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Abstract. As neural networks are increasingly used in sensitive real-world ap-
plications, mitigating bias of classifiers is of crucial importance. One often-used
approach to controlling quality in classification tasks is to ensure that predic-
tive performance is balanced between different classes; however, it has been
shown in previous work that even if class performance is balanced, instances
of some classes are easier to perturb in such a way that they are misclassified,
which indicates that per-class performance bias exists.
In this preliminary study, we found that even when class performance is bal-
anced, class robustness can vary strongly when assessing the robustness of a
given neural network classifier in a more nuanced fashion. For this purpose, we
use robustness distributions, i.e., empirical probability distributions of some
robustness metric, such as the critical epsilon value, over a set of instances.
We observed that the robustness of the same class over the same data can
significantly differ from each other for different neural networks; this means
that even when a neural network appears to be unbiased, it might be easier
to perturb instances of a given class so that they are misclassified.
Furthermore, we explored the robustness distributions when we have a prede-
fined target class, i.e., a specific class into which an instance is misclassified
after perturbation. Our empirical results indicate that in most cases, there are
significant differences in robustness distributions for different classes.
While our empirical results reported here are for MNIST classifiers, we are
currently performing experiments using the German Traffic Sign Recognition
Benchmark. Furthermore, we are running experiments with retrained networks
for fairness, to see whether this has a significant effect on the per-class robust-
ness distributions. Lastly, we aim to create a robust class fairness metric based
on our findings.

Keywords: neural network verification · adversarial robustness · fairness ·
distribution analysis
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1 Introduction

Machine learning research is becoming increasingly fairness-aware. A prominent ex-
ample of a desirable property of a classifier is an equal performance of all subgroups
based on some protected property [1], as an imbalance can pose a threat to fairness.
Moreover, predictions obtained from neural networks are known to be vulnerable to
slight alterations to otherwise correctly classified inputs, leading to incorrect predic-
tions [8]. Benz et al. [1] have shown that the robustness of a neural network against
these small alterations can differ across classes, even if the dataset the network was
trained on has an equal number of instances for each class. This imbalance in robust-
ness of different classes can have severe practical implications.

Formal verification techniques (such as α, β-CROWN [22]) can be employed to
rigorously assess the robustness of neural networks against such input perturbations.
Given a neural network and an observation from the dataset, these techniques deter-
mine whether a perturbation of at most magnitude ε exists that can force the network
to misclassify the given observation. Therefore, the robustness of a network can be
expressed in terms of robust accuracy, based on how many of the observations will be
correctly classified, regardless of adversarial input perturbations within a given radius
ε.

In previous work, we introduced robustness distributions [2]. Rather than the
commonly addressed yes-or-no question of whether a perturbation of at most ε can
lead to a misclassification of a given input, robustness distributions indicate for each
input the exact magnitude of perturbation, indicated by ε∗, to which the classification
remains robustly accurate. This gives a more balanced view of the robustness of a
network, and, unlike robust accuracy, it is not determined based on a single fixed ε.

Recent work has demonstrated that different classes can have different predictive
performance and robustness performance [1, 10]. These studies evaluated whether an
instance is robust with respect to a fixed pre-defined maximum perturbation level ε
using non-formal methods, such as adversarial attacks [11,13].

This per-class robustness is highly important, for the following reasons:

• Fairness: It would be problematic if an entity-recognition system would be less
precise at predicting certain classes compared to others. Therefore, imbalanced
class performance can be a problem for the fairness of a classifier.

• Misclassification cost: Some types of misclassification have more severe conse-
quences than others. One can imagine it is far more problematic when a traffic
sign indicating a 130 km/h speed limit gets misclassified as a stop sign than it is
when it gets misclassified as a 120 km/h speed limit.

For these reasons, we investigate the robustness distributions at the class level.
Confirming significant discrepancies in robustness on a per-class level would have
consequences on network selection for practical applications. A practitioner that would
have to choose between several options can utilise our approach to make an informed
decision based on these per-class distributions regarding the question of which of
several networks would be most adequate for a given application. This distinction per
class can be considered for both the correct class of an instance, as well as for the
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class a given instance is misclassified as; we will refer to the latter concept as the
target class. We distinguish two specific types of verification:

• one-to-any verification determines the robustness of an instance, regardless of
which class this given instance gets misclassified as. This concept has been widely
studied in the literature (see, e.g. [3, 9]).

• one-to-one verification determines for a given (original) class and a given target
class up to what perturbation magnitude a given instance cannot be misclassified
as this specific target class. Note that it could be possible that with a smaller
perturbation radius, the instance could be non-robust against being misclassified
as other classes.

By performing these types of verification for a set of instances, grouped per class,
we can determine robustness distributions on a per-class level. These distributions
consist of the individual approximate perturbation magnitude ε̃∗ an instance can
withstand without being misclassified. While both concepts have well-known equiv-
alents, to the best of our knowledge there has only been limited research towards
per-class analysis in the context of robustness. We note that the per-class robustness
distributions resulting from the one-to-any verification are related to the per-class
recall, whereas the per-class robustness distributions resulting from the one-to-one
verification are related to the confusion matrix.

In this study, we make the following contributions:

• We introduce the notion of per-class robustness distributions, using the previously
mentioned concepts of one-to-any verification and one-to-one verification.

• We analyse the per-class robustness for three MNIST networks using one-to-any
verification. We establish that for most of these networks, the robustness distri-
butions differ significantly across classes.

• We establish that across networks, the robustness of a given class can differ sig-
nificantly.

• We analyse for a given class the robustness towards all individual target classes
for three MNIST networks. We establish that the robustness distributions differ
significantly for most of these target classes.

• We establish that across networks, the robustness of a given class towards another
target class can differ significantly.

We believe that our preliminary work presented here provides a good basis for
connecting robustness distributions to fairness notions and creating a robust class
fairness metric.

The remainder of this report is structured as follows. We discuss the main con-
cepts relating to neural network verification, fairness and robustness in the context of
classification tasks in Section 2. In Section 3, we discuss the setup of our experiments.
Following this, Section 4 presents and discusses our empirical results. Finally, in Sec-
tion 5, we briefly summarise our findings and discuss the next steps we are currently
pursuing, building on our work presented here.
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2 Background

In the following, we review aspects of local robustness verification and robustness
distributions that form the basis for our work. We also briefly discuss bias and fairness
in machine learning.

Neural network verification. Verification methods for neural networks often focus on
local robustness properties for image classifiers. When a classifier is locally robust for
an input and a predetermined perturbation radius ε, it means that there exists no
perturbation of magnitude up to ε that is applied to the input, which will lead to
misclassification. The feasible region of perturbations is determined by some norm, in
our case the l∞-norm.

This property can be modelled using mixed-integer linear programming problems
[19]; however, due to the nonlinearity of neural networks, these problems can be
computationally expensive to solve.

Robustness distributions. In this work, we make use of the concept of robustness dis-
tributions introduced by Bosman et al. [2]. Robustness distributions are the empirical
distributions of the critical ε values, i.e., the largest perturbation radius, over a given
set of inputs such that each input is still classified provably accurately. In this work,
we use the approximate critical ε, expressed by ε̃∗, which is found by performing
repeated complete verification using k-binary search [2,5,6] for each individual input.

Robustness distributions are used to obtain a nuanced view of the robustness of
a given neural network. Instead of computing the robust accuracy of a network for
one predetermined ε, the distributions reflect the robustness for an entire range of
ε values. Based on the robustness distributions of a network, we can determine the
robust accuracy at any given perturbation radius ϵ.

Robust accuracy and robust recall. In many works considering robustness, the robust-
ness of a network is defined by means of robust accuracy [7, 16, 21]. Robust accuracy
is defined as the percentage of inputs that will be classified correctly, regardless of
what perturbation within the predefined bound ε will be applied to any given input.
In some cases, including our work presented here, this definition is adapted to ignore
originally misclassified inputs [20].

Accuracy is defined over the entire set of inputs, while here, we consider input-
specific classes. This means we should consider recall rather than accuracy. For this
reason, we introduce the concept of robust recall on a given class, which we define as
the percentage of inputs of that given class, that will be classified correctly regardless
of adversarial perturbation applied to this input up to the predefined bound ε.

Bias and fairness. There is a considerable amount of literature on identifying, cate-
gorising and mitigating bias in machine learning (for a comprehensive overview, see,
e.g., [12,18]). There is no universal definition of bias, nor a clear distinction between
bias and fairness in some of the literature. We refer to bias as a preference of the model
that is not solely based on the observed data [14]. Hence, bias describes a possible
state of a lack of fairness and primarily only identifies the condition that needs to
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be improved. Several metrics have been introduced to identify and quantify a lack of
fairness (see, e.g., [4, 12]). In the context of real-world data, such metrics are defined
based on protected characteristics of individuals that may lead to discrimination.

Benz et al. [1] found that there exist differences between the predictive performance
and robustness of different classes. The bias researched in this context is the disparity
of predictive performance and robustness based on a fixed maximum perturbation
level ε on a per-class level. We extend the work of Benz et al. [1] by providing a
more detailed analysis using robustness distributions and comparing across different
networks. Rather than measuring the per-class robustness at a fixed perturbation
magnitude ϵ, these distributions can determine the per-class robustness at any given
perturbation magnitude ϵ.

3 Setup of experiments

Network selection. We investigate three conventionally pre-trained MNIST classifi-
cation networks, with ReLU activation functions. We have selected these networks
based on the work by Bosman et al. [2], namely the network with the highest median
ε̃∗ on training data, the network with highest minimum ε̃∗ on training data and the
network with highest minimum ε̃∗ on testing data. Selecting a subset of the networks
considered by Bosman et al. was necessary because of the computational demands
of our analysis. The per-class performance and the number of training and testing
instances used for each network are described in Appendix A, Table 1.

Input selection. In this work, we investigate the robustness distributions for the dif-
ferent classes a network is trained for. We randomly selected 100 images for each
of 10 original MNIST classes for both testing and training data and thus obtained
1 000 images from the training data and 1 000 images from the testing data. In the
following, we refer to an instance as the combination of a network and an image. We
removed the images that were misclassified by a given network from the robustness
distribution, as they have essentially a critical epsilon value ε̃∗ of 0. This implies that
the set of images in the distribution might vary over networks, as can be seen in Ap-
pendix A, Table 1. Of course, when calculating the robust accuracy or robust recall
based on the robustness distributions, these images should be considered as well.

We also investigate whether the robustness of a certain class against perturbations
to specific other classes can significantly differ for a network. We chose to take 100
instances each from testing and training images with the original label 9. The decision
to investigate label 9 was based on the work of Zhang and Evans [23], who investi-
gated the robust error of different classes; from their results, we concluded that the
robust test error for original class 9 and with individual other MNIST target classes
have the most diverse error rate over the various target classes. For conciseness and
computational complexity reasons, we have restricted this part of our analysis to a
single original class.

Algorithm setup. To obtain the robustness distributions, we calculate a strict lower-
bound on the critical ε value, denoted by ε̃∗, for each input image, following Bosman et
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al. [2]. We discretise the problem into intervals of 0.002 in a range of [0.001, . . . , 0.800)
and find ε̃∗ by performing k-binary search with k = 2, which entails that we verify
k queries with different ε values for the same input image at the same time [2]. We
determine ε̃∗ by finding two adjacent perturbation radii a, b such that a < b, where a
verification query with perturbation radius a results in proof that the network is robust
and with perturbation radius b an adversarial example is found. In theory, we should
obtain b = a+0.002; however, in practice, some verification queries lead to time-outs
or out-of-memory errors (in our experiments, this happened in approximately 2% of
the instances).

We elected to use k-binary search (with k = 2) based on the results of Bosman
et al. [2]. The intuition behind this is as follows. Consider the situation in which 2
verification queries are running simultaneously for perturbation radii a, b on the same
instance such that a < b. Then, k-binary has the advantage that if we find that for
perturbation radius a the network is non-robust for a certain input, the network is
indeed also non-robust for b; we can thus terminate the verification query with radius
b, which potentially saves running time. The opposite also holds; if we find that the
network is robust against perturbation radius b for a certain input image, it must also
be robust for perturbation radius a.

For both one-to-any and one-to-one verification, we use the verification method
oval-bab [15] with a time-out of 3 600 seconds per verification query. We selected oval-
bab as it is a state-of-the-art verifier and it is relatively simple to adapt the verification
property to one-to-one verification within the oval-bab framework.

Execution environment. All our experiments were carried out on a cluster of machines,
each equipped with 2 Intel Xeon E5-2683 CPUs with 32 cores, 40MB cache size and
94GB of RAM, running CentOS Linux 7. The amount of RAM available for each
verification query for one image and network was set to 20GB. we always used one
dedicated CPU core per verification query and restricted each verification query to a
time budget of one CPU hour.

4 Results

We now report the results from our empirical analyses. First, as a basis for comparison
with the per-class robustness distributions at the core of this work, in Section 4.1, we
show general robustness distributions over all instances for the networks included in
this work. Then, in Section 4.2, we take a more detailed view and analyse the per-
class robustness distributions, in order to determine whether per-class discrepancies
in adversarial robustness exist. Next, we investigate whether there are significant
differences in the robustness distributions for the same data and class, but different
neural networks. The existence of such differences would indicate that, when assessing
the robustness of a neural network classifier, one should not merely focus on overall
robustness, but also determine whether the most important classes are sufficiently
robust against small input perturbations.

Furthermore, in Section 4.3 we considered the robustness of instances from a given
class against misclassification into a specific target class (i.e., one-to-one verification),
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to investigate whether there is a significant difference in robustness distribution for
different target classes and to compare the robustness of target classes for different
networks. This can be important in practice when misclassification due to small input
perturbations can have more severe effects for some target classes than for others.

4.1 Robustness distributions

In this section, as an introduction to the concept, we report the robustness distribution
for each network that is investigated in this work, similar to how they are presented
by Bosman et al. [2]. Robustness distributions in this context consist of the ε̃∗ over
a set of inputs, where the original class is not of relevance and no target class is
specified. This type of robustness distributions give a general, but nuanced, overview
of the robustness of a network.

Figure 1 shows the robustness distributions for the aggregated ε̃∗ over all im-
ages from any class for one-to-any classification. Each robustness distribution con-
sists of the ε̃∗ for 1 000 instances, minus the number of misclassified instances (see
Appendix A, Table 1). Naturally, these misclassified instances have a ε̃∗ of 0.

From the robustness distribution of a given network and the number of mis-
classified inputs, the robust accuracy for any ε can be obtained as the fraction
of correctly classified instances at ε. For example, at ε = 0.012 mnist_net and
mnist_relu_4_1024 have a robust accuracy of 94.8 and 93.9 percent, respectively,
while at ε = 0.04, they have a robust accuracy of 40.4 and 71.9, respectively.

4.2 Per-class one-to-any verification

In this section, we focus on sets of inputs from one specific target class at a time, while
previously, we considered inputs from all classes. Our goal in the analysis conducted
here was to determine whether the robustness distributions for different classes differ
from each other, and furthermore to investigate how the robustness distributions for
different networks for the same class relate to each other.

Figures 2a, 2b and 2c each show the robustness distributions for three different
neural networks. In each figure, we show the boxplots for each original MNIST class
(digits 0 to 9) from training and testing data, respectively, for a specific neural net-
work. In many cases, the training data distribution looks very similar to the testing
data distribution, and when performing a Kolmogorov-Smirnov test with α = 0.05, in
a large majority of the cases no significant difference between the testing and training
distributions was detected (see Appendix B.2, Figure 9).

Specifically, for mnist_relu_4_1024, mnist-net_256x4 and mnist-net of the 10
classes investigated overall, 2, 4 and 1, respectively, of the classes showed significantly
different robustness distributions for testing and training data.

The distributions for different original classes for the same network were signifi-
cantly different for both training and testing data, as determined by the Kolmogorov-
Smirnov test. This confirms that in addition to the fact that robust recall varies
greatly over classes, the robustness distributions do as well.

Figures 3a and 3b show the cumulative distribution function (CDF) plots for the
three MNIST networks for original classes 2 and 6, respectively. We found evidence
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Fig. 1: Boxplot of the distributions of ε̃∗ for 3 MNIST classifiers. For each, the ro-
bustness distribution is shown for correctly classified inputs on training and testing
data. We note that the individual distributions do not include images that were orig-
inally misclassified by the network, and that each of these distributions is comprised
of robustness information of distinct images. The robustness distribution of the net-
works, for both testing and training data, are significantly different from each other,
according to the Kolmogorov-Smirnov test at a standard significance level of α = 0.05
(see Appendix B.1, Figure 8). For mnist-net, the robustness distributions for training
and testing data are significantly different from each other, while for the other two
networks, we did not detect statistically significant differences.

that the robustness distributions for these networks, for both original classes, on
testing and training data, are all significantly different, according to a Kolmogorov-
Smirnov test with α = 0.05 (see Appendix B.3, Figure 10).

Figures 4a and 4b show an instance-level comparison of ε̃∗ for network
mnist_relu_4_1024 and mnist-net for original classes 2 and 6, respectively. Espe-
cially for class 6, for which the CDF is shown in 4b, the instances that are easier to
perturb for one network are not necessarily the ones that are easy to perturb for the
other.

4.3 Per-class one-to-one verification

We now report the results from our experiments on one-to-one verification, where
we consider misclassifications to specific target classes. Our goal was to investigate
whether the robustness distributions for one-to-one verification differ from each other,
as well as assess the differences in one-to-one verification for the same target class
between different networks.

Figures 5a, 5b and 5c show the one-to-one robustness distributions for three differ-
ent networks. Each figure shows the boxplots for a specific MNIST target class, except
class 9, which was the original class of the images, in the dataset for training and test-
ing data, respectively. In many of the cases, the training data distribution looks very
similar to the testing data distribution, and when performing a Kolmogorov-Smirnov
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(a) mnist_relu_4_1024
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(b) mnist-net_256x4
0 1 2 3 4 5 6 7 8 9

Original class
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
ri

tic
al

 e
ps

ilo
n

testing

(c) mnist-net

Fig. 2: Boxplots of the distributions of ε̃∗ for 3 MNIST classifiers. For each, the robust-
ness distribution is shown for each original class over the respective sets of correctly
classified inputs on training and testing data. We note that the individual distribu-
tions do not include images that were originally misclassified by the network, and that
each of these distributions is comprised of robustness information of distinct images.

test with α = 0.05, in a large majority of the cases, no statistically significant dif-
ference between the testing and training distributions was found. Specifically, for
mnist-relu_4_1024, only the training and testing distribution for target class 0 are
significantly different, for mnist-net_2564, there was a significant difference for both
target classes 3 and 8, and for mnist-net there was also a significant difference for
target class 3 (see Appendix B.4, Figure 11).

The empirical data suggests that the robustness against targeted perturbations
(e.g., adversarial attacks) for different targets with the same original class can be
significantly different. In many cases, the robustness distributions for different target
classes are significantly different from each other, as determined by the Kolmogorov-
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Fig. 3: Empirical CDF plots for the empirical robustness distributions for the 3 in-
vestigated MNIST classifiers for 2 different original classes with both quite average
behaviour on testing data.
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(b) Original class 6

Fig. 4: Scatterplot of ε̃∗ for different testing images for two original classes for different
networks. Each point corresponds to one image. The images that were originally
misclassified by at least one of the networks are not included.
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(a) mnist-relu_4_1024
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(b) mnist-net_256x4
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(c) mnist-net

Fig. 5: Boxplots of the distributions of ε̃∗, for 3 MNIST classifiers. In each case, the
robustness distribution of original class 9 with all different target classes is shown on
correctly classified inputs from training and testing data, respectively. We note that
the individual distributions do not include images that were originally misclassified by
the network and that each of these distributions is comprised of robustness information
on the same images.

Smirnov test (see Appendix B.5, Figure 12), Figures 6a and 6b show the CDF plots
for the three MNIST networks for target classes 2 and 6, respectively.

Figures 7a and 7b show an instance-level comparison of ε̃∗ for network
mnist_relu_4_1024 and mnist-net for target classes 1 and 6, respectively. Especially
for target class 6, for which the instance-level comparison is shown in 7b, the ε̃∗ for
mnist-net has a much wider range than for mnist_relu_4_1024. There also appear
to be three clusters, which can also be noticed in Figure 6b, in the form of multiple
modes in the CDF plots. Further analysis needs to be performed to determine a
possible cause for this.
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Fig. 6: Empirical CDF plots for the empirical robustness distributions for the 3 inves-
tigated MNIST classifiers for 2 different target classes with typical (left) and atypical
behaviour (right) on testing data. For both target classes, the robustness distributions
for all different network combinations are from different distributions according to the
Kolmogorov-Smirnov test with α = 0.05 for both testing and training data.
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Fig. 7: Scatterplot of ε̃∗ for different testing images for two target classes for different
networks. Each point corresponds to one image. The images that were originally
misclassified by at least one of the networks are not included.
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5 Conclusions and Future Work

In this preliminary work, we investigated robustness distributions on the class level.
Specifically, we created robustness distributions per class for one-to-any verification,
as well as distributions for a given (original) class to a given target class, for one-
to-one verification. In particular, for different original classes as well as for different
target classes we found significant differences in the robustness distributions, indicat-
ing significant per-class bias in the robustness of these networks. To the best of our
knowledge, robustness distributions have not been used to study the robustness of
networks on a per-class level; we find them useful because they provide additional
information to practitioners in need of assessing neural networks based on per-class
robustness properties. Additionally, we believe to be the first to study the robustness
of neural networks for different target classes.

We show, for the first time, that for the same data from the same original classes,
the robustness distributions can also differ significantly between networks: One net-
work can be more robust for inputs from a certain original class than another network,
and simultaneously be less robust for another original class. This implies that prac-
titioners should not only consider the overall robustness of networks, but also the
robustness of individual classes, especially when dealing with cases where the mis-
classification cost differs between classes.

Similarly, we found that for the same data, and the same target classes, there can
be significant differences in the robustness for different networks. This is particularly
interesting when misclassification to certain target classes has more severe practical
effects than misclassifications to other target classes.

Currently, we are extending our analysis beyond MNIST and specifically studying
the German Traffic Sign Recognition benchmark [17]. Even though our study on
MNIST presented here has clearly illustrated the usefulness of robustness distributions
for assessing the robustness of different classes and networks, we further plan to extend
our work to real-world problems where misclassification costs are non-symmetrical and
therefore need to be considered carefully. In addition, we are planning to investigate
whether methods that retrain networks for balanced per-class robustness can alter
the robustness distributions and potentially eliminate or at least reduce per-class bias
neural network robustness.

Lastly, we plan to extend our work to a face recognition benchmark and to analyse
the robustness distributions of different classes when sensitive attributes are of con-
cern. We ultimately aim to introduce fairness metrics that also take into consideration
robustness. As state-of-the-art classifiers used in this field are potentially too complex
to be handled by current complete verifiers, incomplete verification techniques might
have to be used in this context.
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A Overview of used networks

mnist-net mnist-net_256x4 mnist-relu_4_1024

Recall Number of
instances Recall Number of

instances Recall Number of
instances

Class training testing training testing training testing training testing training testing training testing

0 0.998 0.990 100 100 0.996 0.988 100 99 0.994 0.993 100 100
1 0.997 0.988 100 99 0.995 0.991 100 100 1.000 0.997 100 100
2 0.996 0.982 100 96 0.987 0.969 99 95 0.906 0.893 81 94
3 0.993 0.975 100 99 0.981 0.971 97 98 0.994 0.992 98 99
4 0.996 0.968 100 95 0.993 0.978 100 98 0.941 0.931 99 93
5 0.997 0.975 100 95 0.993 0.981 98 97 0.967 0.948 91 93
6 0.998 0.978 99 97 0.997 0.982 99 98 0.914 0.906 92 85
7 0.997 0.984 100 100 0.996 0.977 99 99 0.987 0.978 99 98
8 0.995 0.971 100 96 0.989 0.967 100 95 0.816 0.829 83 83
9 0.993 0.968 97 98 0.981 0.959 96 95 0.915 0.908 86 90

0.996 0.996 996 975 0.991 0.990 988 974 0.945 0.941 929 935

Table 1: The number of images per class considered for verification and the testing
and training accuracy overall testing and training instances for the 3 conventionally
trained, fully connected ReLU networks. We include the number of correctly classi-
fied images per network per original class (indicated by recall) and the training and
testing accuracy over all MNIST training and testing data, respectively. Note that
the performance scores in this table were calculated over more than the number of
verified instances.
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B Kolmogorov-Smirnov tests

B.1 Robustness distributions aggregated

Fig. 8: Matrix containing the Kolmogorov-Smirnov test statistics with α = 0.05 for
the aggregated robustness distributions shown in Section 4.1. Each square contains
the test statistic for the comparison of two robustness distributions. The squares
coloured blue indicate that there is a significant difference in the robustness distri-
butions according to the test and the yellow squares mean no significant difference
can be proven. The squares in the lower half, outlined by a bright yellow, are the
distributions created from the ε̃∗ of training data. The squares in the upper-half, out-
lined in pink, are the distributions created from the ε̃∗ of testing data. The squares
on the diagonal, from upper-left to lower-right, are the distributions created from the
ε̃∗ testing and training data from the same network. This way of displaying the test
statistics is chosen for conciseness and the other matrices in this section have the
same layout, albeit without the outlines.
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B.2 One-to-any KS statistics per network
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Fig. 9: Matrices containing the Kolmogorov-Smirnov test statistics with α = 0.05 for the one-
to-any robustness distributions shown in Section 4.2. Each square contains the test statistic
for the comparison of two robustness distributions of different original classes for the same
network.

B.3 One-to-any KS statistics per class
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Fig. 10: Matrices containing the Kolmogorov-Smirnov test statistics with α = 0.05 for the
one-to-any robustness distributions shown in Section 4.2. Each square contains the test
statistic for the comparison of two robustness distributions of the same orginal classes for
the different networks.
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B.4 One-to-one KS statistics per network
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Fig. 11: Matrices containing the Kolmogorov-Smirnov test statistics with α = 0.05 for
the one-to-one robustness distributions shown in Section 4.3. Each square contains
the test statistic for the comparison of two robustness distributions of different target
classes for the same network.

B.5 One-to-one KS statistics per class
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(h) Target class 7
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Fig. 12: Matrices containing the Kolmogorov-Smirnov test statistics with α = 0.05 for the
one-to-one robustness distributions shown in Section 4.3. Each square contains the test statis-
tic for the comparison of two robustness distributions of the same target classes for the dif-
ferent networks.
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