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Abstract In recent years the availability of parallel computation resources has grown
rapidly. Nevertheless, even for the most widely studied constraint programming prob-
lems such as SAT, solver development and applications remain largely focussed on
sequential rather than parallel approaches. To ease the burden usually associated with
designing, implementing and testing parallel solvers, in this chapter, we demonstrate
how methods from automatic algorithm design can be used to construct effective
parallel portfolio solvers from sequential components. Specifically, we discuss two
prominent approaches for this problem. (I) Parallel portfolio selection involves select-
ing a parallel portfolio consisting of complementary sequential solvers for a specific
instance to be solved (as characterised by cheaply computable instance features).
Applied to a broad set of sequential SAT solvers from SAT competitions, we show
that our generic approach achieves nearly linear speed-up on application instances,
and super-linear speed-ups on combinatorial and random instances. (II) Automatic
construction of parallel portfolios via algorithm configuration involves a parallel
portfolio of algorithm parameter configurations that is optimized for a given set of
instances. Applied to gold medal-winning parameterized SAT solvers, we show that
our approach can produce significantly better-performing SAT solvers than state-of-
the-art parallel solvers constructed by human experts, reducing time-outs by 17%
and running time (PAR10 score) by 13% under competition conditions.
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8.1 Introduction

Given the prevalence of multicore processors and the ready availability of large
compute clusters (e.g., in the cloud), parallel computation continues to grow in
importance. This is particularly true in the vibrant area of propositional satisfiability
(SAT), where over the last decade, parallel solvers have received increasing attention
and shown impressive performance in the influential SAT competitions. Nevertheless,
development and research efforts remain largely focused on sequential rather than
parallel designs; for example, 29 sequential solvers participated in the main track of
the 2016 SAT Competition, compared to 14 parallel solvers.

One key reason for this focus on sequential solvers lies in the complexity of
designing, implementing and testing effective parallel solvers. This involves a host of
challenges, including coordination between threads or processes, efficient communi-
cation strategies for information sharing, and non-determinism due to asynchronous
computation. As a result, it is typically difficult to effectively parallelise a sequential
solver; in most cases, fundamental redesign is required to harness the power of
parallel computation. Methods that can produce effective parallel solvers from one or
more sequential solvers automatically (or with minimal human effort) are therefore
very attractive, even if they cannot generally be expected to reach the performance
levels of a carefully hand-crafted parallel solver design. In this chapter, we give an
overview of several such automatic approaches. We illustrate these for SAT solvers,
in part because SAT is one of the most widely studied NP-hard problems, but also
because these approaches, although not limited to SAT solving, were first developed
in this context.

One of the simplest automatic methods for constructing a parallel solver is to run
multiple sequential solvers independently in parallel on the same input; this is called
a parallel algorithm portfolio. For SAT, this approach has been applied with consider-
able success. A well-known example is ppfolio [70], which, despite the simplicity of
the approach, won several categories of the 2011 SAT Competition; ppfolio runs sev-
eral sequential SAT solvers (including CryptoMiniSat [74], Lingeling [13], clasp [24],
TNM [54], and march hi [33]) as well as one parallel solver (Plingeling [13]) in
parallel, without any communication between the solvers, except that all portfolio
components are terminated as soon as the first solves the given SAT instance. This
works well when the component solvers have complementary strengths. For example,
CryptoMiniSat and Lingeling perform well on application instances, clasp excels on
‘crafted’ instances, and TNM and march hi are particularly effective on randomly
generated SAT instances. The ppfolio portfolio was constructed manually by experts
with deep insights into the performance characteristics of SAT solvers, drawing from
a large set of sequential SAT solvers and using limited computational experiments to
assemble hand-picked components into an effective parallel portfolio.
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In the following, we focus on generic methods that automate the construction of
effective parallel solvers from given sequential components. Such methods can be
seen as instances of programming by optimization [35] and search-based software
engineering [30]. There are several advantages to using automatic methods for
parallel solver construction: substantially reduced need for rare and costly human
expertise; easier exploitation of new component solvers; and easier adaptation to
different sets or distributions of problem instances. Broadly speaking, there are two
automatic methods for parallel solver construction:1

Parallel Portfolio Selection. Parallel portfolio selection focuses on combining
a set of algorithms by means of per-instance algorithm selection or algorithm
schedules. In per-instance algorithm selection [69, 39, 51], we select one solver
from a given set based on features of that instance, with the goal of optimizing
performance on the given instance. Per-instance selection can be generalised to
produce a parallel portfolio of solvers rather than a single solver [56]; this portfolio
consists of sequential solvers that run concurrently on a given problem instance.
Algorithm schedules exploit solver complementarity through a sequence of runs
with associated time budgets. This strategy can be parallelised by concurrently
running multiple sequential schedules, each on a separate processing unit [36].

Automatic Construction of Parallel Portfolios (ACPP). In algorithm configura-
tion [45], the goal is to set the parameters of a given algorithm (e.g., a SAT solver)
to optimise performance for a given set or distribution of problem instances. Auto-
matic configuration can also be used to determine a set of configurations [79, 50]
that jointly perform well when combined into a parallel portfolio [58].

These two approaches address orthogonal problems: the former allows us to
effectively use an existing set of solvers for each instance, while the latter builds an
effective portfolio for a given instance set from complementary components drawn
from a large (often infinite) configuration space of solvers.

Both of these approaches are based on the assumption that different solvers or
solver configurations exhibit sufficient performance complementarity: i.e., they differ
substantially in efficacy relative to each other depending on the problem instance to
be solved. Solver complementarity is known to exist for many NP-hard problems—
notably SAT, where it has been studied by Xu et al. [82]—and is also reflected in the
excellent performance of many portfolio-based solvers [28, 70, 25, 15, 6]. While in
the following we focus on SAT, solver complementarity has also been demonstrated
and exploited for a broad range of other problems, including MAXSAT [4], quantified
Boolean formulas [68, 53], answer set programming [64], constraint satisfaction [67],
AI planning [31, 73], and mixed integer programming [41, 81]; we thus expect that
the techniques we describe could successfully be applied to these problems.

This chapter is organized as follows. We discuss parallel portfolio selection in
Section 8.2 and automatic construction of parallel portfolios from parameterized
solvers in Section 8.3. We conclude the chapter by discussing limitations as well

1 We note that parallel resources can also be used for parallel algorithm configuration [44]; while this
is an important area of study, in this chapter, we focus on methods that produce parallel portfolios
as an output.
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as possible extensions and combinations of the two approaches (Section 8.4). The
material in this chapter builds on and extends previously published work on parallel
portfolio selection [56] and automatic construction of parallel portfolios [58].

8.2 Per-Instance Selection of Parallel Portfolios

Well-known per-instance algorithm selection systems for SAT include SATzilla [65,
80, 83], 3S [49], CSHC [62], and AutoFolio [57]. The algorithm portfolios such
systems construct have been very successful in past SAT competitions, regularly
outperforming the best non-portfolio solvers.2 Algorithm selection systems per-
form particularly well on heterogeneous instance sets, for which no single solver
(or parameter configuration of a solver) performs well overall [71]. For example,
the instance sets used in SAT competitions include problems from packing, argu-
mentation, cryptography, hardware verification, planning, scheduling, and software
verification [12].

In parallel portfolio selection, we select a set of algorithms to run together in
a parallel portfolio. This offers robustness against errors in solver selection, can
reduce dependence on instance features, and provides a simple yet effective way of
exploiting parallel computational resources.

8.2.1 Problem Statement

Formally, the algorithm selection problem is defined as follows:

Definition 1 (Sequential Algortihm Selection). An instance of the per-instance
algorithm selection problem is a 4-tuple 〈I,D ,A ,m〉, where

• I is a set of instances of a problem,
• D is a probability distribution over I,
• A is a set of algorithms for solving instances in I, and
• m : A × I→ R quantifies the performance of algorithm A ∈A on instance π ∈ I.

The objective is to construct an algorithm selector, i.e., a mapping φ : I → A ,
such that the expected performance measure Eπ∼D [m(φ(π),π)] across all instances
is optimised. In this chapter, we will consider a performance measure based on
minimizing running time.

The mapping φ is computed by extracting features f (π)∈ F from a given instance
π that are subsequently used to determine the algorithm to be selected [66, 80, 48];

2 New SAT competition rules limit portfolio systems to two SAT solving engines. Nevertheless,
algorithm selection systems have remained quite successful; e.g., Riss BlackBox [3] won 3 medals
in 2014.
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Fig. 8.1: Sequential algorithm selection

a mapping from this feature space F to algorithms is typically constructed using
machine learning techniques. Instance features for algorithm selection must be cheap
to compute (normally costing at most a few seconds) to avoid taking too much time
away from actually solving the instance. Some important examples include:

• Size features, such as the number of variables and clauses, or their ratio [20];
• CNF graph features based on the variable-clause graph, variable graph [32], or

clause graph;
• Balance features, such as the fraction of unary, binary or ternary clauses [66, 80];
• Proximity to Horn formula features, such as statistics on horn clauses [66];
• Survey propagation features, which estimate variable bias with probabilistic

inference [38];
• Probing features, which are computed by running, e.g., DPLL solvers, stochastic

local search solvers, LP solvers or CDCL solvers for a short amount of time to
obtain insights in their solving behavior [66], such as number of unit propagations
at a given search tree depth;

• Timing features, the time required to compute other features [48].

For a full list of currently used SAT features, we refer the interested reader to Hutter
et al. [48] and to Alfonso et al. [2].

Some performance metrics based on running time penalize solvers for spending
seconds to solve instances that can be solved in milliseconds. (A complex perfor-
mance metric of this type has been used in some past SAT competitions.) In such
cases, evaluating features for every instance can lead to unacceptable penalties. Such
penalties can be mitigated via static presolving schedules [80, 49, 37]. Based on
the observation that many solvers either solve a given instance quickly or not all, a
presolving schedule runs a sequence of complementary solvers, each for a small frac-
tion of the overall running time cutoff. If the given instance is solved in any of these
runs, the remainder of the presolving and algorithm selection workflow is skipped.
Furthermore, the presolving schedule is static, meaning that it does not vary between
instances. Beyond saving the time to compute features, static presolving schedules
also have another benefit: by running more than the finally-selected algorithm, to
some degree we hedge against suboptimal selection outcomes based on instance
features.

Parallel portfolio selection takes this idea further, selecting a whole set of solvers
to run in parallel. Thus, instead of learning a single mapping φ : I→A to select a
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Fig. 8.2: Parallel portfolio selection with presolving on four processing units.

solver, we learn a mapping φk : I→A k to select a portfolio with k components for a
given number of processing units k.

Formally, the parallel portfolio selection problem [56] is defined as follows.

Definition 2 (Parallel Portfolio Selection). An instance of the per-instance parallel
portfolio selection problem is a 5-tuple 〈I,D ,A ,m,k〉, where

• I is a set of instances of a problem,
• D is a probability distribution over I,
• A is a set of algorithms for instances in I,
• k is the number of available processing units, and
• m : A l× I→R quantifies the performance of a portfolio A1:l on an instance π ∈ I

for any given portfolio size l.

The objective is to construct a parallel portfolio selector, i.e., a mapping φk : I→A k,
such that the expected performance measure Eπ∼D [m(φk(π),π)] across all instances
is optimised. If the concurrently-running algorithms in the selected portfolio neither
interact nor communicate, the objective can be written as Eπ∼D [minA∗∈φk(π) m(A∗,π)].

As in the case of selecting a single solver, we can extend parallel portfolio selection
to include a static presolving schedule. Figure 8.2 shows the workflow of a parallel
portfolio selection procedure. First, we run a parallel presolving schedule on all
processing units. Since feature computation is currently still a sequential process, we
run a short presolving schedule on the first unit and then start feature computation if
necessary. On all other units, we presolve until feature computation finishes. We then
select an algorithm for each processing unit.

8.2.2 Parallelization of Sequential Algorithm Selectors

We now discuss a general strategy for parallelizing sequential algorithm selection
methods. This approach is motivated by the availability of a broad range of effective
sequential selection approaches that use an underlying scoring function s : A ×I→R
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to rank the candidate algorithms for a given instance to be solved, such that the
putatively best algorithm receives the lowest score value, the second best the second
lowest score, etc. [52]. The key idea is to use this scoring function to produce
portfolios of algorithms to run in parallel by simply sorting the algorithms in A
based on their scores (breaking ties arbitrarily) and choosing the n best-ranked
algorithms. In the following, we discuss five existing algorithm selection approaches,
their scoring functions and how we can efficiently extend them to parallel portfolio
selection.

8.2.2.1 Performance-based Nearest Neighbor (PNN)

The algorithm selection approach in 3S [62] in its simplest form uses a k-nearest
neighbour approach. For a new instance π with features f(π), it finds the k near-
est training instances Ik(π) in the feature space F and selects the algorithm that
has the best training performance on them. Formally, given a performance met-
ric m : A × I → R, we define mk(A,π) = ∑π ′∈Ik(π) m(A,π ′) and select algorithm
argminA∈A mk(A,π).

To extend this approach to parallel portfolios, we determine the same k nearest
training instances Ik(π) and simply select the n algorithms with the best performance
for Ik. Formally, our scoring function in this case is simply:

sPNN(A,π) = mk(A,π). (8.1)

In terms of complexity, identifying the k nearest instances costs time O(# f · |I| ·
log |I|), with # f denoting the number of used instance features; and averaging the
performance values over the k instances costs time O(k · |A |).

8.2.2.2 Distance-based Nearest Neighbor (DNN)

ME-ASP [64] implements an interface for different machine learning approaches used
in its selection framework, but its released version uses a simple nearest neighbour
approach with neighbourhood size 1, which also worked best empirically in experi-
ments by the authors of ME-ASP [64]. At training time, this approach memorizes the
best algorithm A∗(π ′) on each training instance π ′ ∈ I. For a new instance π , it finds
the nearest training instance π ′ in the feature space and selects the algorithm A∗(π ′)
associated with that instance.

To extend this approach to parallel portfolios, for a new test instance π , we score
each algorithm A by the minimum of the distances between π and any training
instance associated with A. Formally, letting d(f(π), f(π ′)) denote the distance in
feature space between instance π and π ′, we have the following scoring function:

sDNN(A,π) = min{d(f(π), f(π ′)) | π ′ ∈ I∧A∗(π ′) = A}. (8.2)
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If {π ′ ∈ I | A∗(π ′) = A} is empty (because algorithm A was never the best algo-
rithm on an instance) then sDNN(A,π) = ∞ for all instances π . Since we memorize
the best algorithm for each instance in the training phase, the time complexity of this
method is dominated by the cost of computing the distance of each training instance
to the test instance, O(|I| ·# f ), where # f is the number of features.

8.2.2.3 Clustering

The selection part of ISAC [50]3 uses a technique similar to ME-ASP’s distance-based
NN approach, with the difference that it operates on clusters of training instances
instead of on single instances. Specifically, ISAC clusters the training instances,
memorizing the cluster centers Z (in the feature space) and the best algorithms Â(z)
for each cluster z ∈ Z. For a new instance, similar to ME-ASP, it finds the nearest
cluster z in the feature space and selects the algorithm associated with z.

To extend this approach to parallel portfolios, for a new test instance π , we
score each algorithm A by the minimum of the distances between π and any cluster
associated with A. Formally, using d(f(π),z) to denote the distance in feature space
between instance π and cluster center z, we have the following scoring function:

sClu(A,π) = min{d(f(π),z) | z ∈ Z∧ Â(z) = A}. (8.3)

As for DNN, if {z ∈ Z | Â(z) = A} is empty (because algorithm A was not the best
algorithm on any cluster) then sClu(A,π) =∞ for all instances π . The time complexity
is as for DNN, replacing the number of training instances |I| with the number of
clusters |Z|.

8.2.2.4 Regression

The first version of SATzilla [65] used a regression approach, which, for each A ∈A ,
learns a regression model rA : F → R to predict performance on new instances. For a
new instance π with features f(π), it selected the algorithm with the best predicted
performance, i.e., argminA∈A rA(f(π)).

This approach trivially extends to parallel portfolios; we simply use scoring
function

sReg(A,π) = rA(f(π)) (8.4)

to select the A algorithms predicted to perform best. The complexity of model
evaluations differs across models, but it is polynomial for all models in common
use; we denote this polynomial by Preg. Since we need to evaluate one model per
algorithm, the time complexity to select a parallel portfolio is then O(Preg · |A |).

3 In its original version, ISAC is a combination of algorithm configuration and selection, but only
the selection approach was used in later publications.
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8.2.2.5 Pairwise Voting

The most recent SATzilla version [82] uses cost-sensitive random forest classification
to learn for each pair of algorithms A1 6= A2 ∈A which of them performs better for a
given instance; each such classifier cA1,A2 : F →{0,1} votes for A1 or A2 to perform
better, and SATzilla then selects the algorithms with the most votes from all pairwise
comparisons. Formally, let v(A,π) = ∑A′∈A \{A} cA,A′(f(π ′)) denote the sum of votes
algorithm A receives for instance π; then, SATzilla selects argmaxA∈A v(π,A).

To extend this approach to parallel portfolios, we simply select the n algorithms
with the most votes by defining our scoring function to be minimized as:

sVote(A,π) =−v(A,π). (8.5)

As for regression models, the time complexity for evaluating a learned classifier
differs across classifier types, but it is polynomial for all commonly-used types, in
particular random forests; we denote this polynomial function by Pclass. Since we
need to evaluate pairwise classifiers for all algorithm pairs, the time complexity to
select a parallel portfolio is then O(Pclass · |A |2).

8.2.3 Parallel presolving Schedules

As mentioned previously, our approach for parallel portfolios does not only consider
parallel portfolios selected on a per-instance basis, but also uses parallel presolving
schedules (see Figure 8.2). Fortunately, Hoos et al. [36] already proposed an effective
system to compute a static parallel schedule for a given set of instances, called
aspeed. This system is based on an answer set programming (ASP) encoding of
the NP-hard problem of algorithm scheduling, and we only need to add one further
constraint in this encoding to shorten the schedule in the first processing unit to allow
for feature computation. We approximate the required time for feature computation
by the allowed upper bound.

Computationally, it is not a problem that finding the optimal algorithm schedule
is NP-hard, since this step is performed offline during training and not online in the
solving process. Furthermore, the empirical results of Hoos et al. [36] indicated that
the problem of optimizing parallel schedules gets easier with more processing units
such that it also scales well with an increasing number of processing units.

8.2.4 Empirical Study on SAT Benchmarks

To study the performance of our selected parallel portfolios, we show results on
the SAT scenarios of the algorithm selection library (ASlib [17]). ASlib scenarios
define a cross validation split scheme, i.e., the instances are split into 10 equally sized
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Scenario |I| |U | |A | # f # fg ∅t f tc Ref.

SAT11-INDU 300 47 18 115 10 135.3 5000 [82, 48]
SAT11-HAND 296 77 15 115 10 41.2 5000 [82, 48]
SAT11-RAND 600 108 9 115 10 22.0 5000 [82, 48]

SAT12-INDU 1167 209 31 115 10 80.9 1200 [83, 48]
SAT12-HAND 767 229 31 115 10 39.0 1200 [83, 48]
SAT12-RAND 1362 322 31 115 10 9.0 1200 [83, 48]

Table 8.1: The ASlib algorithm selection scenarios for SAT solving – information on
the number of instances |I|, number of unsolvable instances |U | (U ⊂ I), number of
algorithms |A |, number of features # f , number of feature groups # fg, the average
feature computation cost of the used default features ∅t f , and running time cutoff tc.

subsets, and in each iteration, one of the splits is used as a test set and the remaining
ones are used as a training set.

In particular, we study the performance of parallel portfolio selection systems
on two different SAT scenarios. Similar to the SAT competitions, each scenario is
divided into application, crafted (a.k.a. handmade or hard combinatorial) and random
tracks:

1. SAT11*. The SAT11 scenarios consider the SAT solvers, instances and measured
runtimes from the SAT Competition 2011. As features, we used the features from
the SATzilla [83] feature generator.

2. SAT12*. The SAT12 scenarios include all instances used in competitions prior to
the SAT Competition 2012; the solvers are from all tracks of the previous SAT
Competition 2011. The instance features are the same as in the SAT11 scenarios.
The data was used to train SATzilla [83] for the SAT Competition 2012.

Table 8.1 shows the details of the used scenarios. The main differences are that
the SAT11 scenarios have fewer instances and fewer algorithms with a larger running
time budget in comparison to the SAT12 scenarios. Comparing the different tracks,
the time to compute the instance features is largest for industrial instances, followed
by crafted instances and random instances. However, in our experiments we use only
the 54 “base” features that do not include any probing features and are much cheaper
to compute.

Table 8.2 shows the speedup of our parallel portfolio selection approaches based on
PAR10 scores4 depending on the number of processing units k. Since all approaches
have different sequential performance, we use the performance of the sequential
single best solver (SB, i.e., the solver with the best performance across all training
instances) as the baseline for the speedup computation; for example, a speedup of
1.0 corresponds to the same performance as the SB. We applied a paired statistical
test (i.e., a permutation test) with significance level α = 0.05 to mark statistically

4 PAR10 [45] is the penalized average running time, counting each timeout as 10 times the running
time cutoff.
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k 1 2 4 8

SAT11-INDU (VBS: 21.4)

PNN 1.1 1.5 2.6 5.2
DNN 1.4 1.9 2.6 7.8
clustering 1.3 1.9 3.3 5.3
pairwise-voting 2.0 2.4 3.6 4.7
regression 1.3 2.0 3.6 7.8
SB 1.0 1.7 2.9 7.2

SAT11-HAND (VBS: 37.2)

PNN 2.3 2.8 8.4 10.8
DNN 3.2 5.2 9.6 23.9
clustering 1.6 2.9 4.2 7.0
pairwise-voting 3.4 4.8 8.6 10.9
regression 2.9 4.5 8.4 12.5
SB 1.0 1.2 1.9 6.2

SAT11-RAND (VBS: 65.7)

PNN 6.5 9.3 10.7 60.2
DNN 3.8 11.0 42.2 60.5
clustering 6.1 9.5 32.3 42.7
pairwise-voting 4.4 8.3 11.4 60.4
regression 5.9 7.8 8.3 60.3
SB 1.0 5.9 6.8 64.8

k 1 2 4 8

SAT12-INDU (VBS: 15.4)

PNN 1.6 2.3 3.9 5.7
DNN 2.0 2.4 3.4 5.0
clustering 1.3 2.1 2.8 4.6
pairwise-voting 2.4 3.0 3.8 5.4
regression 1.9 2.5 3.5 6.3
SB 1.0 1.5 2.5 4.8

SAT12-HAND (VBS: 34.7)

PNN 2.0 2.8 4.9 7.5
DNN 3.7 6.2 11.4 14.3
clustering 1.8 2.3 3.3 4.6
pairwise-voting 4.2 5.4 9.0 12.4
regression 2.9 4.2 7.0 9.8
SB 1.0 1.0 1.4 1.9

SAT12-RAND (VBS: 12.1)

PNN 1.2 2.1 4.8 7.3
DNN 0.8 1.5 4.7 8.6
clustering 1.3 1.7 2.7 4.9
pairwise-voting 1.1 1.7 2.8 6.4
regression 1.3 1.8 5.2 8.3
SB 1.0 1.5 4.0 6.8

Table 8.2: Speedup on PAR10 (wallclock) in comparison to SB with one processing
unit (k = 1). Entries for which the number of processing units exceed the number of
candidate algorithms are marked ‘NA’. Entries shown in bold-face are statistically
indistinguishable from the best speedups obtained for the respective scenario and
number of processing units (according to a permutation test with 100 000 permuta-
tions and α = 0.05).

indistinguishable performance from the best performing system for each number of
processing units. We note that algorithm selection (k = 1) already performs better
than the SB in all settings except DNN on SAT12-RAND.

Since we do not consider clause sharing in our experiments, the maximal possible
speedup is limited by the virtual best solver (VBS, i.e., running the best solver for
each instance, or running all available solvers in parallel). The performance of the
VBS depends on the complementarity of the component solvers. The set of all SAT
solvers in a SAT competition tends to be quite complementary [82], but since this
complementarity is not always the same across different instance sets and available
algorithms, the maximal speedup that can be achieved differs between the scenarios.
The extremes in our experiments were SAT11-RAND with a maximal speedup factor
of 65.7 using 8 cores and SAT12-RAND with “only” a speedup factor of 12.1 using 8
cores.

Overall, the speedups were quite large (sometimes superlinear, particularly for the
random and crafted instances) and there was no clear winner amongst the different
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approaches. On the industrial and crafted scenarios, the pairwise-voting approaches
from SATzilla [83] and DNN performed consistently well. Surprisingly, in contrast,
on the random instances pairwise-voting had amongst the worst performance, but
simply selecting statically the n-best performing solvers (SB) from the training
instances performed well.5 We note that the performance with 8 processing units on
SAT11-RAND nearly saturates, since we select 8 out of the 9 available solvers.

8.2.5 Other Parallel Portfolio Selection Approaches

A relevant medal-winning system in the SAT Competition 2013 was the parallel
portfolio selector CSHCpar [63], which is based on the algorithm selection of cost-
sensitive hierarchical clustering (CSHC [62]). It always runs, independently and
in parallel, the parallel SAT solver Plingeling with 4 threads, the sequential SAT
solver CCASat, and three solvers that are selected on a per-instance basis. These
per-instance solvers are selected by three models that are trained on application,
crafted and random SAT instances, respectively. While CSHCpar is particularly
designed for the SAT Competition with its 8 available cores, it does not provide
an obvious way of adjusting the number of processing units and does not support
use cases without explicitly identified, distinct instance classes (such as industrial,
crafted and random).

The extension of 3S [49] to parallel portfolio selection, dubbed 3Spar [61], selects
a parallel portfolio using k-NN to find the k most similar instances in instance
feature space. Using integer linear programming (ILP), 3Spar constructs a static
presolving schedule offline and a per-instance parallel algorithm schedule online,
based on training data of the k most similar instances. The ILP problem that needs
to be solved for every instance is NP-hard and its time complexity exponentially
grows with the number of parallel processing units and number of available solvers.
Unlike our approach, during the feature computation phase, 3Spar runs in a purely
sequential manner. Since feature computation can require a considerable amount
of time (e.g., more than 100 seconds on industrial SAT instances), this can leave
important performance potential untapped.

EISAC [60] clusters the training instances in the feature space and provides a
method for selecting parallel portfolios for each cluster of instances by searching over
all
(|A |

k

)
combinations of |A | algorithms and k processing units. As this approach

quickly becomes infeasible for growing |A | and k, Yuri Malitsky, author of EISAC,
recommends to limit its use to at most 4 processing units (README file6).

The aspeed system [36] solves a similar scheduling problem as 3Spar, but gen-
erates a static algorithm schedule during an off-line training phase, thus avoiding
overhead in the solving phase. Unlike 3Spar, aspeed does not support including

5 We note that the solvers in SAT*-RAND are randomized but the scenarios in ASlib do not reflect
this; thus, these performance estimates are probably optimistic [19].
6 https://sites.google.com/site/yurimalitsky/downloads
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parallel solvers in the algorithm schedule, and the algorithm schedule is static and
not selected on a per-instance basis. For this reason, aspeed is not directly applicable
to per-instance selection of parallel portfolios; however, our approach uses it to
effectively compute parallel presolving schedules.

RSR-WG [84] combines a case-based-reasoning approach from CP-Hydra [67]
with greedy construction of parallel portfolio schedules via GASS [75] for CSPs.
Since the schedules are constructed on a per-instance basis, RSR-WG relies on
instance features. In the first step, a schedule is greedily constructed to maximize
the number of instances solved within a given cutoff time, and in the second step,
the components of the schedule are distributed over the available processing units.
In contrast to our approach, RSR-WG optimizes the number of timeouts and is
not directly applicable to arbitrary performance metrics. Since the schedules are
optimized online on a per-instance base, RSR-WG has to solve an NP-hard problem
for each instance, which is done heuristically. Finally, there are also different possible
extensions of algorithm schedules to per-instance schedules [49, 55], which aim to
select an algorithm schedule on an instance-by-instance basis.

8.3 Automatic Construction of Parallel Portfolios from
Parameterized Solvers

So far, we have assumed that we are given a set of solvers for a given problem, such as
SAT, and that for a problem instance to be solved, we select a subset of these solvers to
be run as a parallel portfolio. Now, we focus on a different approach for constructing
parallel portfolios, starting from the observation that solvers for computationally
challenging problems typically expose parameters, whose settings can have a very
substantial impact on performance. For SAT solvers, these parameters control key
aspects of the underlying search process (e.g., the variable selection mechanism,
clause deletion policy and restart frequency); by choosing their values specifically
for a given instance set, performance can often be increased by orders of magnitude
over that obtained using default parameter settings [40, 45, 43, 23, 47]. The task
of automatically determining parameter settings such that performance on a given
instance set is optimised is known as algorithm configuration [45].

Based on the success of algorithm selection and configuration systems, we con-
jecture that there is neither a single best algorithm nor a single best parameter
configuration for all possible instances. Therefore, by combining complementary
parameter configurations into a parallel portfolio solver more robust behaviour can
be achieved on a large variety of instances. In fact, many parallel SAT solvers al-
ready exploit this idea by using different parameter settings in different threads,
e.g., ManySAT [28], clasp [25] or Plingeling [16]. However, these portfolios are
hand-designed, which requires a tedious, error-prone and time-consuming manual
parameter optimization process.

Combining the ideas of parallel portfolios of different parameter settings and
automatic algorithm configuration leads to our approach of automatic construction
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Algorithm Configuration Scenario

Configuration
Space Θ

Algorithm
Configurator

Target
Algorithm A Instances I

Call A(θ)

on π ∈ I

Solves

Return performance m(A(θ),π)

Fig. 8.3: Algorithm configuration workflow.

of parallel portfolios (ACPP). In its simplest form, the only required input is a single
parameterized sequential SAT solver. Using an automatic algorithm configuration
procedure, we determine a set of complementary parameter configurations and run
them in parallel to obtain a robust and efficient parallel portfolio solver.

8.3.1 Problem Statement

The traditional algorithm configuration task consists of determining a parameter
configuration with good performance on a set of instances from the configuration
space of a given algorithm. Formally, this gives rise to the following problem.

Definition 3 (Algorithm Configuration; AC). An instance of the algorithm config-
uration problem is a 6-tuple (A,Θ , I,D ,κ,m) where:

• A is a parameterized target algorithm,
• Θ is the parameter configuration space of A,
• I is a set of instances of a problem,
• D is a probability distribution over I,
• κ ∈ R+ is a cutoff time, after which each run of A will be terminated if still

running, and
• m : Θ × I → R quantifies the performance of configuration θ ∈Θ on instance

π ∈ I w.r.t. a given cutoff time κ .

The objective is to determine a configuration θ ∗ ∈Θ that achieves near-optimal
performance across instances π ∈ I drawn from D . As in the previous section, we
consider a performance measure based on running time, which we aim to minimise;
therefore, we aim to determine θ ∗ ∈ argminθ∈Θ Eπ∼D [m(θ ,π)].

The workflow of algorithm configuration is visualized in Figure 8.3. An AC proce-
dure iteratively determines algorithm runs to be performed by selecting appropriate
pairs of configurations 〈θ and instances π〉, executing the corresponding algorithm
runs, and observing their performance measurements. Finally, after a given configu-
ration budget—usually a given amount of computing time—has been exhausted, the
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AC procedure returns its incumbent parameter configuration θ̂ at that time, i.e., its
best known configuration.

For several reasons, AC is a challenging problem. First, the only mode of inter-
action between the AC procedure and the target algorithm A is to run A on some
instances and observe its performance. Thus, A is treated as a black box, and no
specific knowledge about its inner workings can be directly exploited. As a result,
automatic algorithm configuration procedures are broadly applicable, but have to
work effectively with very limited information.

Second, the configuration space of many solvers is large and complex. These
spaces typically involve parameters of different types, such as categorical and contin-
uous parameters, and often exhibit structure in the form of conditional dependencies
between parameters or forbidden parameter configurations. For example, the config-
uration space of Lingeling [15] in the configurable SAT solver challenge [47] had
241 parameters giving rise to 10974 possible parameter configurations.

Third, particularly when solving NP-hard problems (such as SAT), even a single
evaluation of a target algorithm configuration on one problem instance can be costly
in terms of running time. Therefore, AC procedures typically can only evaluate
a small number of pairs 〈θ ,π〉 in a high-dimensional search space—often, only
hundreds (and sometimes, thousands) of evaluations are possible even within typical
configuration budgets of 12–48 hours of computing time.

Nevertheless, in recent years, algorithm configuration systems have been able
to substantially improve the performance of SAT solvers on many types of SAT in-
stances [47]. Well-known algorithm configuration systems include (i) ParamILS [46,
45], which performs iterated local search in the configuration space; (ii) GGA [5, 4],
which is based on a genetic algorithm; (iii) irace [59], which uses F-race [9] for
racing parameter configurations against each other; and (iv) SMAC [43, 42], which
makes use of an extension of Bayesian optimization [18] to handle potentially hetero-
geneous sets of problem instances. For some more details on the mechanisms used
in these configuration procedures, we refer the interested reader to the report on the
Configurable SAT Solver Challenge [47].

Our extension of algorithm configuration to parallel problem solving is called
parallel portfolio construction. The task consists of finding a parallel portfolio θ1:k of
k parameter configurations whose performance (e.g., wallclock time) is evaluated
by the first component of θ1:k that solves a given instance π . We formally define the
problem as follows:

Definition 4 (Parallel Portfolio Construction). An instance of the parallel portfo-
lio construction problem is a 7-tuple (A,Θ , I,D ,κ,m,k) where:

• A is a parameterized target algorithm,
• Θ is the parameter configuration space of A,
• I is a set of problem instances,
• D is a probability distribution over I,
• κ ∈ R+ is a cutoff time, after which each run of A will be terminated if still

running,
• k is the number of available processing units, and
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• m : Θ l × I→ R quantifies the performance of a portfolio θ1:l ∈Θ l on instance
π ∈ I w.r.t. a given cutoff time κ for any given portfolio size l.

The objective is to construct a parallel portfolio θ ∗1:k ∈Θ k from the k-fold con-
figuration space Θ k that optimizes the expected performance across instances π ∈ I
drawn from D ; in the case of minimising a performance metric based on running
time, as considered here, we aim to find

θ
∗
1:k ∈ argmin

θ1:k∈Θ k
Eπ∼D [m(θ1:k,π)] .

If the configurations in the portfolio θ ∗1:k are run independently, without any
interaction (e.g., in the form of clause sharing), and the overhead from running
configurations in parallel is negligible, this is identical to identifying

θ
∗
1:k ∈ argmin

θ1:k∈Θ k
Eπ∼D

[
min

i∈{1...k}
m(θi,π)

]
.

Compared to algorithm configuration, parallel portfolio construction involves
even larger configuration spaces. For a portfolio with k parameter configurations, an
algorithm configuration procedure has to search in a space induced by k times the
number of parameters of A, and therefore of total size |Θ |k.

8.3.2 Automatic Construction of Parallel Portfolios (ACPP)

In the following, we explain two methods to address automatic construction of parallel
portfolio (ACPP). Since this problem is an extension of the algorithm configuration
problem, we consequently build upon an existing algorithm configuration procedure
and extend it for ACPP.

8.3.2.1 Multiplying Configuration Space: GLOBAL.

Algorithm 1 shows the most straightforward method for using algorithm configu-
ration for ACPP. The GLOBAL approach consists of using algorithm configuration
procedure AC on Θ k, the k-fold Cartesian product of the configuration space Θ .7

The remaining parts of the procedure follow the standard approach for algorithm
configuration: instead of running AC only once with configuration budget t, we
perform n runs of AC with a budget of t/n each (Lines 1 and 2). Each of these
AC runs ultimately produces one portfolio of size k. Performing these n runs in
parallel reduces the wallclock time required for the overall configuration process by
leveraging parallel computation. Of the n portfolios obtained from these independent

7 The product of two configuration spaces X and Y is defined as {x||y | x ∈ X ,y ∈ Y}, with x||y
denoting the concatenation (rather than nesting) of tuples.
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Algorithm 1: Portfolio Configuration Procedure GLOBAL

Input :parametric algorithm with configuration space Θ ; desired number k of component
solvers; instance set I; performance metric m; configuration procedure AC; number
n of independent configurator runs; total configuration time t

Output :parallel portfolio solver with portfolio θ̂1:k

1 for j := 1 . . .n do
2 obtain portfolio θ

( j)
1:k by running AC for time t/n on configuration space Θ k on I using m

3 choose θ̂1:k ∈ argmin
θ
( j)
1:k | j∈{1...n}

∑π∈I m(θ
( j)
1:k ,π) that achieved best performance on I

according to m
4 return θ̂1:k

Algorithm 2: Portfolio Configuration Procedure PARHYDRA

Input :parametric algorithm with configuration space Θ ; desired number k of component
solvers; instance set I; performance metric m; configurator AC; number n of
independent configurator runs; total configuration time t

Output :parallel portfolio solver with portfolio θ̂1:k

1 let θinit be the default configuration in Θ

2 for i := 1 . . .k do
3 for j := 1 . . .n do
4 obtain portfolio θ

( j)
1:i := θ̂1:i−1||θ ( j) by running AC on configuration space

{θ̂1:i−1}×{(θ) | θ ∈Θ} and initial incumbent θ̂1:i−1||θinit on I using m for time
t/(k ·n)

5 let θ̂1:i ∈ argmin
θ
( j)
1:i | j∈{1...n}

∑π∈I m(θ
( j)
1:i ,π) be the portfolio which achieved best

performance on I according to m
6 let θinit ∈ argmin

θ ( j)| j∈{1...n}∑π∈I m(θ̂1:i||θ ( j),π) be the configuration that has the largest

marginal contribution to θ̂1:i

7 return θ̂1:k

runs, we select the one that performed best on average on the given instance set I
(Lines 3 and 4).

In principle, this method can find the best parallel portfolio, but the configuration
space grows exponentially with portfolio size k to a size of |Θ |k , which can become
problematic even for small k.

8.3.2.2 Iterative Approach: PARHYDRA.

To avoid the complexity of GLOBAL, the iterative, greedy ACPP procedure outlined
in Algorithm 2 can be used. Inspired by Hydra [79, 81], PARHYDRA determines one
parameter configuration in each iteration and adds it to the final portfolio. The con-
figuration to be added is determined such that it best complements the configurations
that have previously been added to the portfolio.
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In detail, our PARHYDRA approach runs for k iterations (Line 2) to construct a port-
folio with k components. In each iteration, we fix one further parameter configuration
of our final portfolio. As before, we perform n AC runs in each PARHYDRA-iteration
i (Lines 3–5). The configuration space consists of the Cartesian product of the (fixed)
portfolio θ̂1:i−1 constructed in the previous i−1 iterations with the full configuration
space Θ . Each AC run effectively determines a configuration to be added to the
portfolio such that the overall portfolio performance is optimised. As configuration
budget, each AC run is allocated t/(k ·n), where t is the overall budget.

An extension in comparison to Hydra [79, 81] is that the initial parameter con-
figuration θinit for the search is adapted in each iteration. For the first iteration, we
simply use the default parameter configuration (Line 1)—if no default parameter
configuration is known, we could simply use the mean parameter value from the
parameter domain ranges or randomly sample an initial configuration. At the end
of each iteration, we determine which returned parameter configuration θ ( j) from
the last n AC runs ( j ∈ {1, . . . ,n}) would improve the current portfolio θ̂1:i the most
(Line 6). This configuration is used to initialize the search in the next iteration. This
avoids discarding all of each iteration’s unselected configurations, keeping at least
one to guide the search in future iterations.8

8.3.2.3 Comparing GLOBAL and PARHYDRA

On the one hand, in comparison to GLOBAL, PARHYDRA has the advantage that
it only needs to search in the original space Θ in each iteration (in contrast to the
exponentially larger |Θ |k). On the other hand, PARHYDRA has k times less time
per iteration, and the configuration tasks may get harder in each iteration because
less configurations will be complementary for growing portfolio size. It is also not
guaranteed that PARHYDRA will find the optimal portfolio because of its greedy
nature; for example, if our instance set I would consist of two homogeneous subsets
I1∪ I2 = I, GLOBAL can in principle directly find a well-performing configuration
for each of the two subsets. In contrast, PARHYDRA will optimize the configuration
on the entire instance set I in the first iteration and can only focus on one of the
two subsets in the second iteration. Therefore, PARHYDRA could return suboptimal
solutions.

We note, however, that this suboptimality is bounded, since PARHYDRA’s portfolio
performance is a submodular set function (the effect of adding a further parameter
configuration to a smaller portfolio of an early iteration will be larger than adding
it to a larger portfolio of a later iteration). This property can be exploited to derive
bounds for the performance of Hydra-like approaches [73], such as PARHYDRA.

8 Note that this strategy assumes multiple configuration runs per iteration (e.g., n independent runs
of a sequential algorithm configuration procedure) and would not directly be applicable if we used a
parallel algorithm configuration procedure [44] that only returns a single configuration. Whether
one can gain more from using parallel algorithm configuration or from having a good initializiation
strategy is an open question.
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Lingeling ala (application) clasp (hard combinatorial)

Solver Set #TOs PAR10 PAR1 #TOs PAR10 PAR1

DEFAULT-SP 72 2317 373 137 4180 481
CONFIGURED-SP 68 2204 368 140 4253 473

DEFAULT-MP(8)-CS 64 2073 345 96 2950 358
DEFAULT-MP(8)+CS 53∗ 1730∗ 299∗ 90∗ 2763∗ 333∗

GLOBAL-MP(8) 52∗ 1702∗ 298∗ 98 3011 365
PARHYDRA-MP(8) 55∗† 1788∗† 303∗† 96∗† 2945∗† 353∗†

Table 8.3: Running time statistics on the test set from application and hard combi-
natorial SAT instances achieved by single-processor (SP) and 8-processor (MP8)
versions. DEFAULT-MP(8) was Plingeling in case of Lingeling and clasp -t 8
for clasp where we show results with (+CS) and without clause sharing (-CS). The
performance of a solver is shown in boldface if it was not significantly different from
the best performance, and is marked with an asterisk (∗) if it was not significantly
worse than DEFAULT-MP(8)+CS (according to a permutation test with 100 000 per-
mutations and significance level α = 0.05). The best ACPP portfolio on the training
set is marked with a dagger (†).

8.3.2.4 Empirical Study on SAT 2012 Challenge

We studied the effectiveness of our two proposed ACPP methods, i.e., GLOBAL
and PARHYDRA, on two award-winning solvers from the 2012 SAT Challenge: Lin-
geling [14] and clasp [25]. To this end, we compared the default sequential solver
settings (DEFAULT-SP), the configured sequential solvers (CONFIGURED-SP), the
default parallel counterparts of both solvers (i.e., Plingeling for Lingeling) without
(DEFAULT-MP(8)-CS) and with clause sharing (DEFAULT-MP(8)+CS) and finally,
with GLOBAL and PARHYDRA. As instance sets, we used the instances from the
application track and hard combinatorial track of the 2012 SAT Challenge for Lin-
geling and clasp, respectively. Both instance sets were split into a training set for
configuration and test set to obtain an unbiased performance estimate. The parallel
solvers used eight processing units (k = 8). We used SMAC [43, 42], a state-of-the-art
algorithm configuration procedure, to minimise penalized average running time, and
every configuration approach (i.e., CONFIGURED-SP, GLOBAL and PARHYDRA)
was given the same configuration budget t.

Table 8.3 summarizes our results. First of all, we note that algorithm configuration
on heterogeneous instance sets, such as the instance sets from SAT competitions and
challenges, is challenging, because various instances are solved best by potentially
very different configurations, which can pull the search process into different direc-
tions. Therefore, the configured sequential version (CONFIGURED-SP) of Lingeling
performed only slightly better than the default, and the performance of clasp even
slightly deteriorated due to overtuning [45], i.e., it showed a performance improve-
ment on the training instances which did not generalize to test instances. The default
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Fig. 8.4: Conditional configuration space involving multiple solvers.

parallel versions of Lingeling and clasp performed consistently better than their
sequential counterparts. Enabling clause sharing (CS) for both solvers improved their
performance even further.

Our automatically constructed parallel portfolio solvers performed well in com-
parison to the manually hand-crafted parallel solvers. To verify whether the observed
performance differences were statistically significant, we used a permutation test
to compare the best-performing approach against all others. This analysis revealed
that the portfolios manually built by human experts did not perform significantly
better than those automatically constructed using PARHYDRA. We emphasize that
our ACPP portfolios do not use any clause sharing strategies, and the configuration
process was initialised with the parameter setting of DEFAULT-SP. Therefore, our
methods had no hint how to construct a parallel solver. Nevertheless, our automatic
approach produced parallel solvers performing as well as those manually designed
by experts within a few days of computing time on a small cluster.

8.3.2.5 ACPP with Multiple Solvers

Even though it is appealing to automatically generate a parallel solver from a sequen-
tial solver, our ACPP methods are not limited to a single solver as an input. Using
more than one solver often increases the opportunity for leveraging performance com-
plementarities, since SAT solvers often implement complementary strategies [82]. To
construct a parallel portfolio solver from a set of parameterized solvers as an input
using our ACPP methods, we only need to adapt our configuration space Θ . Follow-
ing the idea of Thornton et al [76], we introduce a top-level parameter that indicates
which solver to use. The parameters of the individual solvers are then conditionally
dependent on this new selector parameter, leading to structured configuration spaces
as illustrated in Figure 8.4.
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clasp variant #TOs PAR10 PAR1

No Clause Sharing 96 2945 353
Default Clause Sharing 90 2777 347
Configured Clause Sharing 88 2722 346

Table 8.4: Comparison of different clause sharing strategies on top of our constructed
PARHYDRA-MP(8) portfolio with clasp on the test instances of the hard combinato-
rial set.

8.3.3 Automatic Construction of Parallel Portfolios from Parallel
Parameterized Solvers

The ACPP methods presented thus far always assumed that one or more sequential
SAT solvers are given. However, over the course of the last decade, many parallel SAT
solvers have been developed (e.g., [28, 72, 25, 8, 16]). On the one hand, these solvers
often expose performance-critical parameters (e.g., controlling clause sharing); on
the other hand, these solvers can also be used in our ACPP methods as components to
include in a parallel portfolio. In the following, we discuss both approaches to further
improve the performance of parallel SAT solvers by using algorithm configuration.

8.3.3.1 Configuration of Clause Sharing

Clause sharing is an important strategy to reduce redundant work in parallel SAT
solving and hence, to improve the performance of parallel SAT solvers. However,
clause sharing also has many open implementation options, e.g., communication
topology, how often to share learned clauses, which learned clauses to share, which
clauses to integrate in the clause database, etc. The best configuration of these
parameters can have crucial impact on performance and depends on the nature of the
instances to be solved. Therefore, we can use algorithm configuration to optimise the
settings of the parameters that control clause sharing.

The results shown in Table 8.4 have been obtained following the same experi-
mental setup as already described in Section 8.3.2.4 for clasp on hard-combinatorial
instances. As a starting point, we used the parallel clasp portfolio found by
PARHYDRA—without using any clause sharing. Adding the default clause shar-
ing policy on top of the PARHYDRA portfolio lead to solving 6 more instances, which
is equivalent to the performance of DEFAULT-MP(8)+CS (see Table 8.3). However,
clasp allows adjustment of the clause sharing distribution and integration policies.
Using automatic algorithm configuration to optimize these policies, the clasp port-
folio was able to solve two additional instances. We note that it is suboptimal to
first configure a parallel portfolio without any communication between component
solvers, and to then add clause sharing to the portfolio thus obtained. In principle,
configuring the portfolio and the clause sharing mechanism jointly should result in
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Algorithm 3: Portfolio Configuration Procedure PARHYDRAb

Input : set of parametric solvers A ∈A with configuration spaces ΘA; desired number k of
component solvers; number b of component solvers simultaneously configured per
iteration; instance set I; performance metric m; configurator AC; number n of
independent configurator runs; total configuration time t

Output :parallel portfolio solver with portfolio θ̂1:k

1 i := 1
2 let θinit be a portfolio with b times the default configuration in Θ of a default solver A ∈A .
3 while i < k do
4 i′ := i+b−1
5 for j := 1..n do
6 obtain portfolio θ

( j)
1:i′ := θ̂1:i−1||θ ( j)

i:i′ by running AC for time t ·b/(k ·n) on
configuration space {θ̂1:i−1}× (∏b⋃

A∈A {(θ) | θ ∈ΘA}) and initial incumbent
θ̂1:i−1||θinit on I using m

7 let θ̂1:i′ ∈ argmin
θ
( j)
1:i′ | j∈{1...n}

∑π∈I m(θ
( j)
1:i′ , I) be the portfolio that achieved best

performance on I according to m
8 let θinit ∈ argmin

θ
( j)
i:i′ | j∈{1...n}

∑π∈I m(θ̂1:i′ ||θ
( j)
i:i′ ,π) be the portfolio that has the largest

marginal contribution to θ̂1:i′

9 i := i+b

10 return θ̂1:k

better performance; therefore, the results presented here only give a lower bound on
what can be achieved.

8.3.3.2 Portfolio Construction using Parallel Solvers

Another way of using existing parallel solvers is to allow them to be part of an
automated parallel portfolio solver. Similar to ppfolio, we could run a parallel solver,
such as Plingeling, in some execution threads and some sequential solvers on others.
To do this, we can use the trick of adding a top-level parameter to decide between
different sequential and parallel solvers (see Section 8.3.2.5). If a parallel solver
gets selected l times by top-level parameters of each portfolio component, we merge
these components into one call of the parallel solver with l threads. By using this
approach, we can directly apply the GLOBAL methods to determine a well-performing
automatically constructed parallel portfolio including other parallel SAT solvers.

Unfortunately, PARHYDRA cannot be directly applied to this setting because its
reliance on a greedy algorithm makes it suboptimal. For example, if the portfolio θ1:i
already includes a configuration of sequential solver As in iteration i, PARHYDRA will
never add the parallel counterpart Ap of As, because in each iteration, PARHYDRA
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can only pick Ap for one thread, which is outperformed by As.9 As a concrete
example, let us consider the highly parameterized sequential solver Lingeling and its
non-parameterized parallel counterpart, Plingeling. After a configuration of Lingeling
was added to the portfolio, PARHYDRA never added Plingeling with a single thread
in later iterations, because the optimized Lingeling outperformed Plingeling.

To permit a trade-off between the problems of GLOBAL (exponential increase
of the search space) and PARHYDRA (suboptimality in portfolio construction), we
propose an extension of PARHYDRA, called PARHYDRAb, which adds not just one,
but b configurations to the portfolio in each iteration. Algorithm 3 shows an outline of
the PARHYDRAb approach. The main idea is the same as of PARHYDRA, but we use
an additional variable i′ to keep track of the parameter configurations added in each
iteration. For example, if we have already fixed a portfolio θ1:4 with 4 components and
want to add two configurations (b= 2) per iteration, we are in iteration i= 5, in which
we will determine the fifth and sixth configuration θi=5:6=5+2−1=i′ (Lines 4 and 6) to
be added to θ1:i−1=4. Furthermore, the starting point for the configuration process
in the following iteration is now obtained by adding a portfolio of size i′− i+1 = b
(Line 8) to θ1:4 from the previous iteration. Other than that, PARHYDRAb is the same
as PARHYDRA.

8.3.3.3 Empirical Study on 2012 SAT Challenge

Again, we demonstrate the effect of our ACPP methods using parallel SAT solvers on
the industrial instance set of the 2012 SAT Challenge. The winning parallel solver in
this challenge was pfolioUZK [78], a hand-designed portfolio consisting of sequential
and parallel portfolios. In particular, pfolioUZK uses satUZK, glucose, contrasat and
Plingeling with 4 threads, leaving one of the 8 available CPU cores unused; however,
the set of solvers considered during the design of pfolioUZK involved additional
solvers that do not appear in the final design. To fairly compare with this manually
constructed portfolio, we used the same underlying set of solvers as the starting point
for our ACPP methods:

• contrasat [26]: 15 parameters;
• glucose 2.0 [7]: 10 parameters for satelite preprocessing and 6 for glucose;
• Lingeling 587 [14]: 117 parameters;
• Plingeling 587 [14]: 0 parameters;
• march hi 2009 [33]: 0 parameters;
• MPhaseSAT M [21]: 0 parameters;
• satUZK [27]: 1 parameter;
• sparrow2011 [77]: 0 parameters10; and

9 In principle, one could imagine grouping As and Ap to effectively see them as the same solver,
allowing PARHYDRA to add Ap and join this with As into a 2-thread version of Ap. However, this
kind of grouping is not supported by PARHYDRA.
10 Although sparrow2011 should be parameterized [77], the source code and binary provided with
pfolioUZK does not expose any parameters.
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Solver #TOs PAR10 PAR1

Single threaded solvers: DEFAULT-SP
glucose-2.1 55 1778 293

Parallel solvers: DEFAULT-MP(8)
Plingeling(ala)+CS 53 1730 299
pfolioUZK-MP8+CS 35 1168 223

ACPP solvers including a parallel solver
PARHYDRA-MP(8) 34 1143 225
PARHYDRA2-MP(8) 32 1082 218
PARHYDRA4-MP(8) 29 992 209
GLOBAL-MP(8) 35 1172 227

Table 8.5: Comparison of parallel solvers with 8 processors on the test set of appli-
cation. The performance of a solver is shown in boldface if its performance was at
least as good as that of any other solver, up to statistically insignificant differences
(according to a permutation test with 100 000 permutations at significance level
α = 0.05).

• TNM [54]: 0 parameters.

We note that of these, Plingeling is the only parallel SAT solver and the only one to
make use of clause sharing.

Table 8.5 shows the performance of glucose-2.1(which won the main application
SAT+UNSAT track of the 2012 SAT Challenge), Plingeling(ala) with clause sharing,
pfolioUZK (which won the parallel application SAT+UNSAT track) and our ACPP
methods. Surprisingly, on 8 cores, Plingeling performed only slightly better than
glucose. However, pfolioUZK solved 18 instances more than Plingeling within
the cutoff time used in the competition. By applying GLOBAL (i.e., PARHYDRAb
with b = k = 8), we obtained a parallel portfolio performing as well as pfolioUZK.
PARHYDRAb with b = 4 performed statistically better than pfolioUZK by solving 6
instances more.

Looking at the performance achieved by PARHYDRAb for different values of b
reveals that b is an important parameter of our method. One might be concerned
that PARHYDRA4-MP(8) performed as well as it did as a result of over-tuning on
b. We note, however, that PARHYDRA4-MP(8) also performed best on the training
instances used for configuration, which are different from the test instance results
shown in Table 8.5.

8.4 Conclusions and Future Work

In this chapter, we presented two generic approaches for automatically generating
parallel portfolio solvers for computationally challenging problems from one or more
sequential solvers. While our focus was on SAT, the techniques we discussed are in
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no way specific to this particularly well-studied constraint programming problem,
and can be expected to give rise to similarly strong performance when applied to a
broad range of CP problems, and, indeed, to many other NP-hard problems. We note
that there are three fundamental assumptions that need to be satisfied in order for
these generic parallelisation methods to scale well with the number of processing
units k.

1. Performance complementarity: within a given set A of solvers that are avail-
able (as in algorithm selection) or within the parameter space of a single solver
(as in algorithm configuration), there is sufficient performance complementarity.
In algorithm selection with deterministic algorithms, algorithm selectors cannot
perform better than the virtual best solver (VBS) of the given algorithm portfolio.
Therefore, a parallel portfolio selector can scale at most to a number of processing
units that equals the number of candidate solvers in A . Unfortunately, this upper
bound will usually not be attained, because in most sets A , some solvers will
have little or no contribution to the virtual best solver [82].
In parallel portfolio configuration, the given parameter space Θ is often infinite;
still, in our experiments, little or no performance improvement was obtained
beyond a modest number of portfolio components (e.g., using PARHYDRA, the
performance of our automatically constructed parallel portfolio based on Lingeling
improved only for the first 4 portfolio components – for details, see [58]). This
could indicate that our current approaches are too weak to find better and larger
portfolios (since the complexity of the search problems increases with the size
of the portfolio), or that such portfolios simply do not exist for the instance sets
we considered, and that the smaller portfolios we found basically exhaust the
complementarity of the parameter space. Which of these two explanations holds
is an interesting subject for future research.

2. Heterogeneity of instances: the given instance set I is sufficiently heterogeneous
given a set of solvers or parameter configurations. If the instance set is perfectly
homogeneous, a single solver or configuration is dominant on all instances, and a
parallel portfolio (without communication between component solvers) cannot
perform better. In contrast, if each instance in I requires a different solver or
configuration to be solved most effectively, our generic parallel portfolio construc-
tion methods could in principle scale to a number of processing units equal to
the size of the instance set. Therefore, in practice, the performance potential of
these approaches depends on characteristics of the set or distribution of problem
instances of interest in a given application context—the more diverse that set, the
larger the potential for large speed-ups due to parallelisation. How to assess the
heterogeneity of an instance set in an effective yet computationally cheap way is
an open problem.

3. Minimal interference between runs: when sequential solvers are run concur-
rently, there is only minimal impact on performance due to detrimental inter-
ference. If each solver runs on a separate system, this assumption can easily be
guaranteed, and because neither of our approaches requires much communication
between portfolio component solvers, this scenario is quite feasible.
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However, since modern machines are equipped with multi-core CPUs, it is gen-
erally desirable to run more than one solver on a single machine, such that the
component solvers share resources, such as RAM and CPU cache. Since solver
performance can substantially depend on the available CPU cache [1], running
several solvers on multiple CPU cores with shared cache can lead to significant
slow-down due to cache contention.
The extent to which this happens depends on the characteristics of the execution
environment and on the solvers in question. For example, in the experiments
reported in Section 8.3, we observed that Lingeling suffered more from this effect
on the larger industrial instances than clasp did on the smaller crafted instances.
Furthermore, we have observed that Lingeling’s performance is less affected on
newer CPUs with larger amounts of cache. Therefore, we believe that in the future,
with the advent of CPUs with even more cache memory, this issue might become
less critical.

There are many prominent avenues for future work on generic parallelisation
techniques, and we see much promise in the combination of the two approaches
discussed in this chapter. For example, one could run PARHYDRAb to generate
many complementary configurations of one or more parameterised solvers and
then use parallel portfolio selection on those configurations to create a per-instance
parallel portfolio selector for a given number of processing units. Another interesting
extension is the automatic configuration of parallel portfolio selectors, analogously to
AutoFolio [57]. Similarly, we see promise in the configuration of parallel algorithm
schedules, similarly to Cedalion [73]. It could also be interesting to use an approach
such as aspeed [36] to post-optimize an automatically-generated parallel portfolio
into a parallel algorithm schedule.

We see substantial promise in exploring instance features specifically designed for
parallel portfolio selection, e.g., probing features of parallel solvers, possibly related
to the communication between solver components. Finally, it would be interesting to
improve the construction of portfolios that include randomized parallel component
solvers with clause sharing by estimating the potential risks and gains of adding such
component solvers based on their running time distributions.
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