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Abstract

Creating machine learning models from satellite data is useful for various applications ranging from
environmental mapping and monitoring to urban planning and emergency response. However, in order
to leverage the latest advancements in machine learning, much expert knowledge, and hands-on
expertise is required. Automated Machine Learning (AutoML) addressed this issue by allowing the
creation of high-performing models through automatically making machine learning design choices in a
data-driven manner. Current AutoML systems have been benchmarked with traditional natural image
datasets, which differ from satellite images in various aspects. These differences open questions about
the applicability of current AutoML systems for satellite data tasks. In this thesis, we studied how
AutoML can be applied to satellite data by examining the deployed AutoML system of Auto-Keras and
creating two new variants of its image classification task. These variants integrate discoveries made
in the remote sensing research field by using models pre-trained with ImageNet and remote sensing
datasets. We compared the performance against high performed, manually designed, architectures on
a varied set of 7 satellite datasets. Our results show that in 66% of the cases the AutoML systems
outperformed the remote sensing literature. In 5 out of 7 cases the pre-trained variants got better
performance than the original Auto-Keras image classification task. Our new variant, using remote
sensing pre-trained models, performed better than the ImageNet variant for small datasets and found
the best-automated model for the datasets composed of near-infrared, green, and red bands. The
subset of such different spectral bands is a common practice in the remote sensing community and
the number of samples available for training in remote sensing real-world problems is small. This
highlights the usefulness of a customized satellite data search space in AutoML systems.
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Chapter 1

Introduction

The rapid and large increase of geospatial and temporal data, in addition to new technologies, empha-
sizes the need for automated discovery of spatio-temporal knowledge [1]. Within the field of remote
sensing, satellite data gained a massive boost throughout the last years due to the opening of imagery
archives to the public.

Satellites continuously monitor the Earth’s surface and provide information on the state and health of
the planet that would not be possible by any other means. Its applications range from environmental
mapping and monitoring to urban planning, natural risk assessment, emergency response, military
reconnaissance and many more [2, 3, 4]. The most used data among researchers and practitioners are
coming from Landsat and Sentinel missions, which have multi-spectral instruments.

Concepts of computer vision and machine learning are commonly used by remote sensing practitioners.
However, they do not always leverage the latest developments within the field due to the difference
in disciplines. Publications in remote sensing have mainly focused on classification tasks. Deep neural
networks are state-of-the-art techniques for most image classification tasks [5]. Currently, there are
two obstacles limiting the use of deep learning for satellite data. The first one is the lack of sufficient
labeled data and the difficulty of getting labels considering that satellite images are not as inter-
pretable as natural images for human eye [4]. The second obstacle lies in the difficulty of designing
appropriate architectures that take the characteristics of satellite images into account. Satellite images
are different from natural images due to their additional spectral information content. Natural color
images always include the same three channels (RGB) whereas for satellite images the number and
type of channels are variable, depending on the satellite instrument. A multi-spectral satellite image
captures information of the electromagnetic spectrum related to different processes on earth (e.g.,
land, ocean, atmosphere). The images from the most common satellites can have up to 13 spectral
bands that each could be relevant for observing a different process. For instance, examples of channels
related to vegetation features are near-infrared and short-wave infrared bands. Furthermore, natural
images have an 8 bits precision meanwhile remote sensing input data usually comes at higher precision
(16 or 32 bits). Creating new high-performing models for satellite data would require designing new
architectures taking into account such characteristics and facing a large set of design choices, such
as the hyperparameters. These tasks can be extremely complex for remote sensing experts.

To overcome these obstacles, we propose to systematically leverage recent developments in two differ-
ent machine learning fields: (i) transfer learning [6] and (ii) automated machine learning (AutoML) [7].
On the one hand, transfer learning allows tackling the lack of labelled data by re-using the knowledge
gained from previously seen tasks and transferring it to a newly created model in another task (e.g.,
through using pre-trained models). On the other hand, Automated Machine Learning (AutoML) [7]
will allow to automatically design high performing models for each dataset in a data-driven manner
and thus making machine learning accessible to non-machine learning experts.

Open AutoML systems [8, 9, 10] have been deployed to make machine learning available for non-
machine learning experts. Most of those systems focus on shallow machine learning (modeling tech-
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1. Introduction 2

niques as Random Forest, Support Vector Machines, K-neighbors). But, based on a literature review
in remote sensing and previous experiments, the use of deep learning for remote sensing, especially
CNNs, gives the most promising results. On the subject of deep learning, Neural architecture search
(NAS) aims to find the best neural network architecture given a task and a dataset. NAS has also
become an effective computational tool in AutoML.

To the best of our knowledge, in the field of computer science, NAS research has been benchmarked
with natural image datasets but not with satellite images. In the field of remote sensing, the research
community has findings that if we combine them with the advances in AutoML could leverage the
implementation of deep learning for satellite data in a more efficient way. Bringing us the questions:
what is the performance of current AutoML systems for satellite data? and what happens when we
integrate the knowledge gained from previous research in the field of remote sensing into AutoML
systems?

In this thesis, we propose to answer these questions by (i) composing a benchmark of diverse satellite
datasets, (ii) evaluating the performance of such datasets in a deployed AutoML system, and finally,
(iii) designing a satellite data tasks-oriented NAS and evaluating the datasets on it.

To design a satellite data tasks-oriented NAS, we can tailor the neural architecture search space of
current systems by integrating findings of the remote sensing field. Specifically, the use of models
pre-trained with ImageNet and remote sensing datasets is considered.

We know that positive results in specific applications are based on human priors, the results presented
in [11] regarding task-oriented NAS can be an example of it. The state-of-the-art in deep learning for
remote sensing applications includes the use of pre-trained models. Our previous experiments shown
how using AutoML methods for tuning deep learning hyperparameters can improve the performance
of the model. Therefore, we expect that by integrating the remote sensing pre-trained models into
AutoML systems we can obtain good performance and help to bridge the gap between the use of
satellite data with state-of-the-art methods from the field of machine learning.

Instead of building a completely new framework to test our approach, we can build upon one of
the existing ones. We use Auto-Keras [11], a framework enabling Bayesian optimization to guide the
network morphism for efficient NAS. We focus on multi-spectral satellite datasets and classification
tasks. In summary, our contributions are the following:

• Assessing the performance of the deployed Auto-Keras system within the context of remote
sensing data and propose two new variants of it by exploiting transfer learning (from natural
and satellite images).

• Extending the use of transfer learning from models trained with remote sensing data in an
automated framework, passing on special domain data representations.

• Improving the efficiency of AutoML systems for satellite data by reducing the search space using
a customized initial architecture inspired by the state-of-the-art remote sensing research.

• Evaluating the performance of the three variants of Auto-Keras by comparing them against
high-performance manually designed architectures and achieving the benchmark performance
for the 13-channels EuroSAT dataset.

• Making the resulting framework and source code publicly available, allowing the AutoML sys-
tem to be adopted by the remote-sensing community for creating high-performing models on
available satellite data for a variety of applications. 1

1https://github.com/palaciosnrps/automl-rs-project
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The organization of this thesis is the following. Chapter 2 presents the background information and
Chapter 3 the related work regarding deep learning in the remote sensing field. In Chapter 4, the
methodology and the three proposed AutoML variants are explained. In Chapter 5 the experiments
are described and in Chapter 6 the results are presented. Last, in Chapter 7 we discuss the concluding
remarks as well as the future work of this study.



Chapter 2

Background Information

In this chapter, we will present the definitions regarding remote sensing, transfer learning, and auto-
mated machine learning. Part of this background information and literature review was carried out
during a previous Introductory research project.

2.1 Remote Sensing and Satellite Data

Remote sensing is the acquisition of information about an object or phenomena without the instrument
used to collect the data being in direct contact with the object [13]. In our context, it refers to the
use of satellites to detect and classify objects on Earth through images.

Satellite instruments acquire data from various ranges of frequencies along the electromagnetic spec-
trum. The electromagnetic spectrum, illustrated in Figure 2.1, makes reference to the entire range of
existing light. Light is a wave of alternating electric and magnetic fields that can be visible or invisible
to the human eye. One important characteristic of the light is wavelength, which is the distance from
the peak of one wave to the peak of the next wave. The visible light wavelengths ranges from 380 to
700 nanometers. A satellite image combines measurements of different light wavelength ranges, both
visible and invisible to humans [14]. When the number of spectral bands ranges from 3 to 20 or each
band has a descriptive title this data is known as multi-spectral. When there are hundreds of bands
without descriptive names, the data is called hyper-spectral [15]. Currently, researchers and practi-
tioners used data mainly coming from Landsat and Sentinel missions, which provide multi-spectral
information.

Earth’s atmosphere absorbs and transmits various wavelengths of electromagnetic radiation. Carbon
dioxide, water vapor, and other trace gases in the atmosphere absorb the longer wavelengths. Figure
2.2 shows the different band designations for Landsat 7, Landsat 8, and, Sentinel-2 satellites. The
Sentinel-2 data has spectral bands similar to Landsat 8. The X-axis is the wavelength in nanometres
and the Y-axis is how much the electromagnetic radiation will penetrate the atmosphere. Satellites
bring instruments for land, ocean, and atmospheric monitoring; hence, a multi-spectral satellite image
captures information of the electromagnetic spectrum related to it.

Satellite imagery is characterised by 4 types of resolutions [15]. Dependent on the satellite’s instrument,
all four parameters will vary as there are trade-offs to be taken into account when conceptualizing a
satellite and its instrument. Those resolutions are:

• Spatial resolution. It refers to the size of the pixel on the Earth’s surface and ranges from a few
centimeters for very-high-resolution (VHR) satellites up to a kilometer for low-resolution.

• Temporal resolution. It is given by the revisit time, which is the time elapse before the satellite
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2. Background Information 5

Figure 2.1: The Electromagnetic Spectrum: Remote sensing instruments are designed to capture
specific ranges of the electromagnetic spectrum. [12]

Figure 2.2: Comparison of Landsat 7 and 8 bands with Sentinel-2 [16].

captures the same point again. It also varies from satellite to satellite, from daily revisit time
up to 2 weeks for Sentinel satellites.

• Spectral resolution. It refers to the spectral width of each band in the dataset. Often, the sensor
gives a general resolution but not all sensors collect information within bands of uniform widths.

• Radiometric resolution. It is how finely the radiance received in each band is distinguished. It is
expressed as the number of bits for each band. 8-bits resolution was common in satellites but
newer sensors can generate 16 and 32 bits data resolution.

Different characteristics, resolutions, and types of satellite instruments create a big difference between
natural color images and satellite images. These differences were listed in [17] and are the following:

• Natural images have an 8 bits precision meanwhile satellite images usually come at higher
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precision (16 or 32 bits).

• Natural color images are always the same 3 channels (RGB) but for satellite images, the number
and type of channels are variable, depending on the satellite instrument.

• Different from camera photos, in satellite images the range of values, varies largely from dataset
to dataset and between channels. The values distribution can be highly skewed.

• The absolute values of the pixels are needed in many quantitative remote sensing applications.

• Lower resolution satellite data can aggregate in one-pixel abundant information concerning the
illuminated surface, whereas natural images coverage is small.

• Satellite image axes might be non-standard, for example representing range and azimuth di-
mensions.

Therefore, the pre-processing of satellite images and their model construction requires special at-
tention. Many hyperparameters are involved in such steps, especially when deep learning models are
applied. We propose to make use of the advances in automated machine learning to provide data-driven
decisions during this process.

2.2 Transfer Learning

In many machine learning algorithms, when the training and the data to predict are part of the same
feature space and have the same distribution the results are impressive. However, in many real-world
applications, this scenario is not always possible. Either because the data required is outdated or
because the training data is not sufficient, knowledge transferring is a useful approach in such cases.
Transfer learning consists of re-using the knowledge gained from previously seen tasks to be applied to
a newly created model in another task [6]. Different methods have been developed to answer questions
regarding ’what to transfer’, ’when to transfer’, and ’how to transfer’. In the context of deep learning,
pre-trained networks are the basic form of transfer learning. The two most popular approaches are:
(i) using pre-trained models as feature extractors; (ii) fine-tuning pre-trained models. The main idea
of using pre-trained models as feature extractors is to only replace the top layer of the source model
and use it with the new data without updating the model weights during training. The fine-tuning
strategy does not only replace the final layer but also retrain previous layers.

2.3 AutoML and Neural Architecture Search

AutoML is the process of automating the different stages of a machine learning pipeline. Figure 2.3
presents the steps in a machine learning pipeline. These steps typically are: data collection, data
preparation, feature engineering, preprocessing, algorithm selection, parameter optimization, model
training, and deployment [7]. The most common and most developed task is to automatically set
hyperparameters to optimize the performance of an algorithm for a given dataset.

Current AutoML systems commonly cover from data preparation to model training phase [7]. Auto-
Sklearn [8], Auto-WEKA [9] and T-POT [10] are examples of AutoML systems focusing on traditional
machine learning (such as SVM, Random Forest, K-neighbors). In deep learning, Neural Architecture
Search (NAS) is one of the most challenging tasks. It is equivalent to the algorithm selection step in
classic machine learning and aims at finding the best neural network architecture for a given task and
dataset [5]. NAS consists of the following steps: (i) using a search strategy to select an architecture
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Figure 2.3: A Machine Learning pipeline and the common AutoML system. [7]

Figure 2.4: Abstract illustration of NAS. A search strategy selects an architecture A from a
predefined search space A. The architecture A is passed to a performance estimation strategy,
which returns the estimated performance of A to the search strategy [7]

from a predefined search space; (ii) evaluating the selected architecture using a performance estimation
strategy; (iii) returning the estimated performance that can be utilized for the search strategy in order
to select the next promising promising architecture. This loop ends until certain conditions are met.
Figure 2.4 illustrates this process. Different methods have studied for each of the elements in the
figure (search space, search strategy, performance estimation strategy). The search space determines
all the possible architectures that can be discovered by NAS. Techniques to explore the space of
neural architectures involving reinforcement learning [18, 19] and evolutionary algorithms [20, 21, 22]
have achieved extraordinary performance at the cost of a large amount of computational resources.
To address the need for computational efficiency, the authors of [23, 24] have considered reducing
the complexity of the search space by proposing to search for motifs, called cells or blocks, rather
than for whole architectures. By stacking these blocks in a predetermined mode the final architecture
is created. Even with such a reduced search space, one of the biggest challenges of applying NAS in
practice is still the computational time needed to find a good architecture for the following reason: the
time required to successfully solve the NAS problem is linked to the time needed to train a candidate
network and the number of candidates existing in the search space. Training a neural network from
scratch is costly. Therefore, an approach to speed up the training is to initialize the weights of new
architectures based on the weights of another architecture. In order to apply this transferability of
learned weights, the concept of network morphism in the context of neural networks was introduced by
[25] using a parameter-transferring map from a parent network to a child network. The child network
keeps its function and outputs. Based on this, the authors of [26] formalized the network morphism
operations and presented a method to automatically search for CNN architectures. Continuing with
the goal of creating efficient NAS methods, [11] proposed Auto-Keras, an efficient NAS with network
morphism, where Bayesian optimization is used to guide through the search space. It makes use of a
neural network kernel and a tree-structured acquisition function to efficiently inspect the search space.
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Incorporating prior knowledge about properties well-suited for a task can reduce the size of the search
space and simplify the search [7], but certainly, it will incorporate a human bias that would delimit
the possible architectures. Our goal is to make high-performing deep learning models more accessible
to remote sensing practitioners rather than discover novelty architectures, therefore this human bias
is less relevant. We will use this approach of incorporating prior knowledge taken from remote sensing
research literature in the creation of a customized search space for satellite data tasks.



Chapter 3

Related work

Scene classification is the basic problem in remote sensing. The satellite image scene classification task
goal is to correctly label the given images with predetermined categories. Common problems while
working on scene classification are related to the big intraclass diversity, low between-class separability,
and large variance of scene scales represented. Over the years, three approaches have been studied:
pixel-level, object-level, and scene-level classification. When the spatial resolution is very low, a pixel-
level approach is suitable due to the semantic meaning carried by to the size of the pixel, which
corresponds to the sizes of the objects. However, in present years, the benchmark datasets have a
higher resolution and therefore pixel-level approaches have been replaced with scene-level approaches,
where deep learning proclaim promising results.

3.1 Deep Learning and Remote Sensing

The authors of [27] categorize the different models applied for remote sensing into three types:
statistical models, physical models, and data-driven models. To apply statistical models considerable
level of prior knowledge is required, such models use digital signal processing methods. The physical
models are based on physical approximations made by analytic computation methods and also require
a good level of knowledge about the problem. Data-driven models, as inferred from name, are based on
the knowledge extracted from the data; consequently only low prior knowledge is required. According
to [4], deep learning techniques started to be used for remote sensing in 2014. In 2017, large-scale
benchmarks for satellite image scene classification were released [28, 29], which open the door for the
development of more deep learning-based models.

In [30], more than 200 publications in the field of remote sensing were reviewed and meta-analysed
showing that the main focus of previous research is on classification. The authors of [4] reviewed
the state of deep learning for satellite image scene classification. CNN-based methods have obtained
impressive results when numerous annotated samples to fine-tune or train a network from scratch are
available.

AlexNet [31], DenseNet [32], VGG [33] and ResNet [34] are some of the most powerful CNN ar-
chitectures in computer vision tasks. The findings of [35], after examining seven deep convolutional
networks suggest that an ensemble of Inception and ResNet modules is an effective architecture for
land cover classification.

Transfer learning

Supervised deep learning normally have the need of variety and volume of data for training. However,
for a majority of remote sensing applications the available training data is limited. Therefore, different
approaches have been applied. Three commonly used techniques are: transfer learning, unsupervised
learning, and generative adversarial networks.

9
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The authors of [36] studied the performance of CNNs for satellite image scene classification using
datasets containing a few annotated samples. They analyse different learning strategies: full training,
fine-tuning, and using CNNs as feature extractors. According to their conclusions the fine-tuning ap-
proach tends to be a good option in different scenarios.
AutoML have made advances using meta-learning for transferable models. Meta-learning, is the sci-
ence of learn from the experience gained by looking on how different machine learning approaches
perform on a wide range of learning tasks (meta-data) to learn new tasks much faster than other pos-
sible models [37]. Based on [38], last year the model agnostic meta-learning (MAML) algorithm was
put on the context of few-shot land cover classification [39]. The results indicate that this approach
could be preferable only when the data has a high degree of diversity from region to region.
Emphasizing the importance of transfer learning for remote sensing, the authors of [17] investigated
the in-domain representation learning to develop generic remote sensing representations. Their ex-
perimental results in 5 remote sensing datasets suggest that representations trained on the large
weakly-supervised datasets were not as successful as that of a smaller and more diverse human-
curated dataset. However, some results left matters open and need more examination. The best
trained in-domain representations are published for easy reuse by the public.

Hyperparameter tuning
To the best of our knowledge, studies in remote sensing have only considered optimising a subset of
hyperparameters using a parameter sweep approach [40, 17]. A most sophisticated hyperparameter
tuning technique could improve the performance of their deep learning models.

RF CNN1 CNN2 CNN3
model

0.2

0.4

0.6

0.8
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cu
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    Comparison of models with and without hyperparameter
tuning (test accuracy)

type
vanilla
tuned

Figure 3.1: Preliminary experiments using the EuroSAT dataset [41]. A random forest and three
different CNNs built from scratch based on machine learning and remote sensing literature [42,
35] are compared. For each model two versions are shown: a vanilla model performance using
default configurations and a tuned model. The tuned models show the performance after applying
hyperparameter tuning for the optimizer, learning rate, batch size, and the number of epochs in
the case of the CNNs and the number of features for the random forest.
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In previous experiments, we tested our assumption regarding the strong influence of hyperparameter
settings in the performance of modern machine learning models for satellite image classification.
Figure 3.1 shows the performance comparison of a random forest model (which is popular within the
remote sensing community) and three different CNNs. Light blue color represents the model using
default configurations and dark blue shows the performance after applying hyperparameter tuning. We
can see that all the CNNs outperformed the results of the random forest approach, and contrary to this
one, the results of the CNNs after hyperparameter tuning improved significantly illustrating how the
tuning can make a difference between the resulting models. Supported by those results, in this thesis,
we will address the remote sensing research gap of using more sophisticated hyperparameter tuning
techniques through the use of automatic hyperparameter tuning incorporated in AutoML systems. As
mentioned in Chapter 2.3, we will also incorporate the findings of remote sensing research into the
creation of automatically generated deep learning models. Hopefully, this will lead us to improve or
at least be comparable with the results found previously by the remote sensing research community.

3.2 AutoML system: Auto-Keras

Research in AutoML is very diverse and has developed software packages and methods targeted at
both researchers and end-users [7]. Over the last few years, several open-source packages have been
developed providing automated machine learning. Auto-Keras [11] is an efficient neural architecture
search with network morphism, which utilizes Bayesian optimization to guide through the search space
by selecting the most promising operations each time. Applying Bayesian optimization to NAS is not
trivial. There are 3 main challenges for the design of this method. The first one is that neural architec-
ture search space is not Euclidean, which affects the assumption of traditional Gaussian Process; the
easy solution would be vectorizing, but as a consequence of the unknown number of layers and param-
eters this solution is impractical. Therefore, instead of vectorizing, Auto-Keras authors proposed an
approximated solution of an Edit-Distance Neural Network Kernel for Gaussian Process. The second
challenge is the acquisition function. The conventional acquisition functions are defined on Euclidean
space, the optimization methods are not applicable to the tree-structured search via network mor-
phism. Hence, the Auto-Keras authors propose a method to optimize the acquisition function for a
tree-structured space. They selected the Upper confidence bound [43] as the acquisition function and
set an explicit balance factor for exploration and exploitation. The third challenge is the tensor shape
consistency while morphing the architecture. To solve this challenge Auto-Keras uses a graph level
morphism to find and morph the layers influenced by a layer-level operation in the entire network.
Previous work solved how to preserve the functionality at a layer lever morphism.

By tackling these challenges, the Auto-Keras framework is developed and the authors of [11] use a
three-layer convolutional network as starting architecture for their experiments presented in the paper
to test the efficiency of their approach compared with other methods.

Auto-Keras search space is built upon network morphism where the search space of NAS is cre-
ated using morphism operations. These operations can insert a layer, make an existing layer wider,
or add additive or concatenative connections and are denoted as follows: deep(G, u), wide(G, u),
add(G, u, v) and concat(G, u, v), where G is a network architecture and u and v are nodes repre-
senting different positions on the network graph [11]. After G is initialized, any of the 4 morphism
operations can be chosen to modify the network. However, when wide, add, or concat operations are
selected, extra actions are needed to ensure the shape consistency of the output.

The deployed Auto-Keras system has a task-oriented API, in which different initial architectures are
applied for different tasks including classification and regression for structured data, text, and image
data.



Chapter 4

Methodology

In this chapter, we will explain the methods applied to test the performance of AutoML for the satellite
image classification task. We first describe how the search space is defined in the AutoML system,
and after the different approaches regarding the search space for satellite data are described.

4.1 Neural Architecture Search Space

In order to discover automatically generated high-performance architectures for satellite data clas-
sification tasks, we set up the findings of deep learning in remote sensing literature in an AutoML
framework. We proposed to increase the efficiency of AutoML systems by reducing the complexity of
the search space focusing on the most-likely well-performance architectures for satellite data tasks.

We first selected one of the deployed open AutoML systems to build upon. Two popular AutoML
systems that focus on deep learning are Auto-Keras [11] and Auto-Pytorch [44], both supporting
image classification tasks. Auto-Pytorch uses multi-fidelity optimization and Bayesian optimization
(BOHB) while Auto-Keras uses a Bayesian optimization with a Neural network kernel and a tree-
structured acquisition function to search for the best settings. The search space of Auto-Keras is
based on network morphism, it encloses all the architectures that can be created by morphing the
initial architecture. Auto-Pytorch is delimited to multi-layer perceptron networks and funnel-shaped
residual networks. To deal with the memory limitations Auto-Pytorch asks the user to choose between
small, medium, and full configuration spaces whereas Auto-Keras adapts the configuration space
automatically based on a memory estimation function. Due to the network morphism approach and
the memory adaptation implemented in Auto-Keras, we decided to build up our proposed changes for
the remote sensing applications on top of it.

In order to measure the benefits of the development of specific tasks for satellite data, we decided
to gradually enhance the search space of the system and proposed three different settings for our
experiments. Those settings and the motivation behind them are explained in the following sections.

4.2 Approaches

4.2.1 Original Auto-Keras system (V-AK)

Auto-Keras search space is built upon network morphism where the search space of NAS is created
using morphism operations. As explained in Chapter 3.2, an initial network architecture G is given, and
with the use of morphism, new networks are created derived from different operations. The authors
of [11] use a three-layer convolutional network as starting architecture for their experiments presented
in the paper to test the efficiency of their approach compared with other methods. However, the

12
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deployed Auto-Keras system has a task-oriented API, in which different initial architectures are applied
for different tasks. The image classification task, which is the most relevant one for satellite data, uses
3 initial architectures: first, it tries a vanilla network with 2 layers, second a ResNet50 model without
pre-training, and thirdly an Efficientb7 network pre-trained with ImageNet. This change influences the
possible architectures to select and outperforms the system initialized with a three-layer convolutional
network. To the best of our knowledge, the selection of the initial architectures was based on human
expert knowledge and state-of-the-art architectures for specific tasks based on natural image data.

For the first part of this study, we want know how good is the current image classification task in
Auto-Keras when it is used for satellite data. Therefore we do not do any changes in the search space
and we keep the deployed initialization of G for the image classification task in Auto-Keras.

4.2.2 Models pre-trained using ImageNet dataset (IMG-AK)

Based on remote sensing research, we know that models pre-trained with ImageNet can lead to
promising results for satellite data classification tasks [45, 17, 46, 41]. The Auto-Keras search space
already includes blocks with weights acquired by pre-training on ImageNet. Figure 4.1 is an abstract
illustration of how the final architecture for the image classification task can be build based on pre-
defined blocks existing in Auto-Keras. The model blocks in which the ImageNet weights are available
have a hyperparameter called pretrained, which defines whether or not a pre-trained version of the
model will be used.

Therefore, in this approach we make use of the available resources in the current systems but we modify
the configuration based on the remote sensing findings. We expect to improve the classification results
by only changing the initial architecture choosing a block pre-trained with ImageNet. We influenced
the search space of the image classification task by morphing a different initial architecture G. The
new G can be selected based on the blocks with available ImageNet weights that are part of the best
models found by the original Auto-Keras. In case the results do not contain relevant information we
can take the findings about suitable architectures (mentioned in Chapter 3) and select the ResNet
block. For this approach, we configure the initial G with the selected block and we set the parameter
pretrained to true so the model pre-trained with ImageNet will be considered first.

Figure 4.1: Abstract illustration of how the final architecture can be build based on pre-defined
blocks existing in Auto-Keras.

4.2.3 Models pre-trained using remote sensing datasets (RS-AK)

We know that the use of transfer learning techniques can be successful when the source and target
dataset and task are similar [47, 48, 17]. Within the remote sensing community, there are models pre-
trained with remote sensing datasets [17, 49] but none of these are available yet in AutoML systems.
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Therefore, we proposed to customize the Auto-Keras image classification task for its use with satellite
data by incorporating the usage of models pre-trained with various remote sensing datasets.

We need to initially decide what needs to be changed in Auto-Keras to be able to add this feature. The
Auto-Keras task-oriented NAS approach for image classification was not fully explained in the original
paper but it can be inferred from the open-source deployed system. After analysing the algorithm
of the system, we deduce that the image classification task builds an architecture based on pre-
defined cells or blocks. These blocks can be divided into three categories: pre-processing, model, and
classification head. Inside the pre-processing category, two blocks are considered: (i) a normalization
block, which performs a feature-wise normalization on the data; and (ii) an image augmentation
block, which can apply various methods including flipping, rotation, and translation. The addition of
such blocks to the final architecture in Auto-Keras is treated as a hyperparameter. The model blocks
represent all the possible cells that will conform to the hidden layers of the network. Each block
consists of parameterized modules of well-known CNNs with various hyperparameters to be tuned.
The third category is the classification head block, which consists of dense layers that will be added
to the network to create the output layer of the network and it is connected to the model blocks, its
parameters are related to the number of classes and the classification type. The only hyperparameter
to tune in this block is a dropout value.

The preprocessing steps correspond to the ones applied by the authors of our satellite datasets pre-
sented in Chapter 5.1. Furthermore, the classification head block does not need to be changed because
the nature of the classification is the same as any image classification task. We only need to change the
model blocks and how our new block will interact with the classification head block. Figure 4.2 is an
abstract illustration of this. For future developments and other satellite data-specific tasks, however,
we might need to modify more than the model blocks.

The RS Block chooses between different pre-trained module versions (trained with satellite data).
This choice is considered as another hyperparameter to tune. Therefore, it uses the same hyperpa-
rameter tuner that is used for all the other blocks. The current optimization method is explained next.

Figure 4.2: Abstract illustration of how the final architecture can be build based on pre-defined
blocks. The RS Block takes as extra hyperparameter the remote sensing source model.
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Hyperparameter tuning

Different tuners can be used to determine which combination of hyperparameters will be send for
training in each trial during NAS. We used an oracle combining random search and greedy algorithm
[50, 11] presented inside of Auto-Keras. It groups the hyperparameters into several categories, accord-
ing to the level or functionality. The oracle tunes each category separately using random search. In
each trial, it uses a greedy strategy to generate new values for one of the categories of hyperparameters
and use the best trial so far for the rest.

Remote Sensing Pre-trained Models

Our RS Block is composed by modules of different satellite learning representations. Such represen-
tations are taken from different pre-trained models. Based on the number of spectral bands of the
collected datasets we considered two types of pre-trained models.

3-channel models. As mentioned in Chaper 3, Google Research [17] made available 5 remote sensing
pre-trained models. All the models use the same ResNet50 V2 architecture [34] and the tuning was
made by sweeping only a small set of hyper-parameters. Each model was trained either from scratch
or by fine-tuning ImageNet on each full dataset. Only one dataset per model was used for training.
The best representation, based on the accuracy of correspondent dataset, was chosen.

13-channel models. Inspired by the findings in [35] and the selected architecture in [17], we decided to
create our own in-domain representations for 13-channel datasets using ResNet architectures training
in the EuroSAT dataset[41]. Keras Applications [51] are deep learning models that are made available
alongside pre-trained weights. The use of such weights (from ImageNet) is optional. There are 6 ver-
sions of ResNet architectures [34, 52]: ResNet50, ResNet101, ResNet152, ResNet50V2, ResNet101V2
and ResNet152V2. In order to be able to use them for a 13-channel dataset, we need to modify the
input shape parameter to the dimensions of the dataset (64,64,13) and do not include the top layer.
We use the output of such a model to and we add a global spatial average pooling layer and a dense
layer with the number of classes (10) as units to create the model architecture. We compiled it using
the Adam optimizer and categorical cross-entropy loss. We trained the models with 50 epochs and
80% of the full dataset and evaluating the performance in the remaining 20%. Performances between
88% and 95% accuracy were found. Trying to improve the performance by using a more tuned archi-
tecture, we included the best model architecture found by the AutoML system, which has an accuracy
of 98%, as another 13-channel pre-trained model.

After saving the trained models, we call them using the keras load model function and we remove
the top layer because this last layer was adapted to the number of classes in the dataset. The model
In order to rapidly test the performance of our new block, we made two changes in the Auto-Keras
search space. We first added the proposed RS Block to the model blocks structure. Secondly, we
adapted the initial architecture G to start with our new remote sensing block. As part of the study
of the different remote sensing learning representations, we want to analyse which of the current
representations has promising results and is more generalisable among the datasets. We can do this
by studying the version parameter of the RS Block



Chapter 5

Experiments

Within this chapter, we will present the experiments formulated to solve our research questions.
Our original questions are:

what is the performance of current AutoML systems for satellite data? and
what happens when we integrate the knowledge gained from previous research in the field of remote

sensing into AutoML systems?

In order to answer such questions, we created the following research questions:

• Q1. Can we achieve a performance similar to the non-automated deep learning research in
remote sensing by using AutoML systems?

• Q2. How is the performance of different Auto-Keras variants regarding the number of spectral
bands, the size of the dataset, and the different class distribution datasets?

• Q3. When RS-AK is applied, which pre-trained modules (dataset source) are often chosen as
part of the best model?

Based on Q1, we want to show the potential of the usage of AutoML systems for satellite data tasks.
With the findings of Q2 we can compare the three approaches and their behavior in different types
of datasets. As RS − AK integrates remote sensing transfer learning representations and we are
interested in studying which ones work the best, Q3 will help us to have an idea about it.

Our experiments were designed to show the performance of the different variants of the proposed
AutoML framework described in Chapter 4. We compared the different variants against themselves
and against the results presented in remote sensing research, which were obtained with high performed
manually designed architectures. We ran the three methods for a different number of trials (10, 50,
100, 200) and for the different datasets using mainly accuracy as the performance metric. We extracted
the configuration of the selected best model of each run to analyse the frequency of appearance of
each pre-trained module.

The following sections present the datasets and their correspondent baseline (high performed manually
designed architecture), the remote sensing pre-trained models used, and the experimental setup of
our experiments.

5.1 Datasets

To have a broader idea of the applicability of this framework in the remote sensing field, we have
composed a benchmark of 7 diverse multi-spectral satellite datasets.

16
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Table 5.1 presents several characteristics of these datasets. These datasets are considered benchmarks
in the remote sensing literature and well-known by the community. Furthermore, this selection shows
a variety of classification tasks with presumably different degrees of difficulty and complexity.

BigEarthNet [49] and EuroSAT [41] are the most recent datasets extracted from Sentinel 2 images.
For EuroSAT [41], Coffee scenes [46] and UC Merced [53] datasets the number of samples per class is
quite similar. However, the BigEarthNet [49], So2Sat [54] and Cerrado-Savanna scenes [36] datasets
have different class distribution. Among these datasets, the Brazilian Cerrado-Savanna scenes [36] is
a challenging dataset, as explained by the authors, this is due to its high intraclass variance, caused by
different spatial configurations and densities of the same vegetation type, as well as its high inter-class
similarity, caused by the similar appearance of different vegetation species [36]. Moreover, from 1,311
samples included in this dataset, 73% correspond to the Arboreal vegetation. Figure 5.1 can give an
idea of the difficulties when classifying these images.

Arboreal Shrubby
(FOR) (SHR)

Herbaceous Agriculture
(HRB) (AGR)

Figure 5.1: Examples of the Brazilian Cerrado-Savanna scenes dataset [36]. The identification of
the 4 classes is challenging even for human eye. The labelling was performed by biologists and
specialists

5.2 Baselines

We compare the performance of the three AutoML approaches against well-performing models from
the literature. The following baselines are selected representing high-performance manually designed
architectures for each dataset. The deep learning approach applied that gives the state-of-the-art
(SOTA) performance for each case is explained in this section.
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Table 5.1: Overview of available labeled datasets and the presented accuracy from the paper in
which the dataset was introduced.

Dataset Satellite
(Bands)

Resolution Images Label Number
of classes

Perfor
mance

Reference

BigEarthNet Sentinel-2
(3/12)

Medium-
High

590,326(L) Land cover 43 67.59% [49]

BrazilDam Sentinel-2
(13)

High 1,925(S) dam/not
dam

2 94.1% [40]

Brazilian
Coffee
Scenes

SPOT (3) High 2,876 (S) coffee/non-
coffee

2 83.04% [46]

Cerrado-
Savanna
scenes

RapidEye
(3)

High 1,311 (S) Scene vege-
tation

4 90.5% [36]

EuroSAT Sentinel-2
(3/13)

High 27,000(L) Land use 10 98.57% [41]

So2Sat Sentinel-2
(3)

High 376,000
(L)

Land cover 17 61% [54]

UC Merced USGS(3) Very High 2,100 (S) Land use 21 NA [53]

5.2.1 BigEarthNet

Until now, BigEarthNet [49] is the largest benchmark dataset in the remote sensing field, consisting of
590,326 non-overlapping Sentinel-2 image patches. The spatial resolution on the ground is 1.2 x 1.2
km with 3 different image sizes depending on the spectral band resolution. Each sample was labeled
with multiple land cover classes that were provided from the CORINE Land Cover database 2018 [55].
This is a non-balanced multi-label dataset with 43 classes.
The paper in which BigEarthNet was introduced [49] only presents the precision (65.06%), recall
(75.57%), F1 and F2 metrics (67.59%, 71.39%) of a CNN architecture that consists of 3 convolutional
layers and max-pooling.

5.2.2 BrazilDam

BrazilDam [40] is a public dataset based on Sentinel-2 and Landsat-8 satellite images covering all
tailings dams classified using the Brazilian National Mining Agency data coordinates. The dataset was
created from georeferenced images between 2016 and 2019 of 769 dams in Brazil. The dams have
different shapes, areas, and volumes and they also contain some mining waste, this makes BrazilDam a
challenging dataset to be used in machine learning benchmarks. Dam classification, Ore classification,
and Risk Category are tasks that can be tested with this dataset.

The approach taken in [40] for the tailing Dam classification task consisted of evaluating six different
neural network architectures: AlexNet [31], DenseNet [32], Inception [56], ResNet [34], SqueezeNet
[57] and VGG [33], using Adam algorithm as optimizer and trying 3 different learning rate parameters
(10−2, 10−3, 10−4). The resultant best model was the DenseNet network with a learning rate of
10−4.
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5.2.3 Brazilian Coffee Scenes

This dataset consists of scenes related to coffee crops over four counties in the State of Minas Gerais,
Brazil taken by the SPOT sensor in 2005.This dataset contains images with different plant ages with
spectral distortions caused by shadows and the crop management techniques cause many intraclass
variances [46]. Each county image was divided into multiple tiles of 64 x 64 pixels. The coffee crops
distinguishing was made manually by agricultural researchers. The dataset folds are balanced with
coffee and non-coffee samples (50% each).

In [46], the authors evaluated different feature descriptors including low-level, mid-level, and convo-
lutional networks to use a SVM classifier. OverFeat [58] and Caffe [59] were considered for the CNN
descriptors, both trained with the ImageNet dataset [60]. The best average accuracy was acquired by
using a color descriptor but the use of two OverFeat networks gave an accuracy of 83.04%±2.

5.2.4 Cerrado-Savanna Scenes

This dataset contains 1,311 multi-spectral images acquired by the RapidEye satellite sensors. It covers
the southern-central Brazil region, which contains a extremely bio-diverse and heterogeneous moun-
tains landscape [36]. The RapidEye has 5 spectral bands: blue, green, red, red edge, and near-infrared;
this dataset contains only the information from the near-infrared, green, and red bands. Those can
help to discriminate vegetation areas. The Cerrado-Savanna dataset is a quite a challenge due to its
high intraclass variance, caused by different spatial configurations and densities of the same vegetation
type, as well as its high inter-class similarity, given a similar appearance of different types of vegetation
species. The images are 64 x 64 pixels, and are classified into Agriculture, Arboreal, Herbaceous, and
Shrubby Vegetation. Biologists and specialists manually labeled the data (ground-truth annotation).

The approach in [36] to solve the classification task of this dataset is similar to the Coffee Scenes
approach. It also uses CNNs as feature extractors but it also explores the use of CNN with a fine-tuning
strategy. AlexNet [31] was the network used, the features were extracted from the last fully-connected
layer, and for the fine-tuning, two approaches were considered: freezing the first 3 layers, and without
freezing any layers. [36] found the best results with the fine-tuning strategy achieving a 90.54%±1.83
overall accuracy.

5.2.5 EuroSAT

EuroSAT dataset [41] is one of the newest benchmark datasets, it was made available in 2019. It
is composed of 27,000 labeled and georeferenced Sentinel-2 satellite (13 spectral bands) images of
64x64 pixels classifying 10 different land use and land cover classes. Each class has between 2,000
and 3,000 samples. The satellite images are associated with the cities covered in the European Urban
Atlas.

For this dataset, the authors evaluated the performance of the Bag of-Visual-Words approach using
SIFT features and a trained SVM and three different CNNs: a CNN with two layers, ResNet-50 [34]
and GoogleNet [56]. The best accuracy (98.57%) was obtained using a fine-tuned ResNet-50 (pre-
trained on ImageNet) for RGB bands. The paper does not show the performance of using all the 13
bands together as input. [17] established a new benchmark of 99.2% using the same architecture but
pre-trained on remote sensing datasets.
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5.2.6 So2Sat

So2Sat LCZ42 [54] is a benchmark dataset created with co-registered synthetic aperture radar and
multi-spectral optical image patches and the corresponding local climate zones label. These were
acquired by the Sentinel-1 and Sentinel-2 remote sensing satellites. The dataset is distributed over 42
cities across different continents and cultural regions of the world. The labelling of this dataset was
performed by 15 domain experts.

For this dataset, only three baselines were tested: a Random forest, a SVM and ResNeXt-CBAM [61].
The best achieved overall accuracy was 61% using the ResNet approach. [17] also found out that
using fine-tuning with in-domain representations an accuracy of 63.25% can be achieved.

5.2.7 UC Merced

UC Merced dataset [53] is composed of 2,100 aerial scene images extracted from the United States
Geological Survey (USGS) National Map Urban Area Imagery collection for various urban areas around
the country. Each image measures 256x256 pixels, with a pixel resolution of 1 foot.

The authors of this dataset investigate Bag of-Visual-Words approaches but do not present the best
accuracy for the classification task. Other papers had achieved high performance (around 99%) for
the dataset. [17]’s approach shows 99.61% accuracy.

5.3 Remote sensing representations

The remote sensing learning transfer representations used in this thesis were originated from three
different sources.

The first ones came from the TensorFlow Hub [62] library. These are 5 models deployed by [17], consist
of ResNet50 architectures trained for BigEarthNet, EuroSAT, So2Sat, UC Merced, and Resisc45
dataset. The training approach was explained in Chapter 4.2.3

The second source is the models trained using the Keras Applications [51] model definitions. These
are 6 different ResNet versions that we trained using the EuroSAT dataset. Its specifications were
also described in Chapter 4.2.3. The weights created by these models were saved in h5 format (easily
reusable by the community).

The third source is a model from the AutoML system itself. The best model found for the 13-channel
EuroSAT dataset using the original Auto-Keras. This architecture is composed of a convolutional layer
and a Resnet50 module.

Although, there are no exact rules yet defining what makes a good and generalisable pre-trained
model. Their performance in the unseen data can give a clue of how good the model will be. It is
expected that models created with a big dataset can be applied for a large range of tasks. But there
is also a threshold related to the similarity of the tasks [63, 64].

In order to study the best model representations, we used the first type of models with different data
sources for the RS-AK approach for all 3-channel datasets and the second and third source only for
the BrazilDam dataset.

The remote sensing learning transfer representations used in the RS Block were taken from removing
the top layer of the trained networks, so the output of this block can be connected to the classification
head block from Auto-Keras.
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5.4 Performance metrics and validation

Accuracy:
Accuracy is defined as the fraction of predictions that the model identified correctly.

Accuracy = Number of correct predictions
Total number of predictions

F1-score, Precision and Recall:
Precision and recall are useful performance measures when the classes are not balanced. Precision
is the resulting score from the division of the true positives over the union of the number of true
positives and the number of false positives.

Precision = TP
TP+FP

Recall is the resulting score from the division of the number of true positives over the true positives
plus the number of false negatives.

Recall = TP
TP+FN

F1-score is the harmonic mean of precision and recall.

F1− score = 2 Precision×Recall
Precision+Recall

Overall F1-score
The simplest way is to take the macro averaged F1-score. It is computed as an arithmetic mean of
the F1-score per class.

5.5 Experimental setup

For all our experiments, the datasets were first randomly divided into a training set and a testing set.
The test set was created by reserving 20% of all the available data from Eurosat, BigEartNet, So2sat,
and UC Merced datasets. In the case of the BrazilDam dataset, only the Sentinel fold from 2019 was
extracted to study. The Coffee scenes and Savanna datasets are originally divided into 5 folds. The
first 4 were used for training and the last one is considering the testing set. Next, another split of 80-20
was applied to the training set, assigning 20% of it for validation, which was used for the AutoML
system to tune hyperparameters and select the best model. As most of the datasets are also used
as a source for creating pre-trained models, during the third experiment when testing on a specific
dataset, the pre-trained weights of the same dataset were discarded. For example, while testing on
the EuroSAT dataset, the models pre-trained with EuroSAT were not considered as part of the search
space. To exclude the corresponding pre-trained models, before running the task, we removed this
option from the set of pre-trained remote sensing models to consider inside the RS Block.

To be able to show the significance of the results, the outcomes presented in this thesis are based
on the 10 trials experiments. All the experiments were run on a compute cluster using nodes with 4
GPUs (PNY GeForce RTX 2080TI). We delimited the memory to 32 and 64 GB for the experiments
with 10 trials. Each trial, varying per dataset, ranges from few minutes to around 6 hours.

The Auto-Keras version was 1.0.9, the modified versions used for the experiments will be available at
https://github.com/palaciosnrps/automl-rs-project.
The existing datasets were build using Tensorflow datasets version 1.2 and to add the new ones tfds-
nightly 4.2.0dev was used. For the models we took Tensorflow hub version 0.9 and the repository of
[17] models available in https://tfhub.dev/google/collections/remote_sensing/1.

https://github.com/palaciosnrps/automl-rs-project
https://tfhub.dev/google/collections/remote_sensing/1


Chapter 6

Results

Within this chapter, we will present the results of our experiments. We divided this chapter into
three sections. The first section shows the comparison of the AutoML approaches against the non-
automated models and answers Q1. The second section presents the findings of comparing the three
different approaches and answer Q2. The third section focuses on answering Q3 while analysing the
results of the approach using our new remote sensing block.

6.1 AutoML vs non-automated models

As mentioned in Chapter 4.2.2, we first ran the original Auto-Keras (V-AK) and we analysed the
best models obtained from it. Figure 6.1, shows that in 78% of these models a ResNet module was
chosen as part of the architecture. These results agree with the findings in the literature regarding the
popular use of ResNet architectures for satellite datasets. Therefore, we are using the ResNet block
pre-trained with ImageNet as the initial architecture for the IMG-AK approach.

Main block
Basic blocks
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Figure 6.1: Image blocks chosen as part of the best model acquired by V-AK. Please note that,
the sum of the frequency exceeds 100% because the final architecture can include more than one
model block.

Table 6.1 summarizes the performance of the three different AutoML approaches on the test set
for the different datasets. The performance metric shown here, compatible with the baseline papers,
is the overall classification accuracy. For the BigEarthNet-rgb dataset, we decided to change the
performance metric (See Table 6.3) to be able to compare with the baseline. We achieved an F1-score
of 67.84% using an ImageNet pre-trained module, meanwhile the result presented in [49] is 67.59%.
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Table 6.1: Average overall accuracy on test dataset considering 10 runs of each experiment and the
state-of-the-art (SOTA) for each dataset. EuroSAT-all was not included in the RS-AK approach
because the 13-channel the model was pre-trained on the same dataset, no benchmark was found
for this version of the dataset. Boldfaced entries are the best approach among the 3 AK variants
and the entry marked with * shows that the results are statistically significant.

Dataset Type SOTA Vanilla
Auto-Keras

ImageNet
Auto-Keras

Remote
Sensing
Auto-Keras

(V-AK) (IMG-AK) (RS-AK)

BrazilDam Small-13 94.1[40] 89.09±.05 76.54±.13 85.57 ±.01
Coffee scenes Small-3 83.4[46] 86.18±.02 82.96±.04 88.84±.00*
Cerrado-Savanna
scenes

Small-3 90.5 [36] 85.79±.01 84.33±.03 89.92±.01

UCMerced Small-rgb 99.61 [53] 99.62±.00 76.43±.13 91.19±.06

EuroSAT-all Large-13 - 95.38±.02 97.82±.00* -
EuroSAT-rgb Large-rgb 99.2[17] 99.18±.00 99.54±.00* 95.90±.01
So2Sat-rgb Large-rgb 63.25[17] 95.47±.00 97.80±.00* 76.92±.00

There is not benchmark performance for the full spectral version of EuroSAT, resultant from our
experiments we established one with 97.8% overall accuracy.

We can see that the overall accuracy of V-AK is already above 80% for all the datasets. Comparing
these results with the state-of-the-art performance (also in Table 6.1), V-AK got a better performance
for the Coffee scenes, So2Sat-rgb, and UC Merced dataset. IMG-AK outperformed the results on
EuroSAT-rbg and also So2Sat. RS-AK improved the performance on the Coffee scenes dataset.

To answer Q1: Can we achieve performance similar to the non-automated deep learning research
in remote sensing by using AutoML systems?, we grouped the results of the three variants (V-AK,
IMG-AK, and RS-AK) and we took the maximum accuracy. In this way we can analyse the AutoML
competency against the non-automated architectures. Figure 6.2 helps us to illustrate it. It compares
the best obtained result from our experiments versus the state-of-the-art accuracy obtained by non-
automated methods taken from the literature. We outperformed the literature in 4 out of 6 datasets,
improving the state-of-the-art result for So2sat by a rate of 34.5%. Therefore, we can conclude that
the performance found by using AutoML systems can be competitive and even better for some of
these datasets.

6.2 AutoML variants and the different type of datasets

To address Q2, we firstly group our selected datasets per number and type of spectral bands (chan-
nels). We have 5 datasets with 3 channels. Coffee scenes and Cerrado-Savanna scenes datasets are
composed of images with near-infrared, green, and red bands. The EuroSAT and the So2Sat datasets
contain the red, green, and blue bands (RGB). We have two datasets (BrazilDam and EuroSAT-all)
with 13 channels from the Sentinel-2 satellite. As we used EuroSAT to build a pre-trained model for
13 channel datasets, we should not test the same source dataset as the target dataset hence the
corresponding entries in Tables 6.1, 6.3 and 6.2 are left blank. If we do include the same dataset, such
a pre-trained model is chosen as the best and gives an accuracy near 100%. In Table 6.1 the boldfaced
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Figure 6.2: Comparison between the state-of-the-art (SOTA) performance obtained with man-
ually designed models versus the best performance found by using any of the three AutoML
approaches. In 4 out of 6 datasets the AutoML models outperformed the previous SOTA results.

entries indicate the best approach among the three AK variants. In order to determine the statistical
significance of the results, we performed a Wilcoxon signed-rank test, first ensuring that the data was
not normally distributed and considering a p value of 0.05. If the results are statistically significant
for that best approach the entry is also marked with * (please note that the paired comparison of
second-best approaches is not shown in the table).

The original Auto-Keras V-AK and the IMG-AK version performed similarly on the EuroSAT-all
dataset. For the case of the BrazilDam dataset, the initialization with a pre-trained ImageNet model
did not benefit the performance (see IMG-AK Table 6.1), and on the contrary, it decreased the average
accuracy of the runs. This can be explained considering the difference in the number of input channels.
BrazilDam dataset is a 13-channel image dataset; therefore, the direct use of pre-trained models from
ImageNet (3-channel) does not apply. Only blocks without weights can be selected. Different from
the EuroSAT dataset, the number of labeled samples of BrazilDam is small. When the RS-AK version
was used for BrazilDam, we can notice an improvement considering this initialization, however, the
performance did not beat the results of the V-AK best models. This suggests that for this particular
case, training the network from scratch could lead to better performance.

We can see that for the RGB channel datasets either V-AK or IMG-AK approaches lead to the best
performance, meanwhile for Coffee scenes and Cerrado-Savanna scenes datasets the RS-AK variant
obtained the best results. These two datasets are composed of near-infrared, green, and red bands and
the classification task differs from land cover-land use identification. Considering such observations,
we can infer that the 3-channel remote sensing representations are an option for transfer learning when
the target dataset is different from the well-known RGB channel datasets. In the case of the 13-channel
representations used for the BrazilDam dataset, the results were not as successful as the obtained by
manually designed architectures. The best-automated model generated using the original Auto-Keras
consists of convolutional blocks without pre-trained modules, suggesting that for this dataset training
from scratch rather than using the available pre-trained models is a better approach. Based on the
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Table 6.2: Maximum average misclassification rate per class on test dataset. EuroSAT-all was
not included in the RS-AK approach because the 13-channel model was pre-trained on the same
dataset.

Dataset Type Vanilla
Auto-Keras

ImageNet
Auto-Keras

Remote
Sensing
Auto-Keras

(V-AK) (IMG-AK) (RS-AK)

BrazilDam Small-13 11.1% 32.3 % 22.0%
Coffee scenes Small-3 15.0% 25.5% 13.0%
Cerrado-Savanna scenes Small-3 83.9% 71.4% 54.1%
UCMerced Small-rgb 3.8% 28.9% 19.1%

EuroSAT-all Large-13 11.6% 4.3% -
EuroSAT-rgb Large-rgb 2.2 % 1.3% 7.3%
So2Sat-rgb Large-rgb 12.5% 6.3% 57.0%

results of the non-RGB datasets, we can expect that improving the 13-channel representations could
lead us to better performance.

Secondly, we can group our datasets per size. Considering BrazilDam, Coffee scenes, Cerrado-Savanna
and UC Merced as small datasets and EuroSAT and So2Sat as large ones.

We notice that comparing the initialization of G with ImageNet pre-trained models (IMG-AK) ver-
sus the implementation of remote sensing pre-trained models (RS-AK), RS-AK gives better perfor-
mance for the small datasets. Meanwhile, IMG-AK consistently results in better performance for large
datasets. Probably this is linked to the transfer learning technique and the dataset we are using.

The overall accuracy only gives a general idea of the performance, we need to look with more detail into
each class to know if there is still any room for improvement. We can generate the confusion matrices
per each run. Figure 6.3a is the confusion matrix of the best model found for the Cerrado-Savanna
dataset by using RS-AK. The classes with originally more samples (FOR, HRB) are the classes with
better performance. For the SHR and AGR classes the misclassification is still high. However, while
comparing with the results given by using a non-pre-trained model obtained with V-AK (Figure 6.3b),
we can appreciate a big improvement of 13% and 44% in the less representative classes (SHR, AGR)
acquired by the use of pre-trained blocks.

Some of our datasets have only 2 classes, while others have more than 2. Also, for some of them the
distribution on classes is highly variant whereas for others the number of samples per class are similar.

Table 6.2 summarises the insights acquired from confusion matrices by showing the maximum mis-
classification rate found (it can belong to any class) after averaging the misclassification rate obtained
on the test set results for each class. Lower values show higher performance by achieving less mis-
classification error. This metric will give us a better understanding of the improvements made by
the different AK variants on the classification task. The EuroSAT and So2Sat (our large datasets)
achieved lowest misclassification rate while using the IMG-AK variant. The Coffee scenes and Cerrado-
Savanna datasets obtained lower values using the RS-AK version. The UC Merced dataset got the
best performance with the V-AK approach. UC Merced is the only dataset consisting of very high
resolution images, each pixel represents 0.3m whereas the other datasets are 10m.

Considering a more standard metric, Table 6.3 shows the average f1-score achieved on the test
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Table 6.3: F1-score on test dataset considering 10 runs of each experiment per dataset, except for
BigEarthNet which had 3 runs. EuroSAT-all was not included in the RS-AK approach because
the 13-channel the model was pre-trained on the same dataset.

Dataset Type Vanilla
Auto-Keras

ImageNet
Auto-Keras

Remote
Sensing
Auto-Keras

(V-AK) (IMG-AK) (RS-AK)

BrazilDam Small-13 85.62±.02 83.13±.04 84.59±.01
Coffee scenes Small-3 82.91±.10 86.07±.02 89.24±.00*
Cerrado-Savanna scenes Small-3 85.63±.01 85.63±.01 88.94±.01*
UCMerced Small-rgb 97.75±.01* 73.94±.15 82.70±.11

EuroSAT-all Large-13 94.75±.01 94.78±.01 -
EuroSAT-rgb Large-rgb 97.96±.00 98.14±.00 95.41±0.01
So2Sat-rgb Large-rgb 94.58±0.0 95.71±.00* 75.52±.00
BigEarthNet-rgb Large-rgb 50.62±.00 67.84±.00 65.29±.00
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(a) Confusion matrix for the Cerrado-Savanna
dataset using a pre-trained remote sensing
block.
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Figure 6.3: Comparison of confusion matrices for Cerrado-Savanna dataset. Classes are Agricul-
ture (AGR), Arboreal Vegetation (FOR), Herbaceous Vegetation (HRB) and Shrubby Vegetation
(SHR).

dataset considering 3 runs for the BigEarthNet dataset and 10 runs for all the other datasets. It is
worth mentioning that the AutoML system chooses the best model based on a performance metric,
accuracy by default. Only in the case of BigEarthNet, the objective metric was changed to f1-score
for the IMG-AK and RS-AK approaches. In the rest of the cases maximizing the accuracy remained
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the objective. The F1-score and Overall accuracy of the datasets showed in the tables came from the
same best model. The same conclusions regarding the three variants can be drawn using F1-score.
But these scores can be used as point of reference for other researches and for our future experiments
changing the objective metric. The precision and recall tables can be found in Appendix B.

The most evident conclusions can be taken from the dataset size. The results presented so far in
Tables 6.1, 6.2 and 6.3 suggest that for small datasets the RS-AK is outperforming IMG-AK. How-
ever, for large datasets, IMG-AK achieves the best performance. This can be explained by (i) the
amount of data available for pre-training and (ii) the degree of similarity between the target and
source domains that both determine the quality of the transfer-learning technique [63, 47, 64]. Big-
ger datasets should produce better representations. However, data similarity also needs to be taken
into account. It is possible that for the classes represented in the small datasets the current remote
sensing representations are enough and the best performance is acquired, as the domain source is
similar. However, in the case of the large datasets the quality of the representations generated with
the ImageNet dataset (being over 2 times bigger than the BigEarthNet dataset) gain over the domain
similarity. To improve the accuracy of classification for the bigger datasets using RS-AK, more studies
are needed and some of those should investigate different fine-tuning strategies and improving the
performance of the BigEarthNet representation, which so far is the most promising one.
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Figure 6.4: Remote sensing pre-trained models selected for the 3-channels datasets during the
third experiment. The datasets in X-axis are sorted ascending by the size of the dataset. Cerrado-
Savanna, UC Merced and Coffee scenes are small datasets.

6.3 The remote sensing block RS-AK

In this section, we aim to address Q3. Figure 6.4 shows the frequency at which each source model
was selected as part of the customized block for each dataset. For the Savanna Cerrado, Coffee
scenes and So2Sat datasets the most chosen source was BigEarthNet. So2sat was the most selected
model in the case of UC Merced dataset and it tied with BigEarthNet for the EuroSAT dataset.
These results are expected due to the big size of the datasets but differ from the findings in [17]
that concludes RESISC-45 representation achieves the highest performance. Our experiments differ
in the way we are using a more efficient framework for tuning the hyper-parameters and selecting
the design choices using an oracle combining random search and a greedy algorithm (explained in
Chapter 3) while the authors of [17] propose to optimize by sweeping only a fixed set of hyper-
parameters. In our approach the pre-trained model is only a block that is part of the full architecture
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(see Figure 4.2) and the selection of the best performed model was based on the validation set inside
the Auto-Keras framework. The authors of [17] utilized the same ResNet50V2 architecture [52] to
train the remote sensing datasets using SGD with momentum set to 0.9 and the comparison of the
different pre-trained models was made after finishing the fine-tuning either using 100, 1000 or the
full number of training samples. Considering that, we believe that our experiments have exploited the
potential of each dataset representation by using a more sophisticated framework and our results are
consistent with the expectations of the remote sensing community about the promising applications
of BigEarthNet on remote sensing tasks [49].



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we addressed the questions what is the performance of current AutoML systems for
satellite data? and what happens when we integrate the knowledge gained from previous research in
the field of remote sensing into AutoML systems?

We demonstrated how automated machine learning can be used to leverage the implementation of
deep learning models for satellite data tasks, achieving results comparable to state-of-the-art research
results. We focused on classification tasks for multi-spectral satellite datasets. We assessed the per-
formance of the original Auto-Keras [11](V-AK) and two different variants of its image classification
task, one initializing the architecture to morph with a model pre-trained on ImageNet (IMG-AK) and
a second one adding models pre-trained on well-known remote sensing datasets (RS-AK) such as
BigEarthNet and UC Merced.

Our experimental results on a varied selection of satellite datasets, show that for three channel
datasets, current AutoML systems can beat state-of-the-art results for land cover and land use clas-
sification tasks. However, the tasks with different spectral channels and regarding more specialized
knowledge still can be improved.

Trying to improve our results and to answer our second question, we analysed the performance of the
two Auto-Keras variants, IMG-AK and RS-AK, initialized with pre-trained blocks. When pre-trained
blocks are used in the model a better representation of the classes is created. The use of remote
sensing pre-trained models helps to improve these results when the channels are different from the
standard true-color RGB. And for all the small datasets, RS-AK got better performance than the IMG-
AK variant. The use of bands different from RGB is a common practice in remote sensing applications
due to the extra spectral information that can be extracted from such bands. A clear example is the
creation of vegetation indexes for different applications; such indexes involve non-RGB channels like
near-infrared. Moreover, the number of samples available for training in remote sensing real-world
problems is usually small. Our remote sensing block achieved the best results in such situations. This
highlights the usefulness of a customized satellite data search space in AutoML systems for real-world
datasets. However, based on our results for the studied 13-channel dataset there is still room for
improvement in such remote sensing representations.

The practical milestone we achieved was to create a new module built on top of the Auto-Keras
framework that can easily be used by the remote sensing community for NAS. This module re-uses
previously trained remote sensing models and currently works without any additional requirement for
3-channel datasets. The 13-channel version is also available but it requires our pre-trained model to
be downloaded and placed into a local directory. For easier deployment, we will work on integrating
this feature in a more seamless manner for the final user.

29
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7.2 Future Work

In future work, we will first aim at improving the transferability of the remote sensing pre-trained
models. The use of transfer learning techniques is most successful when certain conditions are met,
those are regarding the size of the datasets or the similarities between the source and target tasks.
Depends on the degree of similarity and the size of the data target available for training, different
transfer learning strategies can be applied. The source datasets used for this study are all related to
land use or land cover classification. Half of our target datasets are based on the same task as well,
but the other half deals with more specific problems: dam detection, agricultural or vegetation species
classification. Different dataset size are considered. In this case, a more sophisticated transfer learning
method or customized techniques per dataset/task (based on the findings of [63, 64]) integrated into
the AutoML system could lead to a better use the remote sensing data representations. Techniques
for deep meta-learning surveyed in [65] to create a meta-learning model that leverages prior learning
experience (taken from diverse source tasks) to learn new tasks with fewer data can also be a suitable
option in the remote sensing domain.

Furthermore, we will focus on automating other meaningful remote sensing tasks like time series
image classification, regression and anomaly detection helping more remote sensing practitioners to
integrate state-of-the-art machine learning to real-world problems. We can start by adding a the
temporal dimension to the classification problem studied in this thesis and adding Convolutional
LSTM and RNN blocks to the search space.

By making this benchmark publicly available, we enable the community to further experiment with
relevant remote sensing datasets, and expect to expand the use of AutoML for different applications.
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New benchmark EuroSAT
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Figure A.1: Confusion matrix for EuroSAT dataset, results from best performed model. The
performance sets a new benchmark for this dataset.
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Figure A.2: Model structure of best model found for EuroSAT dataset.



Appendix B

Precision and Recall tables

Table B.1: Overall precision on test dataset considering 10 runs of each experiment per dataset,
except for BigEarthNet which had 3 runs. EuroSAT-all was not included in the RS-AK approach
because the 13-channel the model was pre-trained on the same dataset.

Dataset Type Vanilla
Auto-Keras

ImageNet
Auto-Keras

Remote
Sensing
Auto-Keras

(V-AK) (IMG-AK) (RS-AK)

BrazilDam Small-13 84.40±.06 88.10±.08 87.19±02
Coffee scenes Small-3 83.67±.06 82.55±.05 87.62±.00
Cerrado-Savanna scenes Small-3 87.23±.01 85.22±.03 90.28±.02
UCMerced Small-rgb 97.88±.01 94.41±.03 95.74±.02

EuroSAT-all Large-13 94.98±.01 95.00±.01 -
EuroSAT-rgb Large-rgb 98.02±.00 98.20±.00 96.14±.01
So2Sat-rgb Large-rgb 95.11±.00 95.93±.00 85.38±.00
BigEarthNet-rgb Large-rgb 99.07±.00 51.36±.00 48.48±.00

B-1



Precision and Recall tables B-2

Table B.2: Overall recall on test dataset considering 10 runs of each experiment per dataset,
except for BigEarthNet which had 3 runs. EuroSAT-all was not included in the RS-AK approach
because the 13-channel the model was pre-trained on the same dataset.

Dataset Type Vanilla
Auto-Keras

ImageNet
Auto-Keras

Remote
Sensing
Auto-Keras

(V-AK) (IMG-AK) (RS-AK)

BrazilDam Small-13 87.63±.06 80.71±.12 86.34±.02
Coffee scenes Small-3 84.24±.14 90.34±.04 90.92±.01
Cerrado-Savanna scenes Small-3 84.10±.01 82.03±.05 87.71±.02
UCMerced Small-rgb 97.62±.01 63.31±.21 74.31±.16

EuroSAT-all Large-13 94.53±.02 94.57±.01 -
EuroSAT-rgb Large-rgb 97.90±.00 98.08±.00 94.70±.01
So2Sat-rgb Large-rgb 94.06±.01 95.48±.00 67.7±.00
BigEarthNet-rgb Large-rgb 33.99±.00 99.89±.00 99.98±.00



Appendix C

Reproducibility guide

The code and the instructions to reproduce these experiments are being updated at https://github.
com/palaciosnrps/automl-rs-project. Most of the datasets used for this paper are already avail-
able in the Tensorflow-datasets collection, however three more datasets were used (BrazilDam, Coffee
scenes, Cerrado-Savanna scenes). The code for building them as part of the tensorflow-dataset pack-
age can be found in the folder ‘datasets/tf-new-datasets’, only the script ‘load tfds.sh’ needs to be
executed.

The modifications in the initial architecture made for the IMG-AK variant are listed below. The code
for the RS-AK variant is presented in detail in the github repository.

Pretrained initialization using ImageNet
image normalize: True
image augmentation: True
image block type: Resnet
Resnet block pretrained: True
Resnet block version: Resnet50
Classification head block: Global avg
Classification head block Droput:0
optimizer: adam
learning rate: 2e-5

Other settings
The preliminary experiments were executed on a compute cluster using nodes with 2 GPUs GeForce
GTX 1080TI and 2 CPUs of 16 cores.

Name Model Values

Max. features Random Forest [0-1]
Epochs All-CNN [5-100]
Batch size All-CNN [128,256,384,512]
Optimizer All-CNN SGD, RMSprop, Adam
Learning rate opt All-CNN [1e-6 - 1e-2]
Dropout rate CNN2 [0-0.5]

Table C.1: Configuration space for hyperparameters used in preliminary experiments.
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