion.

A second reason why our ensembles fair badly against the baselines is that
due to the frequency of data collection there is not much training data available.
This may especially be disastrous for the multi-output ensemble with mobility
features. This ensemble may have too many features to account for. Where
the ensembles without mobility features have one feature per day, the mobility
ensembles have nine. Combined with the lack of data in the early forecasting
scenario these ensembles may not be trained well. The error bars of the Bayesian
inference baseline get quite wide when time progresses, as consecutive predictions
use previous predictions as base. For our multi-output ensembles as well as
the deep learning baselines this is not the case. These are trained specifically
to forecast multiple steps ahead. We expected that our repeated single-output
ensemble would have error bars growing over time, similar to the Bayesian
inference baseline. However, it has extremely slim error bars, which may indicate
a case of strong underfitting.

This scenario shows when data is still sparsely available, our methods are
outperformed by more simpler methods like the ARIMA wavelet model and
the persistence baseline. From error decomposition we see signs of underfitting.
This means that our methods do not capture the more complex behaviour of
the data in this early stage of the pandemic. Of our methods, the multi-output
ensemble with only death incidence data fairs best. This ensemble is on par with
the LSTM baseline but is more accurate than the others.
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Figure 6.4: Early forecasting for Austria.
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Figure 6.5: Early forecasting for New Zealand.
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6.2 Intermediate pandemic forecasting

In this scenario COVID-19 has taken a grip on more countries. Most countries now
have some number of death incidence and the variance of the true observations
is on average larger than that of the early forecasting scenario. As also the time
series have become longer it is interesting to see whether we can improve our
predictions. As a preliminary study we look into using different combinations
of our data sets. First we compare the deep learning baselines with and without
mobility. Then, we compare the mobility data sets, split into Apple, Google
and the combination of the two to see which set is most useful. After that, we
experiment with spatial weights as features, and additional countries worldwide
for training, to see if we can improve the multi-output ensemble without using
mobility data. We use the best of these results in our subsequent experiment
where we compare each ensemble with other baselines.

1 2 3 4 5 6

B: GRU (deaths)
B: LSTM (deaths)

B: Bi-LSTM (deaths) B: LSTM (deaths + mobility)
B: GRU (deaths + mobility)
B: Bi-LSTM (deaths + mobility)

CD

(a) Nemenyi test for deep learning baselines in the intermediate pandemic forecasting
scenario.

1 2 3

M: Multi-output (deaths + Google mobility)
M: Multi-output (deaths + mobility)

M: Multi-output (deaths + Apple mobility)

CD

(b) Comparison of performance based on MSE of mobility ensembles using Google data,
Apple data, or both.

1 2 3

M: Multi-output (deaths, worldwide)
M: Multi-output (deaths)

M: Multi-output (spatial weighted deaths, worldwide)

CD

(c) Comparison of performance based on MSE of multi-output ensembles not using
mobility data, extended with additional countries for training or spatial weights.

Figure 6.6: Nemenyi test for intermediate pandemic forecasting using different
mobility data sets in our ensembles based on MSE, using 58 countries. The
subfigures compare differences in performance when selecting certain mobility
data sets or when using additional countries for training or spatial weights as
features. Methods with lower average rank (left) are better than those with
higher rank (right). Connected methods are not significantly different.

Figure 6.6a shows a Nemenyi plot for the deep learning baselines deployed for
the intermediate forecasting scenario. The differences between the baselines are
small, as most are connected to each other. The GRU, LSTM and Bi-LSTM
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baselines without mobility features seem to be better than their counterparts
with mobility features, but for none of them this is on a significant level. For
the subsequent comparisons we consider the baselines without mobility features.

It is interesting to know which mobility data set is the most useful aid
for predicting COVID-19 death incidence. To this end, we split it into three
different mobility ensembles: one using Apple mobility data, one using the
Google mobility data and the original mobility ensemble using both. We show
the relative performance of these mobility ensembles according to the Nemenyi
in Figure 6.6b. From this figure we see that using Google mobility data increases
performance as compared to using Apple data or both.

Because the spread of diseases is not only a process depending on time,
but also on space, we use this scenario also to see how using spatial weights
would affect the predictive performance. Additionally, we test if we can improve
performance decreasing the variance by providing data from additional countries
as train set. We still use the 58 countries from the global collection for testing.
The use of these additional countries excludes the use of mobility features. From
Figure 6.6c we see that using spatial weights does not yield better performance.
Adding extra countries in the training phase seems slightly better, not on
a significant level. In the subsequent experiment we use the multi-output
ensembles with Google mobility features and the multi-output ensemble trained
on additional countries worldwide.

1 2 3 4 5 6 7 8

B: Persistence
M: Repeated single-output (deaths)

M: Multi-output (deaths, worldwide)
M: Multi-output (deaths + Google mobility) B: GRU (deaths)

B: ARIMA wavelet
B: LSTM (deaths)
B: Bi-LSTM (deaths)

CD

Figure 6.7: Nemenyi test for intermediate pandemic forecasting using the best
configured ensembles based on MSE, using 58 countries. Methods with lower
average rank (left) are better than those with higher rank (right). Connected
methods are not significantly different.

We show our full comparison with the best ensembles from the preliminary
results in Figure 6.7. In this scenario the persistence, our repeated single-output
ensemble, our multi-output ensemble using Google mobility data and our multi-
output ensemble trained on 212 countries worldwide are on par as the methods
with the lowest error. The repeated single-output ensemble is better than all
baselines other than the persistence baseline on a significant level. In general,
there is no clear winner for this scenario, as average ranks are quite close to each
other. For the reader interested in the model performance with unscaled data,
we show the results based on RMSE using unscaled deaths in Table 8.2 in the
Appendix.

We show the error decomposition of the intermediate forecast scenario in
Figure 6.8. Similar to the decomposition of the first scenario is that the bias
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Figure 6.8: Intermediate error decomposition summary.

component of the methods is relatively larger than the variance component.
A difference is that in this scenario the repeated single-output ensemble now
has a variance component. The MSE of our methods and the deep learning
baselines look roughly similar to the MSE in the previous scenario. However, as
the variance of the true observations is larger in this scenario, this means that
the models are somewhat better in capturing complex data. The persistence
and ARIMA wavelet models suffer more for this increase in variance. While the
persistence is still among the best estimators for this scenario, the MSE drops in
comparison to the early forecasting scenario.

When we look at the true observations of the countries, we can distinguish
a few different patterns. Some countries show clear weekly cycles in the data.
Some countries have a consistent upward or downward trend. Others have an
upward trend first and downward later. For some countries the weekly upward
and downward trends and weekly cycles are mixed. Another group has little
to no variation in new daily deaths, and some countries fall outside of all of
these. To give an example of a country with weekly cycles, we show the country
of Switzerland in Figure 6.9, as the cycles are quite consistent for this country.
Other examples with cycles include Mexico, the Netherlands, Poland and are
shown in the Appendix in Figures 8.9 to 8.11. In these countries the baselines do
not forecast well. Our multi-output ensembles also tag behind, but our repeated
single-output ensemble is able to capture weekly cycles quite well. To give an
example of a country with clear trend, we show the forecast of Belgium in Figure
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Figure 6.9: Intermediate forecasting for Switzerland.
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Figure 6.10: Intermediate forecasting for Belgium.
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Figure 6.11: Intermediate forecasting for Spain.
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Figure 6.12: Intermediate forecasting for Sweden.
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6.10. Other examples include Indonesia and Latvia and are shown in Figures 8.12
and 8.13 the Appendix. In this figure the weakness of the persistence baseline is
apparent, as it is not able to cope with harsh declines. Our ensembles do this
better. Whereas the multi-output ensembles capture the trend but estimate the
daily deaths too low, our repeated single-output ensemble predicts them quite
well. Some countries have a mix of trends and weekly cycles. Examples of these
include Russia and the United States of America, shown in Figures 8.14 and 8.15
in the Appendix. For these countries our ensembles are able to capture a weekly
cycle, but it becomes harder to capture the magnitude of each cycle. To show
an example of a country with clear cycles and a mix of upward and downward
trend, we show Spain in Figure 6.11. In this case the second cycle is larger than
the first, and the third and fourth both smaller. The persistence baseline got
initiated in a low point, vastly forecasting too low. The multi-output ensembles
capture the cycles without interference of the trend. The repeated single-output
ensemble predicts the increasing trend at the start and keeps enlarging their
prediction, thus getting off the mark. Something similar happens when a trend
suddenly changes. This is the case for instance in Hungary and Morocco, both
shown in Figures 8.16 and 8.17 in the Appendix, but is most clear for the case of
Sweden, which we show in this chapter in Figure 6.12. Here the sudden change in
trend eludes the repeated single-output ensemble. The multi-output ensembles
have a more smooth effect and predict closer to the truth.

This experiment has shown that while persistence is still a strong baseline,
our ensembles gain value as the pandemic progresses. As extreme values become
more extreme the ARIMA wavelet method that smooths signals is less able
to predict the true values. Our methods particularly shine in countries with
stronger cycles. Overall taken, the variance is quite low as compared to the bias,
indicating some underfitting. If it is known that cycles exist for a country, our
repeated single-output ensemble may be a good choice as forecaster. However,
caution should be taken when using the predictions as a basis of policy making,
as it fails to predict sudden shifts in trend. As there is more variance in the true
observations, it is more challenging for the estimators to achieve a low MSE.
Even though the MSE is similar to that of the previous scenario, an increase of
data means that the methods were able to learn more complex patterns. This
experiment has also shown that the use of Google mobility data is more beneficial
than the use of Apple mobility data or the combination of the two sets, but an
ensemble with these features is not necessarily better than one without mobility
features.

6.3 Late pandemic forecasting

The third scenario is interesting as it represents a shift in data concept. We use
two separate death incidence data sets. Both data sets were collected in the same
manner by the ECDC. An important difference between the sets is the change
in population size of each country. As we use this value as scaling factor for the
incidence data, this is a form of concept drift to account for. To this end we

43



combine three drift adaptation approaches with our ensembles. In this scenario
the death incidence goes down, and the variance of true observations is a lot
smaller than in the intermediate scenario. First we perform a preliminary study
to compare the deep learning baselines with and without mobility features and
with the retrain drift adaptation method. Then we compare the three strategies
for our methods: the repeated single-output ensemble without mobility data,
and the multi-output ensembles with Google mobility data and without mobility
data.

1 2 3 4 5 6 7 8 9

B: LSTM (deaths)
B: Bi-LSTM (deaths)

B: GRU (deaths)
B: Retrained GRU (deaths)

B: Retrained LSTM (deaths)
B: Retrained Bi-LSTM (deaths)
B: GRU (deaths + mobility)
B: Bi-LSTM (deaths + mobility)
B: LSTM (deaths + mobility)

CD

(a) Nemenyi test for deep learning baselines in the late pandemic forecasting scenario
using the best configured ensembles based on MSE, using 26 countries.

1 2 3 4 5

M: Partial refit multi-output (deaths + Google mobility)
M: Partial refit multi-output (deaths + mobility)

M: Partial refit multi-output (deaths + Apple mobility)
M: Retrained multi-output (deaths + mobility)
M: Full refit multi-output (deaths + mobility)

CD

(b) Comparison of performance of mobility ensembles using different forget mechanisms.

1 2 3

M: Partial refit multi-output (deaths)
M: Full refit multi-output (deaths)

M: Retrained multi-output (deaths)

CD

(c) Comparison of performance of no mobility ensembles not using mobility data using
different adaptation strategies.

1 2 3

M: Partial refit repeated single-output (deaths)
M: Full refit repeated single-output (deaths)

M: Retrained Rolling repeated single-output (deaths)

CD

(d) Comparison of performance of repeated single-output ensembles not using mobility
data using different adaptation strategies.

Figure 6.13: Nemenyi test for late pandemic forecasting based on MSE using
26 countries. The subfigures compare differences in performance when using
different adaptation strategies. Methods with lower average rank (left) are better
than those with higher rank (right). Connected methods are not significantly
different.

For the late pandemic forecast scenario Figure 6.13a shows that the deep learn-
ing baselines with mobility features are all outperformed by their counterparts
without mobility features. We implemented the retrain drift adaptation strat-
egy for these algorithms, but these did not yield an improvement over their
counterparts not adapting to a change in normalising factor. We use the deep
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learning baselines without mobility features in our full comparisons. For each
ensemble variant we compared the different adaptation strategies in a preliminary
experiment. The resulting Nemenyi plot is shown in Figure 6.13b to 6.13d. In
Figure 6.13b we show the comparison with different combinations of mobility
data. Similar to the intermediate forecasting scenario the ensemble with Google
mobility data is better than the others, although the difference is smaller now. As
adaptation strategy the partial refit dominates. This strategy involved training
the ensembles on the old data and updating the regressor weights on the new
data. The same holds for the comparison of methods not using mobility features,
shown in Figure 6.13c. For the repeated single-output ensemble the difference
is less pronounced. From all three figures it follows that the retrain strategy
performs worst. In this strategy most of the data is discarded, which would
make the amount of data used by the methods in this scenario similar to the
early forecasting scenario.

1 2 3 4 5 6 7 8

M: Partial refit multi-output (deaths + Google mobility)
M: Partial refit multi-output (deaths)

B: ARIMA wavelet
B: LSTM (deaths) B: Bi-LSTM (deaths)

B: GRU (deaths)
B: Persistence
M: Partial refit repeated single-output (deaths)

CD

Figure 6.14: Nemenyi test for late pandemic forecasting using the best configured
ensembles based on MSE, using 26 countries. Methods with lower average rank
(left) are better than those with higher rank (right). Connected methods are not
significantly different.

We use the ensembles with the refit strategy in our comparison to the baselines
shown in Figure 6.14. From this figure it can be seen that our multi-output
ensemble using Google mobility features now outperform all the other baselines
on a significant level. Our repeated single-output ensemble performs worst here
and is on par with the persistence baseline. For the reader interested in the
model performance with unscaled data, we show the results based on RMSE
using unscaled deaths in Table 8.3 in the Appendix.

In Figure 6.15 we show the error decomposition summary. The figure shows
that compared to the previous scenarios, the MSE on average dropped consider-
ably, except for our repeated single-output ensemble, which has a similar MSE
to the previous scenario. This drop may mean that the ensembles were able to
learn better, but it could also be partially explained by the lower variance in true
observations for this scenario. For most methods the most important component
is the bias, except for our repeated single-output ensemble. This ensemble has
substantial variance. The MSE for our multi-output ensemble using mobility
features is lower than all other methods, attributed to its lower bias and lower
variance.

When we look at the following forecast plots we see that all our ensembles
are able to fit the truth value to some extent. The credibility bounds of the
repeated single-output ensemble grow as time progresses. This is to be expected,
as predictions later on depend on earlier predictions. In countries with clear
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Figure 6.15: Late error decomposition summary.

cycles, like Germany, shown in Figure 6.16, the repeated single-output ensemble
is still capable of closely forecasting the truth, although it does so with more
uncertainty over time. The multi-output ensemble using Google mobility features
smooths out the extreme values slightly, but also predicts the truth generally
close. In countries with clear trends, like Greece, shown in Figure 6.17, but also
Croatia or Lithuania, shown in Figures 8.18 and 8.19 in the Appendix, all of our
ensembles forecast quite well. The mobility ensemble does so with the slimmest
confidence interval. In cases where sudden increases or drops in daily new deaths
occur, it becomes more difficult to make a good prediction, but even in these
cases the extreme values are smoothed by the ensembles and predictions are
pretty close to the truth. This behavior is seen for example in the countries
Bulgaria, Latvia and Romania, shown in Figures 8.20 to 8.22 in the Appendix
and Slovakia as shown in Figure 6.18.

This scenario has shown that updating the weights of the regressors in the
ensembles is beneficial when concept drift has occurred. Especially the multi-
output ensemble using mobility data makes strong predictions in this scenario.
A possible explanation for this is that it uses the additional mobility data for
which there was no abrupt concept drift. The results of this scenario suggest
that it may be beneficial to check for concept drifts more often, as partially
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Figure 6.16: Late forecasting for Germany.
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Figure 6.17: Late forecasting for Greece.

48



0 10 20 30
Days since June 11 2021

0

1

2

3

4
D

ea
th

 in
ci

de
nc

e 
pe

r m
ill

io
n 

of
 p

op
ul

at
io

n

M: multi-output
(deaths)

Prediction
Truth

0 10 20 30
Days since June 11 2021

0

1

2

3

4

M: multi-output
(deaths + Google mobility)

Prediction
Truth

0 10 20 30
Days since June 11 2021

0

1

2

3

4

M: repeated single-output
(deaths)

Prediction
Truth

0 10 20 30
Days since June 11 2021

0

1

2

3

4

D
ea

th
 in

ci
de

nc
e 

pe
r m

ill
io

n 
of

 p
op

ul
at

io
n

B: LSTM (deaths)
Prediction
Truth

0 10 20 30
Days since June 11 2021

0

1

2

3

4
B: Bi-LSTM (deaths)

Prediction
Truth

0 10 20 30
Days since June 11 2021

0

1

2

3

4
B: GRU (deaths)

Prediction
Truth

0 10 20 30
Days since June 11 2021

0

1

2

3

4

D
ea

th
 in

ci
de

nc
e 

pe
r m

ill
io

n 
of

 p
op

ul
at

io
n

B: ARIMA wavelet
Prediction
Truth

0 10 20 30
Days since June 11 2021

0

1

2

3

4
B: Persistence

Prediction
Truth

Late pandemic forecast for Slovakia

Figure 6.18: Late forecasting for Slovakia.

forgetting old data patterns improves prediction performance.
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Chapter 7

Conclusion and future work

In this work we adapted the AutoML framework auto-sklearn to COVID-19
forecasting. We used mortality data and used mortality data and mobility data
collected from 58 countries to construct automatically configured ensembles. We
compared the performance of a multi-output ensemble and a repeated single-
output ensemble and combine these with concept drift adaptation strategies.
Using three scenarios separated by time, we compared our ensembles with root
mean squared error to a persistence baseline, an ARIMA wavelet method, a
Bayesian inference method, and deep learning methods from literature. We
found that when the pandemic is still novel, our methods are outperformed by
baselines as simple as persistence. However, when the pandemic has progressed
for just shy of a year in many countries, our ensembles are on par with the
best baselines. Even later, when concept drift occurs due to a shift in data
normalisation and possibly mutation of the virus, our methods significantly
outperform the baselines, especially when using mobility data along mortality
data. Our work has shown that our modified version of auto-sklearn does not
perform as well as simple baselines within the first few months of the pandemic,
but gains importance as time progresses. After a little less than a year we have
gained enough data to be able to capture most cycles and trends occurring in
the time series. Only when trends suddenly change, our predictions are eluded.
Additionally, we discovered that when concept drift occurs by a change of data
normalisation or possibly a mutation of the virus, refitting the models trained on
the older data enables a major performance boost, especially when (unchanged)
mobility data is used alongside the mortality data. Our methods create ensembles
of pipelines of which the hyperparameters are automatically optimised, making
them easy to use. The drift adaptation strategies are straightforward and the
code of our framework is publicly available1.

Still, caution should be taken when these forecasts are at the basis of policy
making. As we used highly aggregated data, these forecasts do not tell the
full tale. As Ioannidis et al. argue in [50], it is important to incorporate age

1https://github.com/jacotetteroo/AutoML4COVID-19
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groups in decision making. Mortality rates per age group are however not readily
available for the majority of countries. Oliver et al. [51] reinforce their view on
the need for age specific data and argue more efforts must be taken to make
more mobility data available.

In this work we used only simple features, which were the lags of observed
data. It is interesting to see how much our results may improve when features
are domain specific. Expert knowledge in the field of epidemics could greatly
help in this regard. Nevertheless, in the late scenario where our ensembles were
adapted to drift, these simple features worked splendidly. The open mobility
data sources were a great asset, boosting the confidence of our forecasters. The
intermediate and late scenarios have shown that the Google mobility set has
more impact on the predictive performance than the Apple mobility set. The
spatial features we used did not yield any improvement in prediction quality.
The most probable reason for this is that we used data on the national level.
The smoothing effect spatial lags have may be way more accurate if smaller
areas are taken into consideration. Another reason for this may be that people
from different countries do not interact with each other on the same level. It
may well be that for certain countries the borders are often transgressed, while
for others these remain closed. Given more detailed mobility data, this could be
modeled. It would also enable the creation of realistic contact networks.

Our best performing ensembles utilised the concept drift adaptation strategy
of refitting the ensembles once the drift has occurred. We applied this strategy
once, at the point where the drift in concept was most clear. It may however
be possible that multiple, smaller drifts occur during the time period captured
in the time series. Finding the best moments to adapt the ensembles over
time is another interesting future direction. Current AutoML systems use large
batches of data at the same time to train their models. If these batches are
too large, however, chances are the concept drift slips in undetected. A proper
trade-off should be made between how much data is used in order to learn
the data patterns sufficiently and to be able to detect concept drift within the
used data. In this work we found that the Google mobility set provided useful
characteristics for improving the accuracy of forecasts. This set contained the
percentual increase or decrease of visits to a category of places. For future work
it is interesting to find out which (combination) of these places are indispensable
for the enhancement of the forecasts.
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Chapter 8

Appendix

We show the result tables and the referenced figures that were not shown in the
main body of this work on the following pages. The full collection of figures for
each scenario and country can be found externally1.

1https://github.com/jacotetteroo/AutoML4COVID-19
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Table 8.1: RMSE of the early forecasting scenario. To save space, we abbreviated
our methods (M) and the baselines (B). MO is multi-output, RSO is repeated
single-output, P is persistence, AW is ARIMA wavelet and BI is Bayesian
inference. We present the data used for features as d for deaths and d+m for
deaths together with mobility. Bold results are the lowest for corresponding
countries on a 5% significance level.

Country M: MO:d M: MO:d+m RSO:d B: GRU:d+m B: LSTM:d B: Bi-LSTM:d B: P B: AW B: BI
Argentina 41.354± 4.52 127.35± 15.63 139.271± 0.0 45.895± 17.78 12.768± 5.83 19.317± 6.01 5.581± 0.0 33.553± 0.0 NA
Australia 2.993± 0.35 12.012± 5.84 4.575± 0.0 15.817± 6.85 5.748± 2.14 8.91± 7.89 1.648± 0.0 1.602± 0.0 NA
Austria 23.5± 2.3 24.294± 1.73 33.166± 0.0 28.73± 11.27 22.832± 5.99 20.243± 5.59 9.584± 0.0 10.658± 0.0 15.669± 0.0
Belgium 89.93± 3.99 87.77± 1.45 170.513± 0.0 94.806± 8.57 86.043± 12.05 96.303± 8.0 113.53± 0.0 123.404± 0.0 169.111± 0.0
Brazil 274.133± 88.1 493.795± 43.18 504.519± 0.0 196.315± 63.36 242.716± 56.22 241.136± 124.58 203.327± 0.0 173.594± 0.0 NA
Bulgaria 8.998± 0.88 13.29± 2.46 44.439± 0.0 6.223± 2.38 5.977± 4.24 3.855± 3.28 2.79± 0.0 6.581± 0.0 NA
Cambodia 0.013± 0.13 4.344± 1.6 0.0± 0.0 13.281± 6.14 1.956± 0.52 1.428± 1.02 0.0± 0.0 0.0± 0.0 NA
Canada 79.209± 5.52 83.785± 7.03 107.839± 0.0 65.287± 16.98 81.182± 18.55 87.747± 15.33 65.144± 0.0 69.162± 0.0 NA
Chile 25.738± 6.42 52.691± 5.76 54.27± 0.0 17.614± 7.86 8.564± 3.63 9.161± 5.57 3.91± 0.0 14.301± 0.0 NA
Colombia 53.342± 9.49 171.324± 16.51 145.253± 0.0 51.454± 20.43 20.53± 15.81 27.391± 8.58 5.503± 0.0 16.675± 0.0 NA
Croatia 6.869± 0.76 9.499± 1.08 14.895± 0.0 4.248± 2.02 3.537± 1.35 3.373± 2.65 2.405± 0.0 2.72± 0.0 NA
Czechia 23.26± 1.6 26.208± 2.83 76.303± 0.0 37.052± 17.17 10.751± 6.08 25.973± 9.1 5.663± 0.0 11.106± 0.0 NA
Denmark 10.801± 1.18 12.638± 1.35 8.86± 0.0 28.148± 6.89 12.551± 5.03 15.1± 2.62 6.141± 0.0 6.358± 0.0 7.153± 0.0
Egypt 10.229± 0.98 47.918± 23.89 24.466± 0.0 89.7± 34.18 78.193± 38.36 75.835± 30.34 9.543± 0.0 9.431± 0.0 NA
Estonia 1.989± 0.12 2.585± 0.23 2.053± 0.0 3.534± 1.8 4.266± 1.01 3.964± 1.72 1.282± 0.0 1.171± 0.0 NA
Finland 12.127± 0.09 11.927± 0.26 13.657± 0.0 14.04± 7.97 10.572± 0.95 12.31± 3.61 12.021± 0.0 11.368± 0.0 NA
France 305.694± 11.62 307.635± 12.29 587.62± 0.0 500.964± 66.49 454.916± 116.9 574.072± 64.59 318.652± 0.0 512.985± 0.0 711.119± 0.0
Germany 183.202± 28.42 219.541± 27.76 200.004± 0.0 382.52± 121.69 186.651± 73.65 198.462± 37.18 98.849± 0.0 115.643± 0.0 253.118± 0.0
Greece 11.762± 1.64 17.349± 2.92 25.657± 0.0 15.734± 6.35 8.509± 4.46 12.684± 6.86 4.567± 0.0 3.97± 0.0 NA
Hungary 19.559± 2.71 24.164± 1.98 53.403± 0.0 18.261± 12.23 12.209± 5.12 16.532± 10.18 9.067± 0.0 8.93± 0.0 NA
India 134.605± 27.76 1065.688± 368.25 474.053± 0.0 955.525± 422.27 294.434± 176.72 152.52± 82.39 47.454± 0.0 120.014± 0.0 NA
Indonesia 29.061± 8.44 110.263± 83.3 57.054± 0.0 225.487± 93.33 165.987± 78.5 136.06± 41.04 14.375± 0.0 14.501± 0.0 NA
Ireland 60.13± 0.54 58.953± 0.36 67.687± 0.0 60.418± 1.66 56.505± 0.7 56.087± 0.91 68.658± 0.0 72.254± 0.0 NA
Israel 14.208± 1.93 21.143± 1.54 14.303± 0.0 15.561± 4.43 6.025± 3.79 15.347± 8.17 3.273± 0.0 6.593± 0.0 NA
Italy 243.085± 18.38 264.188± 16.93 419.14± 0.0 526.614± 111.56 366.857± 153.24 610.103± 52.11 238.636± 0.0 251.035± 0.0 465.03± 0.0
Japan 26.528± 0.41 26.058± 3.59 28.968± 0.0 61.139± 70.54 47.833± 21.03 38.959± 12.23 25.505± 0.0 25.912± 0.0 NA
Latvia 1.121± 0.02 2.258± 0.31 3.082± 0.0 2.077± 0.57 1.473± 0.62 1.163± 0.34 1.363± 0.0 1.14± 0.0 NA
Lithuania 4.035± 0.35 5.505± 0.6 7.305± 0.0 6.533± 1.8 2.146± 0.92 4.027± 1.95 1.0± 0.0 1.257± 0.0 NA
Luxembourg 2.258± 0.18 2.578± 0.19 2.33± 0.0 2.706± 0.97 3.721± 0.82 2.134± 1.02 1.604± 0.0 1.611± 0.0 NA
Malaysia 4.504± 0.59 23.852± 13.56 4.629± 0.0 27.526± 11.08 5.798± 9.71 11.411± 3.6 1.626± 0.0 1.65± 0.0 NA
Mexico 155.161± 43.82 318.095± 33.64 373.485± 0.0 99.241± 30.37 61.92± 69.23 60.043± 6.51 80.603± 0.0 96.987± 0.0 NA
Morocco 14.872± 2.52 51.79± 12.31 30.998± 0.0 29.696± 14.76 24.43± 17.1 15.662± 10.53 3.919± 0.0 7.246± 0.0 NA
Netherlands 72.801± 3.51 73.322± 3.7 115.061± 0.0 67.139± 15.58 125.142± 37.52 175.253± 17.32 62.217± 0.0 64.733± 0.0 NA
New Zealand 1.087± 0.09 4.578± 1.04 1.464± 0.0 5.207± 1.49 14.078± 1.98 15.4± 2.6 0.845± 0.0 0.914± 0.0 NA
Norway 7.411± 0.45 8.982± 0.77 7.392± 0.0 19.225± 7.06 6.271± 2.38 13.889± 5.1 5.682± 0.0 4.878± 0.0 5.444± 0.0
Philippines 20.472± 4.83 96.462± 44.01 25.761± 0.0 97.345± 43.75 44.579± 21.57 49.754± 13.62 11.174± 0.0 13.828± 0.0 NA
Poland 45.283± 6.87 75.907± 8.71 169.435± 0.0 34.857± 16.52 21.79± 8.37 37.742± 23.62 12.884± 0.0 21.551± 0.0 NA
Portugal 37.619± 4.41 41.711± 4.74 30.716± 0.0 73.055± 25.83 23.994± 14.92 21.638± 5.85 16.0± 0.0 16.148± 0.0 NA
Romania 34.486± 6.78 45.292± 4.33 57.221± 0.0 23.667± 12.32 20.902± 8.51 42.861± 17.44 11.139± 0.0 13.742± 0.0 NA
Russia 60.174± 14.06 194.137± 26.04 169.118± 0.0 37.238± 10.02 121.799± 71.22 91.637± 33.32 31.65± 0.0 43.394± 0.0 NA
Saudi Arabia 5.142± 2.46 26.029± 11.2 17.688± 0.0 19.958± 9.73 18.066± 10.17 26.088± 10.19 3.151± 0.0 4.398± 0.0 NA
Singapore 0.661± 0.02 1.619± 1.02 0.707± 0.0 4.221± 2.08 1.753± 0.71 1.081± 0.63 0.655± 0.0 0.656± 0.0 NA
Slovakia 3.955± 0.44 9.951± 1.12 9.58± 0.0 7.096± 2.33 7.319± 2.72 10.285± 3.03 0.845± 0.0 2.633± 0.0 NA
Slovenia 6.126± 0.5 6.277± 0.49 16.406± 0.0 4.087± 1.34 7.605± 1.85 6.797± 2.19 1.69± 0.0 2.565± 0.0 NA
South Africa 26.406± 3.0 107.707± 14.94 76.287± 0.0 34.929± 17.03 16.413± 5.31 10.717± 4.0 3.566± 0.0 19.513± 0.0 NA
South Korea 5.495± 0.49 10.553± 6.12 2.752± 0.0 17.855± 7.13 6.161± 18.1 13.365± 6.03 1.626± 0.0 1.534± 0.0 NA
Spain 269.582± 13.66 281.48± 15.63 595.522± 0.0 377.805± 57.87 305.219± 93.04 452.705± 68.32 272.154± 0.0 309.906± 0.0 560.574± 0.0
Sweden 37.616± 1.67 37.054± 0.82 67.105± 0.0 34.177± 3.48 59.62± 8.69 48.865± 12.21 40.448± 0.0 40.732± 0.0 87.128± 0.0
Switzerland 31.878± 1.98 33.36± 3.33 42.893± 0.0 35.04± 8.92 74.653± 12.71 46.545± 17.64 24.949± 0.0 25.054± 0.0 27.469± 0.0
Taiwan 0.571± 0.19 1.824± 1.14 0.0± 0.0 5.531± 3.19 3.949± 1.77 2.765± 1.66 0.0± 0.0 0.0± 0.0 NA
Thailand 1.861± 0.32 23.962± 10.99 1.89± 0.0 59.248± 24.08 10.858± 5.84 9.64± 2.2 1.488± 0.0 1.284± 0.0 NA
Turkey 102.581± 19.34 149.829± 12.39 79.585± 0.0 96.104± 39.44 135.759± 48.3 210.977± 72.03 62.767± 0.0 65.106± 0.0 NA
Ukraine 30.311± 3.44 76.138± 11.95 78.34± 0.0 29.641± 16.01 20.649± 8.51 25.078± 5.59 5.825± 0.0 15.339± 0.0 NA
United Arab Emirates 3.803± 0.16 4.39± 2.23 5.05± 0.0 9.317± 3.94 8.172± 3.1 9.718± 3.9 4.432± 0.0 4.402± 0.0 NA
United Kingdom 468.509± 12.97 464.586± 11.03 729.752± 0.0 419.615± 35.6 446.803± 71.56 583.2± 59.99 393.923± 0.0 457.096± 0.0 810.513± 0.0
United States 1261.142± 98.79 1225.59± 68.22 2023.314± 0.0 957.563± 293.67 1507.987± 402.61 1664.455± 591.83 1028.931± 0.0 1201.339± 0.0 NA
Uruguay 0.779± 0.01 1.984± 1.29 0.886± 0.0 2.71± 1.33 5.589± 2.46 3.673± 3.46 0.845± 0.0 0.758± 0.0 NA
Vietnam 0.233± 0.74 25.172± 8.6 0.535± 0.0 61.656± 26.6 11.445± 3.05 8.356± 5.99 0.0± 0.0 0.103± 0.0 NA
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Table 8.2: RMSE of the intermediate forecasting scenario. To save space, we
abbreviated our methods (M) and the baselines (B). MO is multi-output, RSO is
repeated single-output, P is persistence and AW is ARIMA wavelet. We present
the data used for features as d for deaths, d+Gm for deaths together with
Google mobility and dw for deaths trained on additional countries worldwide.
The deep learning baselines use only deaths features. Bold results are the lowest
for corresponding countries on a 5% significance level.

Country M: MO:dw M: MO:d+Gm M: RSO:d LSTM Bi-LSTM GRU Persistence ARIMA wavelet
Argentina 66.978± 9.02 132.72± 6.13 71.224± 12.32 81.043± 10.77 106.665± 7.34 111.14± 10.95 104.163± 0.0 113.392± 0.0
Australia 2.072± 0.33 3.726± 1.31 1.653± 0.69 1.386± 0.65 1.337± 0.32 0.768± 0.33 0.183± 0.0 1.169± 0.0
Austria 65.684± 2.46 68.149± 3.19 31.384± 0.62 61.559± 2.18 66.199± 2.27 67.219± 3.07 47.052± 0.0 88.662± 0.0
Belgium 47.36± 2.42 47.665± 2.93 18.248± 0.73 53.395± 3.69 58.499± 5.11 69.618± 6.77 76.276± 0.0 46.515± 0.0
Brazil 239.393± 9.55 413.655± 55.03 159.886± 4.99 256.533± 44.43 177.092± 48.35 210.016± 63.43 238.741± 0.0 226.523± 0.0
Bulgaria 96.829± 1.63 75.533± 2.66 66.24± 1.58 92.185± 2.88 99.703± 3.4 97.31± 3.2 61.91± 0.0 112.458± 0.0
Cambodia 0.021± 0.05 0.113± 0.11 1.081± 0.47 1.527± 0.69 1.834± 0.39 1.613± 0.93 0.0± 0.0 0.0± 0.0
Canada 19.978± 0.81 35.479± 2.64 22.733± 5.28 32.413± 5.61 25.238± 2.88 28.127± 6.68 34.042± 0.0 38.337± 0.0
Chile 22.787± 0.96 28.242± 2.13 21.631± 1.72 19.341± 4.56 23.722± 2.98 24.41± 3.59 22.029± 0.0 28.134± 0.0
Colombia 18.139± 2.37 18.461± 2.12 37.756± 9.76 36.469± 11.08 65.748± 27.6 72.034± 30.26 13.733± 0.0 20.206± 0.0
Croatia 36.427± 0.47 33.915± 0.68 21.968± 1.29 37.474± 3.13 41.186± 3.02 39.38± 2.02 18.214± 0.0 44.293± 0.0
Czechia 64.93± 4.32 51.139± 4.7 28.585± 1.99 63.597± 2.87 71.5± 3.33 76.238± 3.98 59.95± 0.0 38.404± 0.0
Denmark 2.756± 0.18 5.163± 0.79 5.614± 0.37 4.401± 0.51 3.695± 0.59 4.033± 0.49 5.908± 0.0 4.155± 0.0
Egypt 5.252± 0.98 156.058± 18.68 19.453± 5.5 6.364± 1.19 3.692± 1.43 4.528± 0.85 6.199± 0.0 4.832± 0.0
Estonia 2.434± 0.02 1.878± 0.04 2.206± 0.19 2.704± 0.16 2.764± 0.05 2.795± 0.04 2.415± 0.0 2.538± 0.0
Finland 3.742± 0.04 3.613± 0.08 4.126± 0.33 4.376± 0.18 4.125± 0.08 4.068± 0.13 3.907± 0.0 3.932± 0.0
France 327.012± 4.1 307.682± 1.77 246.63± 10.1 348.501± 23.55 322.253± 21.44 318.322± 15.58 549.614± 0.0 340.719± 0.0
Germany 153.397± 11.42 124.367± 5.83 170.97± 39.81 105.301± 15.5 134.05± 19.48 138.829± 27.43 205.695± 0.0 296.785± 0.0
Greece 56.726± 1.18 33.947± 2.59 26.908± 3.79 56.176± 3.47 55.67± 3.92 56.811± 4.66 52.971± 0.0 78.198± 0.0
Hungary 93.659± 1.57 86.261± 1.97 64.936± 3.55 87.224± 3.33 97.269± 5.26 97.306± 3.68 45.008± 0.0 98.564± 0.0
India 167.822± 34.65 473.874± 55.56 156.634± 40.38 250.148± 153.11 220.584± 150.57 346.538± 121.74 76.175± 0.0 72.221± 0.0
Indonesia 28.45± 0.8 39.192± 2.04 91.937± 22.59 33.238± 4.93 33.08± 13.98 64.922± 18.61 36.467± 0.0 33.889± 0.0
Ireland 5.031± 0.1 4.107± 0.06 3.941± 0.04 3.952± 0.28 4.206± 0.26 4.115± 0.2 4.683± 0.0 4.767± 0.0
Israel 11.664± 0.57 10.285± 0.2 9.258± 0.17 10.796± 0.73 10.798± 0.49 10.45± 0.47 9.265± 0.0 13.352± 0.0
Italy 388.742± 7.71 377.614± 6.23 120.312± 10.63 337.985± 28.13 333.81± 26.82 335.793± 20.08 180.322± 0.0 357.585± 0.0
Japan 13.443± 0.61 15.123± 0.91 31.725± 6.67 12.679± 2.21 13.494± 1.53 14.486± 2.61 16.445± 0.0 19.981± 0.0
Latvia 6.26± 0.14 5.079± 0.13 4.334± 0.14 7.384± 0.78 8.406± 0.23 8.402± 0.22 5.301± 0.0 8.057± 0.0
Lithuania 13.481± 0.16 9.477± 0.36 6.71± 0.26 16.711± 1.09 14.668± 1.53 12.125± 1.12 12.863± 0.0 17.772± 0.0
Luxembourg 4.742± 0.12 4.578± 0.06 3.139± 0.04 5.798± 0.25 5.699± 0.42 5.776± 0.39 3.459± 0.0 5.942± 0.0
Malaysia 6.255± 0.7 3.003± 0.2 5.212± 1.18 6.042± 0.79 5.551± 1.95 5.008± 1.65 3.507± 0.0 3.045± 0.0
Mexico 272.568± 6.94 261.954± 6.74 220.226± 5.88 269.197± 19.2 273.764± 16.14 257.575± 19.03 266.958± 0.0 280.753± 0.0
Morocco 31.197± 1.55 62.771± 4.61 45.571± 8.02 25.649± 4.21 32.99± 6.96 29.208± 7.99 22.927± 0.0 23.58± 0.0
Netherlands 20.574± 0.95 19.314± 1.23 14.642± 1.88 37.3± 37.66 33.042± 15.65 59.044± 33.14 20.926± 0.0 22.382± 0.0
New Zealand 0.154± 0.02 0.164± 0.03 0.312± 0.13 0.443± 0.2 0.532± 0.11 0.468± 0.27 0.0± 0.0 0.044± 0.0
Norway 5.238± 0.02 5.214± 0.03 5.083± 0.14 5.51± 0.16 5.547± 0.06 5.574± 0.07 5.023± 0.0 5.388± 0.0
Philippines 41.623± 2.34 34.37± 1.48 25.579± 0.95 29.911± 5.3 36.293± 13.87 31.069± 15.76 24.354± 0.0 24.766± 0.0
Poland 306.644± 2.97 292.461± 5.9 176.458± 10.86 249.192± 12.89 293.259± 22.52 258.842± 20.09 177.653± 0.0 336.678± 0.0
Portugal 30.943± 2.02 38.56± 1.03 27.444± 4.15 20.63± 2.33 23.273± 5.09 24.611± 2.47 12.823± 0.0 58.075± 0.0
Romania 62.98± 1.48 69.141± 2.29 50.042± 13.85 48.347± 3.75 48.273± 4.38 52.004± 3.65 31.517± 0.0 85.367± 0.0
Russia 104.834± 16.18 300.119± 41.36 290.375± 36.73 119.652± 32.09 184.501± 30.43 179.461± 26.22 105.053± 0.0 228.057± 0.0
Saudi Arabia 9.033± 0.71 4.237± 1.16 2.178± 3.29 14.173± 5.02 16.871± 4.64 27.705± 10.69 6.483± 0.0 4.576± 0.0
Singapore 0.212± 0.05 0.184± 0.0 0.449± 0.14 0.437± 0.09 0.404± 0.06 0.372± 0.22 0.183± 0.0 0.185± 0.0
Slovakia 11.572± 0.29 11.699± 0.27 28.148± 1.18 15.386± 2.81 16.646± 1.31 18.468± 2.21 11.567± 0.0 14.947± 0.0
Slovenia 31.797± 0.47 31.162± 0.26 26.694± 0.78 31.76± 0.9 32.593± 1.13 32.423± 1.5 25.371± 0.0 36.206± 0.0
South Africa 48.979± 2.68 40.015± 2.25 64.248± 4.18 83.199± 8.97 82.81± 6.24 76.28± 4.3 52.798± 0.0 51.02± 0.0
South Korea 2.081± 0.12 30.694± 2.55 6.6± 1.77 2.582± 0.53 2.631± 0.32 2.62± 0.5 2.456± 0.0 2.666± 0.0
Spain 168.079± 1.9 158.399± 5.52 195.637± 42.67 256.755± 23.31 202.185± 22.46 225.704± 26.23 297.479± 0.0 206.011± 0.0
Sweden 22.898± 0.56 22.039± 0.57 58.301± 1.72 32.616± 4.85 32.821± 3.0 29.065± 4.84 20.231± 0.0 25.512± 0.0
Switzerland 78.199± 0.99 75.478± 0.96 45.287± 1.61 79.577± 6.88 79.954± 5.4 86.021± 5.29 68.277± 0.0 89.256± 0.0
Taiwan 0.055± 0.09 1.368± 0.21 1.566± 0.68 2.203± 1.0 2.644± 0.57 2.326± 1.34 0.0± 0.0 0.0± 0.0
Thailand 0.764± 0.44 0.789± 0.76 4.584± 1.98 9.203± 3.22 8.832± 1.61 7.284± 4.25 0.0± 0.0 0.069± 0.0
Turkey 88.985± 2.66 70.413± 8.15 106.219± 6.99 120.463± 7.31 105.313± 5.26 99.52± 6.44 85.707± 0.0 98.375± 0.0
Ukraine 93.146± 4.56 108.103± 9.72 99.257± 8.93 89.113± 4.4 77.413± 4.69 77.417± 3.47 89.445± 0.0 115.374± 0.0
United Arab Emirates 2.479± 0.18 1.55± 0.04 2.202± 0.27 2.218± 0.65 2.482± 0.93 2.541± 0.6 2.601± 0.0 1.707± 0.0
United Kingdom 201.895± 5.31 258.507± 12.04 109.637± 14.68 132.277± 8.29 140.575± 9.42 207.986± 123.94 171.946± 0.0 165.891± 0.0
United States 1087.88± 14.37 1112.445± 16.34 507.74± 69.26 1030.973± 45.44 1041.405± 80.83 1091.759± 87.68 770.861± 0.0 1142.181± 0.0
Uruguay 1.021± 0.11 0.901± 0.02 1.229± 0.15 0.861± 0.14 0.892± 0.05 0.911± 0.05 0.816± 0.0 0.987± 0.0
Vietnam 0.264± 0.3 21.704± 2.11 6.349± 2.77 8.937± 4.04 10.728± 2.3 9.438± 5.44 0.0± 0.0 0.027± 0.0
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Table 8.3: RMSE of the late forecasting scenario. To save space, we abbreviated
our methods (M) and the baselines (B). MO is multi-output, RSO is repeated
single-output, P is persistence and AW is ARIMA wavelet. We present the data
used for features as d for deaths and d+Gm for deaths together with Google
mobility. All our methods use the partial refit drift adaptation strategy. Bold
results are the lowest for corresponding countries on a 5% significance level.

Country M: MO:d M: MO:d+Gm M:RSO:d B: LSTM B: Bi-LSTM B: GRU B: Persistence B: ARIMA wavelet
Austria 4.422± 1.9 2.758± 0.93 6.489± 14.79 5.516± 0.13 5.367± 0.11 5.111± 0.26 6.499± 0.0 5.298± 0.0
Belgium 1.498± 4.5 1.249± 0.56 4.98± 14.22 2.053± 0.18 1.839± 0.16 2.791± 0.53 3.578± 0.0 3.011± 0.0
Bulgaria 7.472± 2.93 5.169± 1.5 9.259± 3.26 15.689± 2.81 20.819± 4.71 10.365± 2.31 9.402± 0.0 11.425± 0.0
Croatia 3.092± 1.22 2.413± 0.76 5.442± 1.63 3.345± 0.08 3.453± 0.16 3.633± 0.24 5.037± 0.0 4.013± 0.0
Czechia 5.202± 4.58 3.377± 1.07 8.428± 8.47 5.609± 0.11 5.726± 0.15 5.98± 0.4 7.87± 0.0 34.826± 0.0
Denmark 0.577± 0.32 0.453± 0.13 2.387± 8.36 1.007± 0.24 0.953± 0.3 1.802± 0.69 0.894± 0.0 0.68± 0.0
Estonia 0.712± 0.63 0.354± 0.16 0.965± 1.11 1.057± 0.32 1.164± 0.19 0.878± 0.14 1.897± 0.0 1.001± 0.0
Finland 0.692± 0.19 0.456± 0.15 3.312± 6.24 1.066± 0.2 1.161± 0.48 1.596± 0.29 0.577± 0.0 0.538± 0.0
France 15.311± 27.73 7.8± 3.31 46.287± 43.61 14.783± 3.07 17.883± 5.86 19.97± 5.69 34.267± 0.0 27.228± 0.0
Germany 38.147± 15.76 14.051± 5.01 56.778± 48.63 71.963± 18.43 71.393± 25.66 68.289± 20.63 54.82± 0.0 39.678± 0.0
Greece 3.519± 4.39 3.18± 1.62 6.398± 5.56 9.158± 2.65 8.664± 3.11 7.523± 0.93 5.276± 0.0 7.744± 0.0
Hungary 5.616± 7.08 4.052± 1.51 11.781± 5.08 6.704± 0.81 6.568± 0.68 6.742± 0.86 5.837± 0.0 6.736± 0.0
Ireland 7.149± 1.18 4.522± 1.68 9.234± 2.16 8.914± 0.03 8.924± 0.03 9.048± 0.1 8.991± 0.0 9.076± 0.0
Italy 13.791± 31.52 9.706± 3.6 21.27± 35.81 14.187± 4.06 13.793± 2.12 15.193± 1.22 47.583± 0.0 30.964± 0.0
Latvia 2.774± 0.53 1.898± 0.56 3.347± 0.8 4.879± 0.64 6.132± 0.57 3.769± 0.85 3.873± 0.0 4.72± 0.0
Lithuania 3.587± 0.83 1.224± 0.54 1.866± 1.5 7.971± 1.13 7.095± 0.6 4.751± 0.64 4.923± 0.0 1.654± 0.0
Luxembourg 0.233± 0.18 0.148± 0.06 0.355± 0.33 0.415± 0.12 0.317± 0.23 0.394± 0.07 0.183± 0.0 0.197± 0.0
Netherlands 2.062± 4.78 1.493± 0.59 6.791± 10.73 9.524± 2.12 11.094± 2.75 6.822± 2.01 3.347± 0.0 3.41± 0.0
Norway 0.663± 0.37 0.43± 0.23 1.629± 3.29 0.726± 0.08 0.742± 0.14 0.932± 0.29 3.817± 0.0 0.759± 0.0
Poland 30.884± 12.08 11.615± 4.83 26.258± 20.74 51.821± 20.34 39.409± 9.1 117.077± 22.76 84.46± 0.0 23.468± 0.0
Portugal 2.093± 0.38 1.666± 0.55 4.567± 5.75 2.265± 0.42 2.314± 0.38 2.866± 0.26 4.262± 0.0 8.485± 0.0
Romania 55.867± 10.61 36.134± 13.75 91.926± 11.95 90.818± 3.26 89.342± 4.48 94.0± 1.68 150.26± 0.0 163.263± 0.0
Slovakia 4.964± 2.33 1.743± 0.62 3.796± 4.49 3.428± 0.55 3.164± 0.12 3.405± 0.35 5.345± 0.0 9.655± 0.0
Slovenia 1.501± 0.49 0.918± 0.31 2.029± 1.18 1.978± 0.22 1.802± 0.2 1.883± 0.19 2.041± 0.0 2.229± 0.0
Spain 14.79± 13.25 7.995± 2.57 30.488± 36.4 23.37± 7.01 40.028± 20.67 43.406± 9.38 116.214± 0.0 22.135± 0.0
Sweden 2.526± 2.55 1.034± 0.35 5.757± 7.73 3.145± 1.43 3.111± 0.61 3.383± 0.86 2.214± 0.0 1.315± 0.0
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Figure 8.1: Early forecasting for Denmark.
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Figure 8.2: Early forecasting for Egypt.
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Figure 8.3: Early forecasting for Hungary.
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Figure 8.4: Early forecasting for Sweden.
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Figure 8.5: Early forecasting for Argentina.
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Figure 8.6: Early forecasting for Chile.
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Figure 8.7: Early forecasting for Malaysia.
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Figure 8.8: Early forecasting for South Africa.
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Figure 8.9: Intermediate forecasting for Mexico.
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Figure 8.10: Intermediate forecasting for the Netherlands.
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Figure 8.11: Intermediate forecasting for Poland.
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Figure 8.12: Intermediate forecasting for Indonesia.
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Figure 8.13: Intermediate forecasting for Latvia.
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Figure 8.14: Intermediate forecasting for Russia.
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Figure 8.15: Intermediate forecasting for United States of America.
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Figure 8.16: Intermediate forecasting for Hungary.
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Figure 8.17: Intermediate forecasting for Morocco.
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Figure 8.18: Late forecasting for Croatia.

79



0 10 20 30
Days since June 11 2021

0

2

4

6

D
ea

th
 in

ci
de

nc
e 

pe
r m

ill
io

n 
of

 p
op

ul
at

io
n

M: multi-output
(deaths)

Prediction
Truth

0 10 20 30
Days since June 11 2021

0

2

4

6

M: multi-output
(deaths + Google mobility)

Prediction
Truth

0 10 20 30
Days since June 11 2021

0

2

4

6

M: repeated single-output
(deaths)

Prediction
Truth

0 10 20 30
Days since June 11 2021

0

2

4

6

D
ea

th
 in

ci
de

nc
e 

pe
r m

ill
io

n 
of

 p
op

ul
at

io
n

B: LSTM (deaths)
Prediction
Truth

0 10 20 30
Days since June 11 2021

0

2

4

6
B: Bi-LSTM (deaths)

Prediction
Truth

0 10 20 30
Days since June 11 2021

0

2

4

6
B: GRU (deaths)

Prediction
Truth

0 10 20 30
Days since June 11 2021

0

2

4

6

D
ea

th
 in

ci
de

nc
e 

pe
r m

ill
io

n 
of

 p
op

ul
at

io
n

B: ARIMA wavelet
Prediction
Truth

0 10 20 30
Days since June 11 2021

0

2

4

6
B: Persistence

Prediction
Truth

Late pandemic forecast for Lithuania

Figure 8.19: Late forecasting for Lithuania.
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Figure 8.20: Late forecasting for Bulgaria.

81



0 10 20 30
Days since June 11 2021

0

5

10

D
ea

th
 in

ci
de

nc
e 

pe
r m

ill
io

n 
of

 p
op

ul
at

io
n

M: multi-output
(deaths)

Prediction
Truth

0 10 20 30
Days since June 11 2021

0

5

10

M: multi-output
(deaths + Google mobility)

Prediction
Truth

0 10 20 30
Days since June 11 2021

0

5

10

M: repeated single-output
(deaths)

Prediction
Truth

0 10 20 30
Days since June 11 2021

0

5

10

D
ea

th
 in

ci
de

nc
e 

pe
r m

ill
io

n 
of

 p
op

ul
at

io
n

B: LSTM (deaths)
Prediction
Truth

0 10 20 30
Days since June 11 2021

0

5

10

B: Bi-LSTM (deaths)
Prediction
Truth

0 10 20 30
Days since June 11 2021

0

5

10

B: GRU (deaths)
Prediction
Truth

0 10 20 30
Days since June 11 2021

0

5

10

D
ea

th
 in

ci
de

nc
e 

pe
r m

ill
io

n 
of

 p
op

ul
at

io
n

B: ARIMA wavelet
Prediction
Truth

0 10 20 30
Days since June 11 2021

0

5

10

B: Persistence
Prediction
Truth

Late pandemic forecast for Latvia

Figure 8.21: Late forecasting for Latvia.
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Figure 8.22: Late forecasting for Romania.
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