
Critically Assessing the State of the Art
in CPU-based Local Robustness Verification
Matthias König1,*, Annelot W. Bosman1, Holger H. Hoos1,2,3 and Jan N. van Rijn1

1Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands
2Chair for AI Methodology, RWTH Aachen University, Germany
3University of British Columbia, Canada

Abstract
Recent research has proposed various methods to formally verify neural networks against minimal input perturbations.
This type of verification is referred to as local robustness verification. The research area of local robustness verification
is highly diverse, as verifiers rely on a multitude of techniques, including mixed integer programming and satisfiability
modulo theories. At the same time, problem instances differ based on the network to be verified, the verification property
and the specific network input. This gives rise to the question of which verification algorithm is most suitable to solve a
given verification problem. To answer this question, we perform a systematic performance analysis of several CPU-based
local robustness verification systems on a newly and carefully assembled set of 79 neural networks, each verified against
100 robustness properties. Notably, we show that there is no single best algorithm that dominates in performance across
all verification problem instances. Instead, our results reveal complementarities in verifier performance and illustrate the
potential of leveraging algorithm portfolios for more efficient local robustness verification. Furthermore, we confirm the
notion that most algorithms only support ReLU-based networks, while other activation functions remain under-supported.

Keywords
Benchmark Analysis, Neural Network Verification, Adversarial Robustness, Shapley Value, Algorithm Portfolios

1. Introduction
In recent years, deep learning methods based on neural
networks have been increasingly applied within vari-
ous safety-critical domains and use contexts, ranging
from manoeuvre advisory systems in unmanned aircraft
to face recognition systems in mobile phones (see, e.g.,
Julian et al. [1]). Furthermore, it is now well known
that neural networks are vulnerable to adversarial exam-
ples [2], where a given input is manipulated in such a
way that it is misclassified by the network. In the case
of image recognition tasks, the required perturbation,
whether it is adversarially crafted or arises accidentally,
can be so small that it remains virtually undetectable to
the human eye. Against this background, much work
has focused on developing methods to provide formal
guarantees regarding the behaviour of a given neural
network [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. For instance,
a network employed in autonomous driving for detecting
traffic signs should always produce accurate predictions,
even when the input is slightly perturbed; failing to do so
could have fatal consequences. This specific type of as-

SafeAI 2023: Workshop on Artificial Intelligence Safety, Feb 13-14, 2023
Washington, D.C., US @AAAI-23
*Corresponding author.
$ h.m.t.konig@liacs.leidenuniv.nl (M. König);
a.w.bosman@liacs.leidenuniv.nl (A. W. Bosman);
hh@aim.rwth-aachen.de (H. H. Hoos);
j.n.van.rijn@liacs.leidenuniv.nl (J. N. van Rijn)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

sessment refers to local robustness verification, a broadly
studied verification task, in which a network is systemat-
ically tested against various input perturbations under
predefined norms, such as the 𝑙∞ norm [15, 16].

Neural network verification is a highly diverse re-
search area, and existing methods rely on a broad range
of techniques. At the same time, neural networks differ in
terms of their architecture, such as the number of hidden
layers and nodes, the type of non-linearities, e.g., ReLU,
Sigmoid or Tanh, or the type of operations they employ,
e.g., pooling or convolutional layers. This diversity, both
in terms of verification approaches and neural network
design, makes it challenging for researchers or practition-
ers to assess and decide which method is most suitable for
verifying a given neural network [17]. This challenge is
amplified by the fact that the neural network verification
community does not (yet) use commonly agreed evalu-
ation protocols, which makes it difficult to draw clear
conclusions from the literature regarding the capabilities
and performance of existing verifiers. More precisely, ex-
isting studies use different benchmarks and, so far, have
not provided an in-depth performance comparison of a
broad range of verification algorithms.

Recently, a competition series has been initiated, in
which several verifiers were applied to different bench-
marks (i.e., networks, properties and datasets) and com-
pared in terms of various performance measures, includ-
ing the number of verified instances as well as running
time [18]. While the results from these competitions
have provided highly valuable insights into the general

mailto:h.m.t.konig@liacs.leidenuniv.nl
mailto:a.w.bosman@liacs.leidenuniv.nl
mailto:hh@aim.rwth-aachen.de
mailto:j.n.van.rijn@liacs.leidenuniv.nl
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


progress in neural network verification, several questions
are left unanswered. For instance, it remains unclear why
a verification system participated in certain competition
categories but not in others, although this information
would help in understanding the technical capabilities
and limitations of a given verifier. Furthermore, aggre-
gation of the results makes it difficult to assess in detail
the strengths or weaknesses of verifiers on different in-
stances. Instead, looking at aggregated results, one can
easily get the impression that a single approach domi-
nates ‘across the board’ – an assumption that is known
to be inaccurate for other problems involving formal ver-
ification tasks; see, e.g., Xu et al. [19] or Kadioglu et al.
[20] for SAT.

In this work, we focus exclusively on local robustness
verification in image classification against perturbations
under the 𝑙∞ norm. This scenario represents a widely
studied verification task, with a large number of networks
being publicly available and many verifiers providing off-
the-shelf support. Notice that most verification tasks can
be translated into local robustness verification queries
[21]; we, therefore, believe that our findings are broadly
applicable. Moreover, we seek to overcome the limita-
tions of existing benchmarking approaches and shed light
on previously unanswered questions with regard to the
state of the art in local robustness verification.

Our contributions are as follows:
(i) We analyse the current state of practice in bench-

marking verification algorithms;
(ii) we perform a systematic benchmarking study of

several, carefully chosen verification methods based on
a newly assembled, large and diverse set of networks, in-
cluding 38 CIFAR and 41 MNIST networks with different
activation functions, each verified against 100 robustness
properties, for which we consumed a total of 1.69 CPU
years in running time;

(iii) we present a categorisation of verification bench-
marks based on verifier compatibilities with different
layer types and operations;
(iv) we quantify verifier performance in terms of the

number of solved instances, running time, as well as
marginal contribution and Shapley value, showing that
top-performing verification algorithms strongly comple-
ment rather than consistently dominate each other in
terms of performance – e.g., while the verifiers Neurify
and Verinet achieved competitive performance on the
CIFAR networks we considered, the former solved many
instances unsolved by the latter and vice versa;
(v) lastly, we provide a public repository containing

all experimental data, along with the newly assembled
network collection.1

1https://github.com/ADA-research/nn-verification-assessment

2. Background
Neural network verification methods seek to formally
assess whether a trained neural network adheres to some
predefined input-output property. In this study, we focus
on local robustness properties. Given a trained neural
network and a set of images as inputs, a robustness verifi-
cation algorithm aims to verify whether or not there exist
slight perturbations to an image that lead the network to
predict an incorrect label. The maximum perturbation of
each variable in the input, i.e., pixel in a given image, is
predefined.

Formal verification algorithms can be either complete
or incomplete [22]. An algorithm that is incomplete does
not guarantee to report a solution for every given ex-
ample; however, incomplete verification algorithms are
typically sound, which means they will report that a prop-
erty holds only if the property actually holds. On the
other hand, an algorithm that is sound and complete will
correctly state that a property holds whenever it holds
when given sufficient resources to be run to completion.
In this work, we focus on complete algorithms, as those
arguably represent the most ambitious form of neural
network verification, making them preferable over incom-
plete methods, especially in safety-critical applications.

Early work on complete verification of neural net-
works utilised satisfiability modulo theories (SMT) solvers
[10, 23, 24, 25, 26], which determine whether a set of
logic constraints is satisfiable [27]. The resulting veri-
fication problems are NP-complete and challenging to
solve in practice. Alternatively, it is possible to formulate
the verification task as a constraint optimisation problem
using mixed integer programming (MIP) [4, 28, 29, 12].
MIP solvers essentially optimise an objective function
subject to a set of constraints. MIP problems, similar to
SMT problems, can be challenging to solve and tend to
be computationally expensive (in terms of CPU time and
memory).

To overcome the computational complexity of SMT
and MIP, it has been proposed to use the well-known
branch-and-bound algorithm [30] for solving the verifi-
cation problem, regardless of whether it is modelled as
MIP or SMT [31, 5, 32, 7, 13].

Besides these three popular approaches, recent work
has studied symbolic interval propagation [4, 9, 33, 34]
and polyhedra [35, 36], zonotope [8, 37] and star-set ab-
straction [38].

3. Common Practices in
Benchmarking Neural Network
Verifiers

Considering the diversity in neural network verification
problems, it is quite natural to assume that a single best

https://github.com/ADA-research/nn-verification-assessment


algorithm does not exist, i.e., a method that outperforms
all others under all circumstances. It is still hard to iden-
tify to what extent a method contributes to the state of
the art, mainly because verification methods are typically
evaluated (i) on a small number of benchmarks, which
have often been created for the sole purpose of evaluating
the method at hand, and (ii) against baseline methods for
which it is often unclear how they were chosen, leading
to several methods claiming state-of-the-art performance
without having been directly compared. We note that in
the context of local robustness verification, a benchmark
most often represents a neural network classifier trained
on the MNIST or CIFAR-10 dataset, respectively.

As previously mentioned, a competition series has
been established, with the goal of providing an objective
and fair comparison of the state-of-the-art methods in
neural network verification, in terms of scalability and
speed [18]. The VNN Competition was held in the years
2020, 2021 and 2022, yet with different protocols (e.g., for
running experiments, scoring, etc.), benchmarks and par-
ticipants. In this discussion, we focus on the 2021 edition,
as the report from 2022 has not yet been published at the
time of this writing.

Within VNN 2021, a total of 9 benchmarks were con-
sidered, of which 7 represented test cases for local ro-
bustness verification of image classification networks.
Benchmarks were proposed by the participants them-
selves and included a total of 11 CIFAR and 7 MNIST
networks, which differed in terms of architecture compo-
nents, such as non-linearities (e.g., ReLU, Tanh, Sigmoid)
and layer operations (e.g., convolutional or pooling lay-
ers). Networks were trained on the CIFAR-10 and MNIST
datasets, respectively. Moreover, each benchmark was
composed of random image subsets, excluding images
that were misclassified by the given network, along with
varying perturbation radii.

This competition overcame several of the previously
reported limitations with regard to the evaluation of net-
work verifiers. Most notably, it covered a relatively large
and diverse set of neural networks. Moreover, thanks to
the active participation from the community, 12 verifi-
cation algorithms were included in the competition. At
the same time, we see room for further research into the
performance of neural network verifiers.

Firstly, it is not clearly stated in the VNN competition
report [18] why verifiers participated in certain competi-
tion categories, but not in others. While we assume this
to be due to compatibility reasons, we could not find any
formal explanation in the report, although this informa-
tion could provide insight into relevant problem classes
and suitable algorithms for solving these.

Secondly, GPU-accelerated tools were directly com-
pared to those that rely solely on CPU resources, which
we argue does not give due credit to the structural dif-
ferences between these classes of algorithms. GPU-

accelerated approaches employ advanced parallelisation
schemes, giving rise to substantially higher computa-
tional demands than those required by methods running
on CPUs, especially when restricted to a single core. For
example, an Amazon EC2 GPU-based instance with 32
CPU cores costs around 1.4 times more than an equiva-
lent CPU instance.2

Lastly, the competition seeks to determine the current
state of the art; however, the competition ranking and
scores do not sufficiently quantify the extent to which an
algorithm actually contributes to the state of the art. In
other words, it is in the nature of competitions to deter-
mine a winner, at least implicitly suggesting that a single
approach generally outperforms all competitors. How-
ever, some verification algorithms might have limited
but distinct areas of strength, which cannot be identified
through aggregated performance measures, such as the
total number of verified instances. Although the com-
petition report [18] shows that individual verifier per-
formance differs among benchmarks, it remains unclear
whether all algorithms solve the same set of instances in
the given benchmark, or if they complement each other.
Similarly, it does not reveal whether or not methods are
correlated in their performance.

4. Verification Algorithms under
Assessment

We consider 5 complete, CPU-based neural network veri-
fication algorithms; each of these was chosen because it
fulfilled one of the following conditions: it was (i) ranked
among the top five verification methods according to the
2021 VNN competition or (ii) supported by the recently
published DNNV framework [21]. Altogether, we con-
sider our set of algorithms to be representative of the
developments in the area of complete neural network
and, more specifically, local robustness verification.

All methods were employed with their default hyper-
parameter settings, as they would likely be used by practi-
tioners. We note that the performance of a verifier might
improve if its hyperparameters were optimised specifi-
cally for the given benchmark; however, most verifiers
have dozens of hyperparameters (or employ combinato-
rial solvers that come with their own, extensive set of
hyperparameters), which makes this a non-trivial task,
requiring additional expertise and resources (see, e.g.,
König et al. [39]). The verification algorithms we consid-
ered are the following:
BaB. The algorithm proposed by Bunel et al. [5] re-

states the verification problem as a global optimisation
problem, which is then solved using branch-and-bound
search. It further incorporates algorithmic improvements

2See https://aws.amazon.com/ec2/pricing/on-demand/

https://aws.amazon.com/ec2/pricing/on-demand/


with regard to branching and bounding procedures such
as smart branching; i.e., before splitting, it computes fast
bounds on each of the possible subdomains and chooses
the one with the tightest bounds. We refer to this method
as BaBSB for the remainder of this paper. BaBSB sup-
ports ReLU-based networks.
Marabou. The Marabou framework [23] employs

SMT solving techniques, specifically the lazy search tech-
nique for handling non-linear constraints. Furthermore,
Marabou employs deduction techniques to obtain infor-
mation on the activation functions that can be used to
simplify them. The core of the SMT solver is simplex-
based, which means that the variable assignments are
made using the simplex algorithm. Marabou supports
ReLU and Sigmoid activations as well as MaxPooling
operations.
Neurify. The verification algorithm proposed by

Wang et al. [33] relies on symbolic interval propagation
to create over-approximations, followed by a refinement
strategy based on symbolic gradient information. The
constraint refinement aims to tighten the bounds of the
approximation of activation functions. Neurify can pro-
cess networks containing ReLU activations.
nnenum. The verifier proposed by Bak et al. [38]

utilises star sets to represent the values each layer of a
neural network can attain. By propagating these through
the network, it checks whether one or more of the star
sets results in an adversarial example. This verifier can
handle networks with ReLU activations.
Verinet. The verifier developed by Henriksen and

Lomuscio [9] combines symbolic intervals with gradient-
based adversarial local search for finding counter-
examples. The authors further propose a splitting heuris-
tic for interval propagation based on the influence of a
given node on the bounds of the network output. Verinet
supports networks containing ReLU, Sigmoid and Tanh
activations.

5. Setup for Empirical Evaluation
In this work, we seek to provide a clearer picture of the
state of the art in neural network verification. More
specifically, we argue that the state of the art is not just
defined by a single verification algorithm, as there might
be verifiers which on their own perform poorly but still
make meaningful contributions by excelling on limited
instance subsets that are challenging for other verifica-
tion methods.

In the following, we will present an overview of how
we set up our benchmark study, i.e., how we selected
problem instances and verification algorithms. Further-
more, we will provide details on the software we used
and the execution environment in which our experiments
were carried out.

5.1. Problem Instances
For our assessment, we compiled a high-quality set of
problem instances for local robustness verification. Fol-
lowing best practices in other research areas, such as
optimisation [40, 41], the benchmark should be represen-
tative and diverse, where the former refers to how well
the difficulty of the benchmark is aligned with that of
real-world instances from the same problem class, and
the latter means that the problem set should generally
contain problems with a wide range of difficulties.

Overall, our benchmark is comprised of 79 image clas-
sification networks, of which 38 are trained on the CIFAR-
10 dataset and 41 are trained on the MNIST dataset. To
ensure the representativeness of the problem set, all net-
works were sampled from the neural network verification
literature, i.e., networks used in existing work on local ro-
bustness verification and provided in public repositories;
in other words, the characteristics of the networks in
our benchmark are assumed to match those of networks
generally used for evaluating verification algorithms.

We further want our problem set to be diverse. There-
fore, we ensured that the considered networks differ in
size, i.e., the number of hidden layers and nodes, as well
as the type of non-linearities (e.g., ReLU or Tanh) or layer
operations (e.g., pooling layers) they employ.

For each network, we verified 100 local robustness
properties; more precisely, we sampled 100 images from
the dataset on which the network has been trained and
verified for local robustness with perturbation radius 𝜖
set at 0.012. This perturbation radius was chosen to be
a median of values we found in literature: the smallest
value we found was 1/255 in the work by Li et al. [22],
whereas Botoeva et al. [4] or Wang et al. [13] utilised
larger values, such as 0.05.

Lastly, we split our benchmark set into different cat-
egories based on verifier compatibilities. This means a
verifier is only employed to categories it is able to process.
The categories as well as the instance set size for each
category are shown in Table 1.

5.2. Evaluation Metrics
In order to assess the performance of the various meth-
ods, we compute four performance metrics: the average
running time, the number of solved instances, the rela-
tive marginal contribution and the Shapley value [42] of
each verifier. Although these metrics present aggregated
measures, they reflect algorithm performance on an in-
stance level and in relation to other methods included
in the comparison; a more detailed explanation will be
provided in the following paragraphs. Notice that we do
not penalise timeouts when computing average running
time; i.e., the maximum running time equals the given
time limit.



Table 1
Instance set size for each benchmark category. Solvable instances are those solved by at least one (i.e., any) or all of the
considered verifiers. The column “Verifiers employed” lists the matching suitable verification algorithm(s) to the respective
category.

MNIST CIFAR

Category Total Solvable Total Solvable Verifiers employed

Any All Any All

ReLU 2 500 1 913 42 2 500 972 0 BaBSB, Marabou, Neurify, nnenum, Verinet
ReLU + MaxPool 400 5 5 100 0 0 Marabou
Tanh 600 556 556 600 0 0 Verinet
Sigmoid 600 581 0 600 0 0 Marabou, Verinet

The marginal contribution is computed as follows. De-
fine 𝑐 as a set of given verifiers and let 𝑣(𝑐) be the total
score of set 𝑐. Here, the total score 𝑣(𝑐) consists of the
number of instances verified by at least one verifier in
set 𝑐. We compute the marginal contribution per algo-
rithm to determine how much the total performance of
all algorithms (in terms of solved instances) decreases
when the given algorithm is removed from the set of all
algorithms if they were employed in a parallel algorithm
portfolio. Such portfolios are sets of algorithms that are
run in parallel on each given problem instance and com-
plement each other in terms of performance across an
instance set [43]. Formally, to determine the marginal
contribution of any of the verifiers 𝑖 to portfolio 𝑐, one
needs to know the value of 𝑣(𝑐) and 𝑣(𝑐 ∖ {𝑖}), where
𝑐∖{𝑖} is the portfolio minus verifier 𝑖. Thus, the marginal
contribution of verifier 𝑖 is expressed as

MCi = 𝑣(𝑐)− 𝑣(𝑐 ∖ {𝑖}) (1)

Following this terminology, we can define the number
of solved instances by verifier 𝑖 as a set consisting only
of verifier 𝑖, Solvedi = 𝑣(𝑖)− 𝑣(∅). In other words, the
number of solved instances employs a set of size one and
the marginal contribution employs a set of all verifiers
under consideration. The relative marginal contribution
then represents the marginal contribution of a given veri-
fier as a proportion of the sum of every method’s absolute
marginal contribution.

Lastly, the Shapley value is the average marginal contri-
bution of a verifier over all possible joining orders, where
joining order refers to the order in which the verifiers
are added to a parallel portfolio. This value is comple-
menting the previous two metrics, as it does not assume
a particular order in which algorithms are added to the
portfolio. To be precise, the number of solved instances
simply represents a joining order in which the considered
algorithm comes first, whereas the marginal contribu-
tion metric assumes a joining order in which it comes
last. However, using fixed orders, as it is the case for the
marginal contribution, might not reveal possible interac-
tions between the given method and other algorithms,

e.g., it might understate the importance of a single algo-
rithm given the presence of another, highly correlated
algorithm. In such a case, both algorithms would not be
assigned any marginal contribution, even though one of
them should be included in a potential portfolio. This is
captured by the Shapley value: define 𝑛 as the number
of verifiers under consideration and 𝐶 as the set of all
combinations of all subsets of verifiers under consider-
ation including the empty set, where set 𝐶 will be of

size
∑︀𝑛

𝑘=0

𝑛!

𝑘! · (𝑛− 𝑘)!
. Finally, define 𝐶𝑖 as all sets in

which verifier 𝑖 is present. The Shapley value of verifier
𝑖 is then calculated as

𝜑𝑖 =
1

𝑛!
·
∑︁
𝑗∈𝐶𝑖

(𝑣(𝑗)− 𝑣(𝑗 ∖ {𝑖})) (2)

5.3. Execution Environment and Software
Used

Our experiments were carried out on a cluster of ma-
chines equipped with Intel Xeon E5-2683 CPUs with 32
cores, 40 MB cache size and 94 GB RAM, running CentOS
Linux 7. For each verification method, we limited the
number of available CPU cores to a single core. Each
query was given a time budget of 3 600 seconds and a
memory budget of 3 GB. Generally, we executed the veri-
fication algorithms through theDNNV interface, version
0.4.8. DNNV is a framework that transforms a network
and property specification into a unified format, which
can then be solved by a given method [21]. More specif-
ically, DNNV takes as input a network in the ONNX
format, along with a property specification, and then
translates the network and property to the input format
required by the verifier. After running the verifier on the
transformed problem, it returns either 𝑠𝑎𝑡 if the property
was falsified or 𝑢𝑛𝑠𝑎𝑡 if the property was proven to hold.



Table 2
Performance comparison of local robustness verification algorithms in terms of the number of solved instances, relative
marginal contribution (RMC), Shapley value (𝜑) and average CPU running time, computed for each category with 𝜖 set at
0.012.

ReLU
Verifier MNIST CIFAR

Solved RMC 𝜑 Avg. Time Solved RMC 𝜑 Avg. Time
[CPU s] [CPU s]

BaBSB 358 0.22 118 3 241 307 0.00 86 2 924
Marabou 1 001 0.19 312 1 801 400 0.00 117 2 153
Neurify 871 0.25 265 1 964 915 0.75 411 235
nnenum 1 754 0.17 600 389 76 0.05 28 3 337
Verinet 1 799 0.16 618 263 841 0.20 330 500

ReLU+Maxpool
Verifier MNIST CIFAR

Solved RMC 𝜑 Avg. Time Solved RMC 𝜑 Avg. Time

Marabou 5 1.00 5 57 0 0.00 0 3 600

Tanh
Verifier MNIST CIFAR

Solved RMC 𝜑 Avg. Time Solved RMC 𝜑 Avg. Time

Verinet 556 1.00 556 55 0 0.00 0 3 600

Sigmoid
Verifier MNIST CIFAR

Solved RMC 𝜑 Avg. Time Solved RMC 𝜑 Avg. Time

Marabou 0 0.00 0 3 600 0 0.00 0 3 600
Verinet 581 1.00 581 55 0 0.00 0 3 600

6. Results and Discussion
In the following, we provide an in-depth discussion of the
results obtained from our experiments. Table 1 shows the
categories we devised, along with the resulting instance
set sizes as well as information on which verifier has
been employed for each category.

Table 2 reports the number of problem instances
solved by each verifier per network category, the rel-
ative marginal contribution, the Shapley value and the
average running time. On ReLU-based MNIST networks,
we found Verinet to be the best-performing verifier, solv-
ing 1 799 out of 2 500 instances, while achieving a Shapley
value of 618. However, taking relative marginal contribu-
tion into account, we found that Neurify achieved the
highest relative marginal contribution of 0.25 (compared
to 0.16 for Verinet), indicating that it could verify a siz-
able fraction of instances on which other methods failed
to return a solution. Moreover, the relative marginal
contribution scores show that each method could solve
a sizeable fraction of instances unsolved by any of the
other methods.

On ReLU-based CIFAR networks, it should first be
noted that no verification problem instance can be solved

by all verifiers, highlighting the structural differences be-
tween instances and the sensitivity of the verification ap-
proaches to those instances. That said, Neurify slightly
outperformed Verinet in terms of the number of solved
instances (915 vs 841 out of 2 500). Furthermore, Neurify
achieved a much larger relative marginal contribution
than Verinet (0.75 vs 0.20), which means that the for-
mer could solve a relatively large number of instances
which could not be solved by the other methods. Gener-
ally, relative marginal contribution scores are much less
evenly distributed among verifiers when compared to
the MNIST dataset.

Figures 1a and 1b show an instance-level compari-
son of the two best-performing algorithms (in terms of
Shapley value) in the ReLU category for each dataset. In
Figure 1a, we see that on MNIST networks, both Verinet
and nnenum solved instances that the other one could
not solve within the given time budget. Concretely, when
considering a parallel portfolio containing both algo-
rithms, the number of solved instances slightly increases
to 1 817 out of 2 500 (vs 1 799 solved by Verinet and 1 754
solved by nnenum alone), while supplied with similar
CPU resources (i.e., 1 800 CPU seconds per verifier, which
represents half of the total given time budget of 3 600



10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], nnenum

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e 
[s

], 
Ve

ri
ne

t

(a) MNIST

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], Neurify

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e 
[s

], 
Ve

ri
ne

t

(b) CIFAR

Figure 1: Performance comparison of the two top-performing verification methods (in terms of Shapley value) in the ReLU
category on (a) MNIST and (b) CIFAR networks. The plots show that each verifier outperforms the other on some instances,
while none of the methods is dominating in performance across the entire instance set. This illustrates the complementary
strengths of the verification algorithms. The diagonal line indicates equal performance of the two methods.

100 101 102 103

CPU time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 in

st
an

ce
s 

so
lv

ed

BaBSB
Marabou
Neurify
nnenum
Verinet

(a) MNIST

100 101 102 103

CPU time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 in

st
an

ce
s 

so
lv

ed

BaBSB
Marabou
Neurify
nnenum
Verinet

(b) CIFAR

Figure 2: Fraction of instances solved by the considered verification algorithms in the ReLU category as a function of CPU
running time for (a) MNIST and (b) CIFAR networks. On (a), we find that Verinet solves most instances in the least time,
while on (b) Neurify does.

CPU seconds per verification query as used in our ex-
periments). Notice that leveraging parallel portfolios has
already been shown to significantly improve the perfor-
mance of MIP-based verification methods [39].

On CIFAR instances, we found Neurify and Verinet
to also have distinctive strengths over each other. This is
shown in Figure 1b, where both algorithms could solve a
substantial amount of instances that the other could not
return a solution for. Thus, when combined in a parallel
portfolio, 963 instances can be solved (vs 915 solved by
Neurify and 841 solved by Verinet alone, out of 2 500 in-
stances), while using the same amount of CPU resources,
i.e., 1 800 CPU seconds per verifier. These findings further
emphasise the complementarity between the verification

algorithms considered in our study. All remaining ver-
ifiers achieved substantially lower Shapley values and
relative marginal contribution scores, indicating that they
would not complement Neurify and Verinet well in a
portfolio.

Figure 2a shows the cumulative distribution function
of running times over the MNIST problem instances. As
seen in the figure, Verinet tends to solve these problem
instances fastest; however, Neurify tended to show even
better performances on those instances it was able to
solve. We note that most of the instances unsolved by
Neurify represent networks that were trained on images
with 3 dimensions, whereas Neurify requires images
used as network inputs to have 2 or 4 dimensions.



Figure 2b shows a similar plot for the CIFAR problem
instances. Here, Neurify solved the largest fraction in
less time than other methods. This suggests that Neurify
is a very competitive verifier when applicable to the spe-
cific network or input format.

For each of the remaining categories, we found that
there is only one verifier that could effectively handle
the respective problem instances. Specifically, instances
from the ReLU+MaxPooling category can be processed
by Marabou, although, only a modest number of MNIST
instances could be solved in this way. Networks con-
taining Tanh activations can, in principle, be verified by
Verinet, but the algorithm did also not solve any CIFAR
instances. Lastly, Sigmoid-based networks can be han-
dled by both Verinet and Marabou, however, only the
former could solve MNIST instances within the given
compute budget.

7. Conclusions and Future Work
In this work, we assessed the performance of several local
robustness verification algorithms, i.e., algorithms used
to verify the robustness of an image classification net-
work against small input perturbations. To conclude, we
found that all considered methods support ReLU-based
networks, while other network types are strongly under-
supported. While this has been suspected in the com-
munity, it has, to our knowledge, not yet been subject
to formal study. Furthermore, we presented evidence
for strong performance complementarity: even within
the same benchmark category, two verification systems
outperform each other on distinct sets of instances. As
we have demonstrated, this complementarity can be ex-
ploited by combining individual verifiers into parallel
portfolios. Lastly, we showed that, in general, the per-
formance of verifiers strongly differs between image
datasets, with some methods achieving the best perfor-
mance on MNIST (in terms of the number of solved in-
stances and average running time) while falling behind
on CIFAR and vice versa. In future work, it would be
interesting to include a broader set of perturbation radii
and analyse in more detail how the relative performance
of verifiers depends on the given radius. Furthermore, we
are interested in expanding our analysis to GPU-based
verification algorithms.

Acknowledgements
This research was partially supported by TAILOR, a
project funded by EU Horizon 2020 research and innova-
tion program under GA No. 952215.

References
[1] K. D. Julian, M. J. Kochenderfer, M. P. Owen, Deep

neural network compression for aircraft collision
avoidance systems, Journal of Guidance, Control,
and Dynamics 42 (2019) 598–608.

[2] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Er-
han, I. Goodfellow, R. Fergus, Intriguing properties
of neural networks, arXiv preprint arXiv:1312.6199
(2014).

[3] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytini-
otis, A. Nori, A. Criminisi, Measuring Neural Net
Robustness with Constraints, in: Advances in Neu-
ral Information Processing Systems (NeurIPS 2016),
2016, pp. 2613–2621.

[4] E. Botoeva, P. Kouvaros, J. Kronqvist, A. Lomuscio,
R. Misener, Efficient Verification of ReLU-based
Neural Networks via Dependency Analysis, in: Pro-
ceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI-20), 2020, pp. 3291–3299.

[5] R. R. Bunel, I. Turkaslan, P. Torr, P. Kohli, P. K.
Mudigonda, A Unified View of Piecewise Linear
Neural Network Verification, in: Advances in Neu-
ral Information Processing Systems (NeurIPS 2018),
2018, pp. 1–10.

[6] K. Dvijotham, R. Stanforth, S. Gowal, T. A. Mann,
P. Kohli, A Dual Approach to Scalable Verification
of Deep Networks, in: Proceedings of the 38th
Conference on Uncertainty in Artificial Intelligence
(UAI 2018), 2018, pp. 550–559.

[7] R. Ehlers, Formal Verification of Piece-Wise Linear
Feed-Forward Neural Networks, in: Proceedings of
the 15th International Symposium on Automated
Technology for Verification and Analysis (ATVA
2017), 2017, pp. 269–286.

[8] T. Gehr, M. Mirman, D. Drachsler-Cohen,
P. Tsankov, S. Chaudhuri, M. Vechev, AI2: Safety
and Robustness Certification of Neural Networks
with Abstract Interpretation, in: Proceedings of
the 39th IEEE Symposium on Security and Privacy
(IEEE S&P 2018), 2018, pp. 3–18.

[9] P. Henriksen, A. Lomuscio, Efficient Neural Net-
work Verification via Adaptive Refinement and Ad-
versarial Search, in: Proceedings of the 24th Euro-
pean Conference on Artificial Intelligence (ECAI
2020), 2020, pp. 2513–2520.

[10] G. Katz, C. Barrett, D. L. Dill, K. Julian, M. J. Kochen-
derfer, Reluplex: An Efficient SMT Solver for Verify-
ing Deep Neural Networks, in: Proceedings of the
29th International Conference on Computer Aided
Verification (CAV 2017), 2017, pp. 97–117.

[11] K. Scheibler, L. Winterer, R. Wimmer, B. Becker,
Towards Verification of Artificial Neural Networks,
in: Proceedings of the 18th Workshop on Metho-
den und Beschreibungssprachen zur Modellierung



und Verifikation von Schaltungen und Systemen
(MBMV 2015), 2015, pp. 30–40.

[12] V. Tjeng, K. Xiao, R. Tedrake, Evaluating Ro-
bustness of Neural Networks with Mixed Integer
Programming, in: Proceedings of the 7th Inter-
national Conference on Learning Representations
(ICLR 2019), 2019, pp. 1–21.

[13] S. Wang, K. Pei, J. Whitehouse, J. Yang, S. Jana, Ef-
ficient Formal Safety Analysis of Neural Networks,
in: Advances in Neural Information Processing Sys-
tems (NeurIPS 2018), 2018, pp. 6369–6379.

[14] W. Xiang, H.-D. Tran, T. T. Johnson, Output Reach-
able Set Estimation and Verification for Multilayer
Neural Networks, IEEE Transactions on Neural Net-
works and Learning Systems 29 (2018) 5777–5783.

[15] I. J. Goodfellow, J. Shlens, C. Szegedy, Explain-
ing and Harnessing Adversarial Examples, arXiv
preprint arXiv:1412.6572 (2014).

[16] N. Papernot, P. McDaniel, X. Wu, S. Jha, A. Swami,
Distillation as a Defense to Adversarial Perturba-
tions Against Deep Neural Networks, in: Proceed-
ings of the 37th IEEE Symposium on Security and
Privacy (IEEE S&P 2016), 2016, pp. 582–597.

[17] M. Casadio, E. Komendantskaya, M. L. Daggitt,
W. Kokke, G. Katz, G. Amir, I. Refaeli, Neural Net-
work Robustness as a Verification Property: A Prin-
cipled Case Study, in: Proceedings of the 34rd
International Conference on Computer Aided Veri-
fication (CAV 2022), 2022, pp. 219–231.

[18] S. Bak, C. Liu, T. Johnson, The Second International
Verification of Neural Networks Competition (VNN-
COMP 2021): Summary and Results, arXiv preprint
arXiv:2109.00498 (2021).

[19] L. Xu, F. Hutter, H. H. Hoos, K. Leyton-Brown,
Satzilla: Portfolio-based algorithm selection for sat,
Journal of Artificial Intelligence Research 32 (2008)
565–606.

[20] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samu-
lowitz, M. Sellmann, Algorithm Selection and
Scheduling, in: Proceedings of the Seventeenth
International Conference on Principles and Prac-
tice of Constraint Programming (CP2011), 2011, pp.
454–469.

[21] D. Shriver, S. Elbaum, M. B. Dwyer, DNNV: A
Framework for Deep Neural Network Verification,
in: Proceedings of the 33rd International Confer-
ence on Computer Aided Verification (CAV 2021),
2021, pp. 137–150.

[22] L. Li, X. Qi, T. Xie, B. Li, Sok: Certified robust-
ness for deep neural networks, arXiv preprint
arXiv:2009.04131 (2020).

[23] G. Katz, D. A. Huang, D. Ibeling, K. Julian,
C. Lazarus, R. Lim, P. Shah, S. Thakoor, H. Wu,
A. Zeljić, D. L. Dill, M. J. Kochenderfer, C. Barrett,
the Marabou Framework for Verification and Anal-

ysis of Deep Neural Networks, in: Proceedings
of the 31st International Conference on Computer
Aided Verification (CAV 2019), 2019, pp. 443–452.

[24] L. Pulina, A. Tacchella, Checking Safety of Neu-
ral Networks with SMT Solvers: A Comparative
Evaluation, in: AI*IA, 2011, pp. 127–138.

[25] L. Pulina, A. Tacchella, NeVer: A Tool for Artificial
Neural Networks Verification, Annals of Mathe-
matics and Artificial Intelligence (2011) 403–425.

[26] L. Pulina, A. Tacchella, Challenging SMT Solvers
to Verify Neural Networks, AI Communications
(2012) 117–135.

[27] L. d. Moura, N. Bjørner, Satisfiability Modulo theo-
ries: An Appetizer, in: Proceedings of the Brazilian
Symposium on Formal Methods (SBMF 2009), 2009,
pp. 23–36.

[28] S. Dutta, S. Jha, S. Sankaranarayanan, A. Tiwari,
Output Range Analysis for Deep Neural Networks,
in: Proceedings of the Tenth NASA Formal Methods
Symposium (NFM 2018), 2018, pp. 121–138.

[29] A. Lomuscio, L. Maganti, An approach to reachabil-
ity analysis for feed-forward ReLU neural networks,
arXiv preprint arXiv:1706.07351 (2017).

[30] A. H. Land, A. G. Doig, An Automatic Method of
Solving Discrete Programming Problems, Econo-
metrica (1960) 497–520.

[31] R. Bunel, I. Turkaslan, P. H. S. Torr, M. P. Kumar,
J. Lu, P. Kohli, Branch and Bound for Piecewise
Linear Neural Network Verification, Journal of
Machine Learning Research (2020) 1574–1612.

[32] A. De Palma, R. Bunel, A. Desmaison, K. Dvijotham,
P. Kohli, P. H. S. Torr, M. P. Kumar, Improved
Branch and Bound for Neural Network Verifica-
tion via Lagrangian Decomposition, arXiv preprint
arXiv:2104.06718 (2021).

[33] S. Wang, K. Pei, J. Whitehouse, J. Yang, S. Jana,
Formal Security Analysis of Neural Networks using
Symbolic Intervals, in: Proceedings of the 27th
USENIX Security Symposium (USENIX Security 18),
2018, pp. 1599–1614.

[34] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh,
Z. Kolter, Beta-CROWN: Efficient Bound Propaga-
tion with Per-neuron Split Constraints for Neural
Network Robustness Verification, in: Advances in
Neural Information Processing Systems (NeurIPS
2021), 2021, pp. 29909–29921.

[35] G. Singh, T. Gehr, M. Püschel, M. Vechev, An Ab-
stract Domain for Certifying Neural Networks, in:
Proceedings of the 46th ACM SIGPLAN Symposium
on Principles of Programming Languages (ACM-
POPL 2019), 2019, pp. 1–30.

[36] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh,
L. Daniel, Efficient Neural Network Robustness
Certification with General Activation Functions,
Advances in Neural Information Processing Sys-



tems (NeurIPS 2018) 31 (2018) 4944–4953.
[37] G. Singh, T. Gehr, M. Mirman, M. Püschel,

M. Vechev, Fast and Effective Robustness Certi-
fication, in: Advances in Neural Information Pro-
cessing Systems (NeurIPS 2018), 2018, pp. 1–12.

[38] S. Bak, H.-D. Tran, K. Hobbs, T. T. Johnson, Im-
proved Geometric Path Enumeration for Verifying
ReLU Neural Networks, in: Proceedings of the
32nd International Conference on Computer Aided
Verification (CAV 2020), 2020, pp. 66–96.

[39] M. König, H. H. Hoos, J. N. v. Rijn, Speeding up neu-
ral network robustness verification via algorithm
configuration and an optimised mixed integer linear
programming solver portfolio, Machine Learning
111 (2022) 4565–4584.

[40] H. H. Hoos, T. Stützle, Stochastic Local Search:
Foundations & Applications, Elsevier / Morgan
Kaufmann, 2004.

[41] T. Bartz-Beielstein, C. Doerr, D. v. d. Berg, J. Bossek,
S. Chandrasekaran, T. Eftimov, A. Fischbach, P. Ker-
schke, W. La Cava, M. Lopez-Ibanez, et al., Bench-
marking in Optimization: Best Practice and Open
Issues, arXiv preprint arXiv:2007.03488 (2020).

[42] A. Fréchette, L. Kotthoff, T. Michalak, T. Rahwan,
H. Hoos, K. Leyton-Brown, Using the shapley value
to analyze algorithm portfolios, in: Proceedings of
the 30th AAAI Conference on Artificial Intelligence
(AAAI-16), 2016, pp. 3397–3403.

[43] C. P. Gomes, B. Selman, Algorithm portfolios, Arti-
ficial Intelligence 126 (2001) 43–62.


	1 Introduction
	2 Background
	3 Common Practices in Benchmarking Neural Network Verifiers
	4 Verification Algorithms under Assessment
	5 Setup for Empirical Evaluation
	5.1 Problem Instances
	5.2 Evaluation Metrics
	5.3 Execution Environment and Software Used

	6 Results and Discussion
	7 Conclusions and Future Work

