
Noname manuscript No.
(will be inserted by the editor)

The Online Performance Estimation Framework

Heterogeneous Ensemble Learning for Data Streams

Jan N. van Rijn · Geoffrey Holmes ·
Bernhard Pfahringer · Joaquin
Vanschoren

Received: date / Accepted: date

Abstract Ensembles of classifiers are among the best performing classifiers
available in many data mining applications, including the mining of data
streams. Rather than training one classifier, multiple classifiers are trained,
and their predictions are combined according to a given voting schedule. An
important prerequisite for ensembles to be successful is that the individual
models are diverse. One way to vastly increase the diversity among the models
is to build an heterogeneous ensemble, comprised of fundamentally different
model types. However, most ensembles developed specifically for the dynamic
data stream setting rely on only one type of base-level classifier, most of-
ten Hoeffding Trees. We study the use of heterogeneous ensembles for data
streams. We introduce the Online Performance Estimation framework, which
dynamically weights the votes of individual classifiers in an ensemble. Using
an internal evaluation on recent training data, it measures how well ensemble
members performed on this and dynamically updates their weights. Experi-
ments over a wide range of data streams show performance that is competi-
tive with state of the art ensemble techniques, including Online Bagging and
Leveraging Bagging, while being significantly faster. All experimental results
from this work are easily reproducible and publicly available online.

Keywords Data Streams · Ensembles · Meta-Learning

Jan N. van Rijn
University of Freiburg, Freiburg, Germany
Leiden Institute of Advanced Computer Science, Leiden University, Leiden, the Netherlands
E-mail: vanrijn@informatik.uni-freiburg.de

Geoffrey Holmes
University of Waikato, Hamilton, New Zealand

Bernhard Pfahringer
University of Waikato, Hamilton, New Zealand

Joaquin Vanschoren
Eindhoven University of Technology, Eindhoven, the Netherlands

2 Jan N. van Rijn et al.

1 Introduction

Real-time analysis of data streams is a key area of data mining research. Many
real world collected data is in fact a stream where observations come in one
by one, and algorithms processing these are often subject to time and memory
constraints. The research community developed a large number of machine
learning algorithms capable of online modelling general trends in stream data
and make accurate predictions for future observations.

In many applications, ensembles of classifiers are the most accurate classi-
fiers available. Rather than building one model, a variety of models are gen-
erated that all vote for a certain class label. One way to vastly improve the
performance of ensembles is to build heterogeneous ensembles, consisting of
models generated by different techniques, rather than homogeneous ensem-
bles, in which all models are generated by the same technique. Both types
of ensembles have been extensively analysed in classical batch data mining
applications. As the underlying techniques upon which most heterogeneous
ensemble techniques rely can not be trivially transferred to the data stream
setting, there are currently no successful heterogeneous ensemble techniques
in the data stream setting. State of the art heterogeneous ensembles in a data
stream setting typically rely on meta-learning (van Rijn et al 2014; Rossi et al
2014). These approaches both require the extraction of computationally ex-
pensive meta-features and yield marginal improvements.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5 10 15 20 25 30 35 40

ac
cu

ra
cy

interval

Hoeffding Tree
Naive Bayes

SPegasos
k-NN

Fig. 1 Performance of four classifiers on intervals (size 1,000) of the electricity dataset.
Each data point represents the accuracy of a classifier on the most recent interval.

In this work we introduce a technique that natively combines heterogeneous
models in the data stream setting. As data streams are constantly subject to
change over time, the most accurate classifier for a given interval of obser-
vations also changes frequently, as illustrated by Figure 1. In their seminal
paper, Littlestone and Warmuth (1994) describe a strategy to weight the vote
of ensemble members based on their performance on recent observations and
prove certain error bounds. Although this work is of great theoretical value,
it needs non-trivial adjustments to be applicable on practical data streams.

The Online Performance Estimation Framework 3

Based on this approach, we propose a way to measure the performance of
ensemble members on recent observations and combine their votes.

Our contributions are the following. We define Online Performance Estima-
tion, a framework that provides dynamic weighting of the votes of individual
ensemble members across the stream. Utilising this framework, we introduce
a new ensemble technique that combines heterogeneous models. The members
of the ensemble are selected based on their diversity in terms of the correlation
of their errors, leveraging the Classifier Output Difference (COD) by Peter-
son and Martinez (2005). We conduct an extensive empirical study, covering
60 data streams and 25 classifiers, that shows that this technique is competi-
tive with state of the art ensembles, while requiring significantly less resources.
Our proposed methods are implemented in the data stream framework MOA
and all our experimental results are made publicly available on OpenML.

The remainder of this paper is organised as follows. Section 2 surveys re-
lated work, and Section 3 introduces the proposed methods. We demonstrate
the performance by two experiments; Section 4 describes the experimental
setup, the selected data streams and the baselines. Section 5 compares the
performance of the proposed methods against state of the art methods; Sec-
tion 6 surveys the effect of its parameters. Section 7 concludes.

2 Related Work

It has been recognised that data stream mining differs significantly from con-
ventional batch data mining (e.g., Domingos and Hulten 2003; Gama et al
2009; Bifet et al 2010a,b; Read et al 2012). In the conventional batch setting,
a finite amount of stationary data is provided and the goal is to build a model
that fits the data as well as possible. When working with data streams, we
should expect an infinite amount of data, where observations come in one by
one and are being processed in that order. Furthermore, the nature of the
data can change over time, known as concept drift. Classifiers should be able
to detect when a learned model becomes obsolete and update it accordingly.

Common Approaches. Some batch classifiers can be trivially adapted
to a data stream setting. Examples are k Nearest Neighbour (Beringer and
Hüllermeier 2007; Zhang et al 2011), Stochastic Gradient Descent (Bot-
tou 2004) and SPegasos (Stochastic Primal Estimated sub-GrAdient SOlver
for SVMs) (Shalev-Shwartz et al 2011). Both Stochastic Gradient Descent

and SPegasos are gradient descent methods, capable of learning a variety of
linear models, such as Support Vector Machines and Logistic Regression, de-
pending on the chosen loss function.

Other classifiers have been created specifically to operate on data streams.
Most notably, Domingos and Hulten (2000) introduced the Hoeffding Tree

induction algorithm, which inspects every example only once, and stores per-
leaf statistics to calculate the information gain on which the split criterion
is determined. The Hoeffding bound states that the true mean of a random
variable of a given range will not differ from the estimated mean by more than

4 Jan N. van Rijn et al.

a certain value. This provides statistical evidence that a certain split is superior
over others. As Hoeffding Trees seem to work very well in practice, many
variants have been proposed, such as Hoeffding Option Trees (Pfahringer
et al 2007), Adaptive Hoeffding Trees (Bifet and Gavaldà 2009) and Random

Hoeffding Trees (Bifet et al 2012).
Finally, a commonly used technique to adapt traditional batch classifiers

to the data stream setting is training them on a window of w recent examples:
after w new examples have been observed, a new model is built. This approach
has the advantage that old examples are ignored, providing natural protection
against concept drift. A disadvantage is that it doesn’t operate directly on the
most recently observed data, not before w new observations are made and the
model is retrained. Read et al (2012) compare the performance of these batch-
incremental classifiers with common data stream classifiers, and conclude that
the overall performance is equivalent, although the batch-incremental classi-
fiers generally use more resources.

Ensembles. Ensemble techniques train multiple classifiers on a set of
weighted training examples, and these weights can vary for different classi-
fiers. In order to classify test examples, all individual models produce a pre-
diction, also called a vote, and the final prediction is made according to a
predefined voting schema, e.g., the class with the most votes is selected. Based
on Condorcet’s jury theorem (Hansen and Salamon 1990; Ladha 1993) there
is theoretical evidence that the error rate of an ensemble in the limit goes
to zero if two conditions are met. First, the individual models must do better
than random guessing, and second, the individual models must be diverse, i.e.,
their errors should not be correlated.

Classifier Output Difference (COD) is a metric which measures the number
of observations on which a pair of classifiers yields a different prediction (Pe-
terson and Martinez 2005). It is defined as:

CODT (l1, l2) =

∑
x∈T B(l1(x), l2(x))

|T |
(1)

where T is the set of all test instances, l1 and l2 are the classifiers to compare
and l1(x) and l2(x) is the label that the respective classifiers l1 and l2 give to
test instance x; finally, B is a binary function that returns 1 iff l1(x) and l2(x)
are equal and 0 otherwise. Peterson and Martinez (2005) use this measure to
ensure diversity among the ensemble members. A high value of COD indicates
that two classifiers yield different predictions, hence they would be well suited
to combine in an ensemble. Lee and Giraud-Carrier (2011) use Classifier Out-
put Difference to build a hierarchical clustering among classifiers, resulting in
classifiers that have similar predictions to be closely clustered, and vice versa.

In the data stream setting, ensembles can be either static or dynamic.
Static ensembles contain a fixed set of ensemble members, whereas dynamic
ensembles sometimes replace old models by new ones. Both approaches have
advantages and disadvantages. Dynamic ensembles can actively replace obso-
lete models by new ones when concept drift occurs, whereas static ensembles
need to rely on the individual members to recover from it. However, in order

The Online Performance Estimation Framework 5

for dynamic ensembles to work properly, many parameters need to be set. For
example, when to remove an old model, when to introduce a new model, which
model should be introduced, and how long such new model should be trained
before its vote will be considered. For these reasons, in this work we focus on
static ensembles, in order to provide an off the shelf working method that does
not require extensive parameter tuning. We will compare it with both static
and dynamic ensemble methods.

Static Ensembles. Bagging (Breiman 1996) exploits the instability of
classifiers by training them on different bootstrap replicates: resamplings (with
replacement) of the training set. Effectively, the training sets for various clas-
sifiers differ by the weights of their training examples. Online Bagging (Oza
2005) operates on data streams by drawing the weight of each example from
a Poisson(1) distribution, which converges to the behaviour of the classical
Bagging algorithm if the number of examples is large. As the Hoeffding bound
gives statistical evidence that a certain split criteria is optimal, this makes
them more stable and hence less suitable for the use in a Bagging scheme.
However, in practise this yields good results. Boosting (Schapire 1990) is a
technique that sequentially trains multiple classifiers, in which more weight
is given to examples that where misclassified by earlier classifiers. Online

Boosting (Oza 2005) applies this technique on data streams by assigning
more weight to training examples that were misclassified by previously trained
classifiers in the ensemble. Stacking (Wolpert 1992; Gama and Brazdil 2000)
combines heterogeneous models in the classical batch setting. It trains mul-
tiple models on the training data. All base-learners output a prediction, and
a meta-learner makes a final decision based on these. Caruana et al (2004)
propose a hill-climbing method to select an appropriate set of base-learners
from a large library of models.

Dynamic Ensembles. Weighted Majority is an ensemble technique spe-
cific to data streams, where a meta-algorithm learns the weights of the ensem-
ble members (Littlestone and Warmuth 1994). The authors also provide tight
error bounds compared for the meta-algorithm compared to to the best ensem-
ble member (under certain assumptions). Dynamic Weighted Majority is an
extension of this work, specific to data streams with changing concepts (Kolter
and Maloof 2007). It contains a set of classifiers, and measures the performance
of these based on recent observations. Whenever an ensemble member classi-
fies a new observation wrong, its weight gets decreased by a predefined factor.
Whenever the ensemble misclassifies an instance, a new ensemble member gets
added to the pool of learners. Members with a weight below a given threshold
get removed from the ensemble.

Accuracy Weighted Ensemble is an ensemble technique that splits the
stream into chunks of observations, and trains a classifier on each of these (Wang
et al 2003). Each created classifier votes for a class-label, and the votes are
weighted according to the expected error of the individual models. Poorly
performing ensemble members are replaced by new ones. As was remarked
by Read et al (2012), this makes them work particularly well in combination
with batch-incremental classifiers. Once a new model is built upon a batch of

6 Jan N. van Rijn et al.

data, the old model will not be eliminated, but instead it is also used in the
ensemble.

Meta-Learning. Meta-learning aims to learn which learning techniques
work well on what data. A common task, known as the Algorithm Selection
Problem (Rice 1976), is to determine which classifier performs best on a given
dataset. We can predict this by training a meta-model on data describing the
performance of different methods on different datasets, characterised by meta-
features (Brazdil et al 1994). Meta-features are often categorised as either
simple (number of examples, number of attributes), statistical (mean stan-
dard deviation of attributes, mean skewness of attributes), information theo-
retic (class entropy, mean mutual information), or landmarkers, performance
evaluations of simple classifiers (Pfahringer et al 2000). In the data stream set-
ting, meta-learning techniques are often used to dynamically switch between
classifiers at various points in the stream, effectively creating a heterogeneous
ensemble (albeit at a certain cost in terms of resources).

Earlier approaches often train an ensemble of stream classifiers and a meta-
model decides for each data point which of the base-learners will make a predic-
tion. Rossi et al (2014) dynamically choose between two regression techniques
using meta-knowledge obtained earlier in the stream. van Rijn et al (2014)
select the best classifier among multiple classifiers, based on meta-knowledge
from previously processed data streams. Online Performance Estimation was
first introduced by van Rijn et al (2015), which we will extend and improve
in this paper. Gama and Kosina (2014) uses meta-learning on time series
with recurrent concepts: when concept drift is detected, a meta-learning algo-
rithm decides whether a model trained previously on the same stream could
be reused, or whether the data is so different from before that a new model
must be trained. Finally, Nguyen et al (2012) propose a method that com-
bines feature selection and heterogeneous ensembles; members that performed
poorly can be replaced by a drift detector.

Concept drift. One property of data streams is that the underlying con-
cept that is being learned can change over time (e.g., Wang et al 2003). This is
called concept drift. Some of the aforementioned methods naturally deal with
concept drift. For instance, k Nearest Neighbour maintains a number of w
recent examples, substituting each example after w new examples have been
observed. Change detectors, such as Drift Detection Method (DDM) (Gama et al
2004a) and Adaptive Sliding Window Algorithm (ADWIN) (Bifet and Gavalda
2007) are stand-alone techniques that detect concept drift and can be used
in combination with any stream classifier. Both rely on the assumption that
classifiers improve (or at least maintain) their accuracy when trained on more
data. When the accuracy of a classifier drops in respect to a reference window,
this could mean that the learned concept is outdated, and a new classifier
should be built. The main difference between DDM and ADWIN is the way they
select the reference window. Furthermore, classifiers can have built-in drift de-
tectors. For instance, Ultra Fast Forest of Trees (Gama et al 2004b) are
Hoeffding Trees with a built-in change detector for every node. When an
earlier made split turns out to be obsolete, a new split can be generated.

The Online Performance Estimation Framework 7

It has been recognised that some classifiers recover faster from sudden
changes of concepts than others. Shaker and Hüllermeier (2015) introduce
recovery analysis, a framework to measure the ability of classifiers to recover
from concept drift. They distinguish instance-based classifiers that operate
directly on the data (e.g., k-NN) and model-based classifiers, that build and
maintain a model (e.g., tree algorithms, fuzzy systems). Their experimental
results suggest, quite naturally, that instance-based classifiers generally have
a higher capability to recover from concept drift than model-based classifiers.

Evaluation. As data from streams is non-stationary, the well-known cross-
validation procedure for estimating model performance is not suitable. A com-
monly accepted estimation procedure is the prequential method (Gama et al
2009), in which each example is first used to test the current model, and af-
terwards (either directly after testing or after a delay) becomes available for
training. An advantage of this method is that it is tested on all data, and
therefore no specific holdout set is needed.

Experiment Databases. Experiment databases facilitate the reproduc-
tion of earlier results for verification and reusability purposes, and make much
larger studies (covering more classifiers and parameter settings) feasible. Above
all, experiment databases allow a variety of studies to be executed by a database
look-up, rather than setting up new experiments. An example of such an online
experiment database is OpenML (Vanschoren et al 2014). OpenML is a Open
Science platform for Machine Learning, containing many datasets, algorithms,
and experimental results (the result of an algorithm on a dataset). For each
experimental result it stores all predictions and class confidences, making it
possible to calculate a wide range of measures, such as predictive accuracy
and COD. We use OpenML to obtain information about the performance and
interplay between various base-classifiers and to store our experimental results.

3 Methods

Traditional Machine Learning problems consist of a number of examples that
are observed in arbitrary order. In this work we consider classification prob-
lems. Each example e = (x, l(x)) is a tuple of p predictive attributes x =
(x1, . . . , xp) and a target attribute l(x). A data set is an (unordered) set of
such examples. The goal is to approximate a labelling function l : x → l(x).
In the data stream setting the examples are observed in a given order, there-
fore each data stream S is a sequence of examples S = (e1, e2, e3, . . . , en, . . .),
possibly infinite. Consequently, ei refers to the ith example in data stream S.
The set of predictive attributes of that example is denoted by PS i, likewise
l(PS i) maps to the corresponding label. Furthermore, the labelling function
that needs to be learned can change over time due to concept drift.

When applying an ensemble of classifiers, the most relevant variables are
which base-classifiers (members) to use and how to weight their individual
votes. This work mainly focuses on the latter question. Section 3.1 describes
the Performance Estimation framework to weight member votes in an en-

8 Jan N. van Rijn et al.

semble. In Section 3.2 we show how to use the Classifier Output Difference
to select ensemble members. Section 3.3 describes an ensemble that employs
these techniques.

3.1 Online Performance Estimation

In most common ensemble approaches all base-classifiers are given the same
weight (as done in Bagging and Boosting) or their predictions are otherwise
combined to optimise the overall performance of the ensemble (as done in
Stacking). An important property of the data stream setting is often neglected:
due to the possible occurrence of concept drift it is likely that in most cases
recent examples are more relevant than older ones. Moreover, due to the fact
that there is a temporal component in the data, we can actually measure how
ensemble members have performed on recent examples, and adjust their weight
in the voting accordingly. In order to estimate the performance of a classifier
on recent data, van Rijn et al (2015) proposed:

Pwin(l′, c, w, L) = 1−
c−1∑

i=max(1,c−w)

L(l′(PS i), l(PS i))

min(w, c− 1)
(2)

where l′ is the learned labelling function of an ensemble member, c is the index
of the last seen training example and w is the number of training examples
over which we want to estimate the performance of ensemble members. Note
that there is a certain start-up time (i.e., when w is larger than or equal
to c) during which we can only calculate the performance estimation over a
number of instances smaller than w. Also note that it can only be performed
after several labels have been observed (i.e., c > 1). Finally, L is a loss function
that compares the labels predicted by the ensemble member to the true labels.
The most simple version is a zero/one loss function, which returns 0 when the
predicted label is correct and 1 otherwise. More complicated loss functions can
also be incorporated. The outcome of Pwin is in the range [0, 1], with better
performing classifiers obtaining a higher score. The performance estimates
for the ensemble members can be converted into a weight for their votes, at
various points over the stream. For instance, the best performing members at
that point could receive the highest weights. Figure 2 illustrates this.

There are a few drawbacks to this approach. First, it requires the ensemble
to store the w × n additional values, which is inconvenient in a data stream
setting, where both time and memory are important factors. Second, it requires
the user to tune a parameter which highly influences performance. Last, there
is a hard cut-off point, i.e., an observations is either in or out of the window.
What we would rather model is that the most recent observations are given
most weight, and gradually lower this for less recent observations.

In order to address these issues, we propose an altered version of perfor-
mance estimation, based on fading factors, as described by Gama et al (2013).

The Online Performance Estimation Framework 9

. . . c . . .

w

l1 ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ 0.7

l2 ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ 0.7

l3 ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ 0.8

Fig. 2 Schematic view of Windowed Performance Estimation. For all classifiers, w flags are
stored, each flag indicating whether it predicted a recent observation correctly.

Fading factors give a high importance to recent predictions, whereas the im-
portance fades away when they become older. This is illustrated by Figure 3.
The red (solid) line shows a relatively fast fading factor, where the effect of a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

e
ff

e
c
t

observations

f(x) = 0.99 • f(x-1)
f(x) = 0.999 • f(x-1)

f(x) = 0.9999 • f(x-1)

Fig. 3 The effect of a prediction after a number of observations, relative to when it was
first observed (for various values of α).

given prediction is already faded away almost completely after 500 predictions,
whereas the blue (dashed) line shows a relatively slow fading factor, where the
effect of an observation is still considerably high, even when 10,000 observa-
tions have passed in the meantime. Note that even though all these functions
start at 1, in practise we need to scale this down to 1 − α, in order to con-
strict the complete function within the range [0, 1]. Putting this all together,
we propose:

10 Jan N. van Rijn et al.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000

O
n

lin
e

 P
e

rf
o

rm
a

n
c
e

 E
s
ti
m

a
ti
o

n

observations

NaiveBayes
Perceptron

SGD
kNN

HoeffdingTree

(a) Windowed, window size 1,000

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000

O
n

lin
e

 P
e

rf
o

rm
a

n
c
e

 E
s
ti
m

a
ti
o

n

observations

NaiveBayes
Perceptron

SGD
kNN

HoeffdingTree

(b) Fading Factors, α = 0.999

Fig. 4 Online performance estimation, i.e. the estimated performance of each algorithm
given previous examples, measured on the start of the electricity data stream.

P (l′, c, α, L) =

{
1 iff c = 0
P (l′, c− 1, α, L) · α+ (1− L(l′(PSc), l(PSc))) · (1− α) otherwise

(3)

where, similar to Eq. 2, l′ is the learned labelling function of an ensemble
member, c is the index of the last seen training example and L is a loss function
that compares the labels predicted by the ensemble member to the true labels.
Fading factor α (range [0, 1]) determines at what rate historic performance
becomes irrelevant, and is to be tuned by the user. A value close to 0 will
allow for rapid changes in estimated performance, whereas a value close to 1
will keep them rather stable. The outcome of P is in the range [0, 1], with
better performing classifiers obtaining a higher score. In Section 6 we will
see that the fading factor parameter is more robust and easier to tune than
the window size parameter. When building an ensemble based upon Online
Performance Estimation, we can now choose between a Windowed approach
(Eq. 2) and Fading Factors (Eq. 3).

Figure 4 shows how the estimated performance for each base-classifier
evolves on the start of the electricity data stream. Both figures expose similar
trends: apparently, on this data stream the Hoeffding Tree classifier performs
best and the Stochastic Gradient Descent algorithm performs worst. However,

The Online Performance Estimation Framework 11

Table 1 Classifiers considered in this research. All parameters are set to default values,
unless specified otherwise.

Classifier Model type Parameters
Majority Class Classification Rule
No Change Classification Rule
SGD / Hinge loss SVM
SPegasos / Hinge loss SVM
SGD / Log loss Logistic
SPegasos / Log loss Logistic
Perceptron Neural Network
Naive Bayes Bayesian
1-NN Lazy w = 1,000
k-NN Lazy k = 10, w = 1,000
k-NN with PAW Lazy k = 10, w = 1,000
Rule Classifier Classification Rules
Decision Stump Decision Tree
Hoeffding Tree Decision Tree
Hoeffding Adaptive Tree Decision Tree
Random Hoeffding Tree Decision Tree
AS Hoeffding Tree Decision Tree
Hoeffding Option Tree Option Tree
AWE(SMO) / Polynomial Kernel SVM n = 15, w = 1,000
AWE(Logistic) Logistic n = 15, w = 1,000
AWE(One Rule) Classification Rule n = 15, w = 1,000
AWE(JRIP) Classification Rules n = 15, w = 1,000
AWE(J48) Decision Tree n = 15, w = 1,000
AWE(REPTree) Decision Tree n = 15, w = 1,000
AWE(Decision Stump) Decision Tree n = 15, w = 1,000

both approaches differ subtly in the way the performance of individual clas-
sifiers are measured. The Windowed approach contains many spikes, whereas
the Fading Factor approach seems more stable.

3.2 Ensemble Composition

In order for an ensemble to be successful, the individual classifiers should be
both accurate and diverse. When employing a homogeneous ensemble, choos-
ing an appropriate base-learner is an important decision. For heterogeneous
ensembles this is even more true, as we have to choose a set of base-learners. We
consider a set of classifiers from MOA 2016.04 (Bifet et al 2010a). Furthermore,
we consider some fast batch-incremental classifiers from Weka 3.7.12 (Hall et al
2009) wrapped in the Accuracy Weighted Ensemble (Wang et al 2003). Ta-
ble 1 lists all classifiers and their parameter settings.

Figure 5 shows some basic results of the classifiers on 60 data streams.
Figure 5(a) shows a violin plot of the predictive accuracy of all classifiers,
with a box plot in the middle. Violin plots show the probability density of the
data at different values (Hintze and Nelson 1998). The classifiers are sorted by
median accuracy. Two common Data Stream baseline methods, the No Change

classifier and the Majority Class classifier, end at the bottom of the ranking

12 Jan N. van Rijn et al.

based on accuracy. This indicates that most of the selected data streams are
both balanced (in terms of class labels) and do not have high auto-correlation.
In general, tree-based methods seem to perform best.

Figure 5(b) shows violin plots of the run time (in seconds) that the classi-
fiers needed to complete the tasks. From the top-half performing classifiers in
terms of accuracy, the Hoeffding Trees is the best ranked algorithm in terms
of run time. Lazy algorithms (k-NN and its variations) turn out to be rather
slow, despite the reasonable value of window size parameter (controlling the
number of instances that are remembered). It also confirms some observation
made by Read et al (2012), that the batch-incremental classifiers generally take
more resources than instance-incremental classifiers; all classifiers wrapped in
the Accuracy Weighted Ensemble are on the right half of the figure.

Figure 6 shows the result of a statistical test on the base-classifiers. Clas-
sifiers are sorted by their average rank (lower is better). Classifiers that are
connected by a horizontal line are statistically equivalent. The results confirm
some of the observations made based on the violin plots, e.g., the baseline
models (Majority Class and No Change) perform worst; also other simple
models such as the Decision Stumps and OneRule (which is essentially a
Decision Stump) are inferior to the tree-based models. Oddly enough, the in-
stance incremental Rule Classifier does not compete at all with the Batch-
incremental counterpart (AWE(JRIP)).

When creating a heterogeneous ensemble, a diverse set of classifiers should
be selected (Hansen and Salamon 1990). Classifier Output Difference is a met-
ric that measures the difference in predictions between a pair of classifiers. We
can use this to create a hierarchical agglomerative clustering of data stream
classifiers in an identical way to Lee and Giraud-Carrier (2011). For each pair
of classifiers involved in this study, we measure the number of observations for
which the classifiers have different outputs, aggregated over all data streams in-
volved. Hierarchical agglomerative clustering (HAC) converts this information
into a hierarchical clustering. It starts by assigning each observation to its own
cluster, and greedily joins the two clusters with the smallest distance (Rokach
and Maimon 2005). The complete linkage strategy is used to measure the dis-
tance between two clusters. Formally, the distance between two clusters A and
B is defined as max {COD(a, b) : a ∈ A, b ∈ B}. Figure 7 shows the resulting
dendrogram. There were 9 data streams on which several classifiers did not
terminate. We left these out of the dendrogram.

We can use a dendrogram like the one in Figure 7 to get a collection
of diverse and well performing ensemble members. A COD-threshold is to be
determined, selecting representative classifiers from all clusters with a distance
lower than this threshold. A higher COD-threshold would result in a smaller
set of classifiers, and vice versa. For example, if we set the COD-threshold to
0.2, we end up with an ensemble consisting of classifiers from 11 clusters. The
ensemble will consist of one representative classifier from each cluster, which
can be chosen based on accuracy, run time, a combination of the two (e.g.,
Brazdil et al 2003) or any arbitrary other criteria. Which exact criteria to use is
outside the scope of this research, however in this study we used a combination

The Online Performance Estimation Framework 13

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0.00

0.25

0.50

0.75

1.00

NoC
ha

ng
e

M
ajo

rit
yC

las
s

SPeg
as

os
 lo

glo
ss

SPeg
as

os
 h

ing
elo

ss

SGD lo
glo

ss

SGD h
ing

elo
ss

Dec
isi

on
Stu

m
p

Per
ce

pt
ro

n

AW
E(O

ne
R)

AW
E(D

ec
isi

on
Stu

m
p)

Rule
Clas

sif
ier

Ran
do

m
Hoe

ffd
ing

Tr
ee

Naiv
eB

ay
es

kN
N k

=
1

AW
E(R

EPTr
ee

)

kN
N k

=
10

AW
E(S

M
O(P

oly
Ker

ne
l))

AW
E(L

og
ist

ic)

kN
Nwith

PA
W

 k
=

10

AW
E(J

48
)

AW
E(J

Rip)

Hoe
ffd

ing
Tr

ee

ASHoe
ffd

ing
Tr

ee

Hoe
ffd

ing
Opt

ion
Tr

ee

Hoe
ffd

ing
Ada

pt
ive

Tr
ee

P
re

di
ct

iv
e

A
cc

ur
ac

y

(a) Predictive Accuracy

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●● ●

●

●●●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

10

100

1000

10000

SPeg
as

os
 h

ing
elo

ss

SGD h
ing

elo
ss

SPeg
as

os
 lo

glo
ss

SGD lo
glo

ss

Dec
isi

on
Stu

m
p

NoC
ha

ng
e

M
ajo

rit
yC

las
s

Hoe
ffd

ing
Tr

ee

Ran
do

m
Hoe

ffd
ing

Tr
ee

Per
ce

pt
ro

n

Naiv
eB

ay
es

ASHoe
ffd

ing
Tr

ee

AW
E(O

ne
R)

AW
E(D

ec
isi

on
Stu

m
p)

Hoe
ffd

ing
Opt

ion
Tr

ee

Hoe
ffd

ing
Ada

pt
ive

Tr
ee

AW
E(R

EPTr
ee

)

AW
E(J

48
)

AW
E(J

Rip)

AW
E(S

M
O(P

oly
Ker

ne
l))

Rule
Clas

sif
ier

kN
N k

=
1

AW
E(L

og
ist

ic)

kN
N k

=
10

kN
Nwith

PA
W

 k
=

10

R
un

 C
pu

 T
im

e

(b) Run time (seconds)

Fig. 5 Performance of 25 data stream classifiers based on 60 data streams.

14 Jan N. van Rijn et al.

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

HoeffdingOptionTree
HoeffdingAdaptiveTree

HoeffdingTree
ASHoeffdingTree

AWE(J48)
AWE(JRip)

AWE(SMO(PolyKernel))
AWE(Logistic)

kNNwithPAW k = 10
AWE(REPTree)

kNN k = 10
kNN k = 1
NaiveBayes

RandomHoeffdingTree
Perceptron
RuleClassifier
AWE(DecisionStump)
AWE(OneR)
SPegasos logloss
DecisionStump
SPegasos hingeloss
SGD hingeloss
SGD logloss
MajorityClass
NoChange

CD

Fig. 6 Results of Nemenyi test (α = 0.05) on the predictive accuracy of the base-classifiers
in this study.

N
o

C
ha

ng
e

SG
D

 H
IN

G
EL

O
SS

SG
D

 L
O

G
LO

SS
SP

eg
as

os
 H

IN
G

EL
O

SS
SP

eg
as

os
 L

O
G

LO
SS

M
aj

or
ity

 C
la

ss
Pe

rc
ep

tro
n

AW
E(

O
ne

 R
ul

e)
D

ec
is

io
n

St
um

p
AW

E(
D

ec
is

io
n

St
um

p)
R

ul
e

C
la

ss
ifi

er
1−

N
N

k−
N

N
 w

ith
 P

AW
k−

N
N

R
an

do
m

 H
oe

ffd
in

g
Tr

ee
H

oe
ffd

in
g

Ad
ap

tiv
e

Tr
ee

H
oe

ffd
in

g
O

pt
io

n
Tr

ee
AS

 H
oe

ffd
in

g
Tr

ee
H

oe
ffd

in
g

Tr
ee AW

E(
JR

ip
)

AW
E(

R
EP

 T
re

e)
AW

E(
J4

8)
N

ai
ve

 B
ay

es
AW

E(
SM

O
)

AW
E(

Lo
gi

st
ic

)0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Fig. 7 Hierarchical clustering of stream classifiers, averaged over 51 data streams from
OpenML.

of accuracy and run time. Clearly, when using this technique in experiments,
the dendrogram should be constructed in a leave-one-out setting: it can be
created based on all data streams except for the one that is being tested.

The Online Performance Estimation Framework 15

Figure 7 can also be used to make some interesting observations. First,
it confirms some well-established assumptions. The clustering seems to re-
spect the taxonomy of classifiers provided by MOA. Many of the tree-based
and rule-based classifiers are grouped together. There is a cluster of instance-
incremental tree classifiers (Hoeffding Tree, AS Hoeffding Tree, Hoeffding
Option Tree and Hoeffding Adaptive Tree), a cluster of batch-incremental
tree-based and rule-based classifiers (REP Tree, J48 and JRip) and a clus-
ter of simple tree-based and rule-based classifiers (Decision Stumps and One

Rule). Also the Logistic and SVM models seem to produce similar predic-
tions, having a sub-cluster of batch-incremental classifiers (SMO and Logistic)
and a sub-cluster of instance incremental classifiers (Stochastic Gradient

Descent and SPegasos with both loss functions).
The dendrogram also provides some surprising results. For example, the

instance-incremental Rule Classifier seems to be fairly distant from the
tree-based classifiers. As decision rules and decision trees work with similar
decision boundaries and can easily be translated to each other, a higher sim-
ilarity would be expected (Apté and Weiss 1997). Also the internal distances
in the simple tree-based and rule-based classifiers seem rather high.

A possible explanation for this could be the mediocre performance of the
Rule Classifier (see Figure 5). Even though COD clusters are based on
instance-level predictions rather than accuracy, well performing classifiers have
a higher prior probability of being clustered together. As there are only few
observations they predict incorrectly, naturally there are also few observations
their predictions can disagree on.

3.3 BLAST

BLAST (short for best last) is an ensemble embodying the performance es-
timation framework. Ideally, it consists of a group of diverse base-classifiers.
These are all trained using the full set of available training observations. For
every test example, it selects one of its members to make the prediction. This
member is referred to as the active classifier. The active classifier is selected
based on Online Performance Estimation: the classifier that performed best
over the set of w previous training examples is selected as the active classifier
(i.e., it gets 100% of the weight), hence the name. Formally,

AC c = arg max
mj∈M

P (mj , c− 1, α, L) (4)

whereM is the set of models generated by the ensemble members, c is the index
of the current example, α is a parameter to be set by the user (fading factor)
and L is a zero/one loss function, giving a penalty of 1 to all misclassified
examples. Note that the performance estimation function P can be replaced by
any measure. For example, if we would replace it with Equation 2, we would get
the exact same predictions as reported by van Rijn et al (2015). When multiple
classifiers obtain the same estimated performance, any arbitrary classifier can

16 Jan N. van Rijn et al.

Algorithm 1 BLAST (Learning)
Require: Set of ensemble members M , Loss function L and Fading Factor α
1: Initialise ensemble members mj , with j ∈ {1, 2, 3, . . . , |M |}
2: Set pj = 1 for all j
3: for all training examples e = (x, l(x)) do
4: for all mj ∈M do
5: l′j(x)← predicted label of mj on attributes x of current example e

6: pj ← pj · α+ (1− L(l′j(x), l(x))) · (1− α)
7: Update mj with current example e
8: end for
9: end for

be selected as active classifier. The details of this method are summarised in
Algorithm 1.

Line 2 initialises a variable that keeps track of the estimated performance
for each base-classifier. Everything that happens from lines 5–7 can be seen
as an internal prequential evaluation method. At line 5 each training example
is first used to test all individual ensemble members on. The predicted label
is compared against the true label l(x) on line 7. If it predicts the correct
label then the estimated performance for this base-classifier will increase; if
it predicts the wrong label, the estimated performance for this base-classifier
will decrease (line 6). After this, base-classifier mj can be trained with the
example (line 7). When, at any time, a test example needs to be classified, the
ensemble looks up the highest value of pj and lets the corresponding ensemble
member make the prediction.

The concept of an active classifier can also be extended to multiple active
classifiers. Rather than selecting the best classifier on recent predictions, we
can select the best k classifiers, whose votes for the specified class-label are
all weighted according to some weighting schedule. First, we can weight them
all equally. Indeed, when using this voting schedule and setting k = |M |, we
would get the same behaviour as the Majority Vote Ensemble, as described
by van Rijn et al (2015), which performed only averagely. Alternatively, we
can use Online Performance Estimation to weight the votes. This way, the best
performing classifier obtains the highest weight, the second best performing
classifier a bit less, and so on. Formally, for each y ∈ Y (with Y being the set
of all class labels):

votesy =
∑

mj∈M
P (mj , i, α, L)×B(l′j(PS i), y) (5)

where M is the set of all models, l′j is the labelling function produced by
model mj and B is a binary function, returning 1 iff l′j voted for class label
y and 0 otherwise. Other functions regulating the voting process can also be
incorporated, but are beyond the scope of this research. The label y that
obtained the highest value votesy is then predicted. BLAST is available in the
MOA framework as of version 2017.06.

The Online Performance Estimation Framework 17

4 Experimental Setup

In order to establish the utility of BLAST and Online Performance Estimation,
we conduct experiments using a large set of data streams. The data streams
and results of all experiments are made publicly available in OpenML for the
purposes of verifiability, reproducibility and generalizability.1

Data Streams. The data streams are a combination of real world data
streams (e.g., electricity, covertype, IMDB) and synthetically generated data
(e.g., LED, Rotating Hyperplane, Bayesian Network Generator) commonly
used in data stream research (e.g., Beringer and Hüllermeier 2007; Bifet et al
2010a; van Rijn et al 2014). Many contain a natural drift of concept. Table 2
shows a list of all data streams, the number of observations, features, classes
and their default accuracy. We estimate the performance of the methods using
the prequential method: each observation is used as a test example first and
as a training example afterwards (Gama et al 2009). As most data streams are
fairly balanced, we will measure predictive accuracy in the experiments.

Baselines. We compare the results of the defined methods with the Best
Single Classifier. Each heterogeneous ensemble consists of n base-classifiers.
The one that performs best on average over all data streams is considered
the Best Single Classifier. This will allow to measure the potential accu-
racy gains of adding more classifiers (at the cost of using more computational
resources). Which classifier should be considered the best single classifier is
debatable. Based on the median scores depicted in Figure 5(a), Hoeffding
Adaptive Tree is the best performing classifier. Based on the statistical test
depicted in Figure 6, the Hoeffding Option Tree is the best performing clas-
sifier. We selected the Hoeffding Option Tree as the single best classifier.

Furthermore, we compare against the Majority Vote Ensemble, which is a
heterogeneous ensemble that predicts the label that is predicted by most en-
semble members. This allows to measure the potential accuracy gain of using
Online Performance Estimation over just naively combining the votes of indi-
vidual classifiers. Finally, we also compare the techniques to state of the art
homogeneous ensembles, such as Online Bagging, Leveraging Bagging, and
Accuracy Weighted Ensemble. These are embodied with a Hoeffding Tree

as base-classifier, because this is a good trade-off between predictive perfor-
mance and run time. Amongst all classifiers that are considered statistically
equivalent with the best classifier (Figure 6 on page 14), it has the lowest me-
dian run time (Figure 5(b) on page 13). This beneficial trade-off was also noted
by Domingos and Hulten (2003); Read et al (2012), and allows for the use of
a high number of base-classifiers. In order to understand the performance of
these ensembles a bit better, we provide some results.

Figure 8 shows violin plots of the performance of Accuracy Weighted

Ensemble (left bars, red), Leveraging Bagging (middle bars, green) and Online

Bagging (right bars, blue), with an increasing number of ensemble members.
Accuracy Weighted Ensemble (AWE) uses J48 trees as ensemble members,

1 Full details: http://www.openml.org/s/16

18 Jan N. van Rijn et al.

0.25

0.50

0.75

1.00

n =
 16

n =
 32

n =
 64

n =
 12

8

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

AWE(J48) Leveraging Bagging Online Bagging

(a) Accuracy

1

10

100

1000

10000

n =
 16

n =
 32

n =
 64

n =
 12

8

Ru
n

Cp
u

Ti
m

e

AWE(J48) Leveraging Bagging Online Bagging

(b) Run time (in seconds)

Fig. 8 Effect of the number of ensemble members on performance of Online Bagging and
Leveraging Bagging.

The Online Performance Estimation Framework 19

Table 2 Data streams used in the experiment. All are obtained from OpenML.

name instances symbolic
features

numeric
features

classes default
accuracy

BNG(kr-vs-kp) 1,000,000 37 0 2 0.52
BNG(mushroom) 1,000,000 23 0 2 0.51
BNG(soybean) 1,000,000 36 0 19 0.13
BNG(trains) 1,000,000 33 0 2 0.50
BNG(vote) 131,072 17 0 2 0.61
CovPokElec 1,455,525 51 22 10 0.44
covertype 581,012 45 10 7 0.48
Hyperplane(10;0.001) 1,000,000 1 10 5 0.50
Hyperplane(10;0.0001) 1,000,000 1 10 5 0.50
LED(50000) 1,000,000 25 0 10 0.10
pokerhand 829,201 6 5 10 0.50
RandomRBF(0;0) 1,000,000 1 10 5 0.30
RandomRBF(10;0.001) 1,000,000 1 10 5 0.30
RandomRBF(10;0.0001) 1,000,000 1 10 5 0.30
RandomRBF(50;0.001) 1,000,000 1 10 5 0.30
RandomRBF(50;0.0001) 1,000,000 1 10 5 0.30
SEA(50) 1,000,000 1 3 2 0.61
SEA(50000) 1,000,000 1 3 2 0.61
electricity 45,312 2 7 2 0.57
BNG(labor) 1,000,000 9 8 2 0.64
BNG(letter) 1,000,000 1 16 26 0.04
BNG(lymph) 1,000,000 16 3 4 0.54
BNG(mfeat-fourier) 1,000,000 1 76 10 0.10
BNG(bridges) 1,000,000 10 3 6 0.42
BNG(cmc) 55,296 8 2 3 0.42
BNG(credit-a) 1,000,000 10 6 2 0.55
BNG(page-blocks) 295,245 1 10 5 0.89
BNG(pendigits) 1,000,000 1 16 10 0.10
BNG(dermatology) 1,000,000 34 1 6 0.30
BNG(sonar) 1,000,000 1 60 2 0.53
BNG(heart-c) 1,000,000 8 6 5 0.54
BNG(heart-statlog) 1,000,000 1 13 2 0.55
BNG(vehicle) 1,000,000 1 18 4 0.25
BNG(hepatitis) 1,000,000 14 6 2 0.79
BNG(vowel) 1,000,000 4 10 11 0.09
BNG(waveform-5000) 1,000,000 1 40 3 0.33
BNG(zoo) 1,000,000 17 1 7 0.39
BNG(tic-tac-toe) 39,366 10 0 2 0.65
adult 48,842 13 2 2 0.76
IMDB.drama 120,919 1 1,001 2 0.63
BNG(solar-flare) 1,000,000 13 0 3 0.99
BNG(satimage) 1,000,000 1 36 6 0.23
BNG(wine) 1,000,000 1 13 3 0.40
airlines 539,383 5 3 2 0.55
BNG(SPECT) 1,000,000 23 0 2 0.79
BNG(JapaneseVowels) 1,000,000 1 14 9 0.16
Agrawal1 1,000,000 4 6 2 0.67
Stagger1 1,000,000 4 0 2 0.88
Stagger2 1,000,000 4 0 2 0.55
Stagger3 1,000,000 4 0 2 0.66
codrnaNorm 488,565 1 8 2 0.67
vehicleNorm 98,528 1 100 2 0.50
AirlinesCodrnaAdult 1,076,790 17 13 2 0.56
BNG(credit-g) 1,000,000 14 7 2 0.69
BNG(spambase) 1,000,000 58 0 2 0.60
BNG(optdigits) 1,000,000 65 0 10 0.10
20 newsgroups.drift 399,940 1001 0 2 0.95
BNG(ionosphere) 1,000,000 35 0 2 0.64
BNG(segment) 1,000,000 20 0 7 0.14
BNG(anneal) 1,000,000 33 6 6 0.76

20 Jan N. van Rijn et al.

Table 3 Classifiers used in the experiment. All as implemented in MOA 2016.04 by Bifet
et al (2010a), default parameter settings are used unless stated otherwise.

Classifier Model type Parameters
Naive Bayes Bayesian
Stochastic Gradient Descent SVM Loss function: Hinge
k Nearest Neighbour Lazy k = 10, w = 1,000
Hoeffding Option Tree Option Tree
Perceptron Neural Network
Random Hoeffding Tree Decision Tree
Rule Classifier Decision Rules

both Bagging schemes use Hoeffding Trees. Naturally, as the number of
members increases, both accuracy and run time increase, however Leveraging
Bagging performs eminently better than the others. Leveraging Bagging us-
ing 16 ensemble members already outperforms both AWE and Online Bagging

using 128 ensemble members, based on median accuracy. This performance
also comes at a cost, as it uses considerably more run time than both other
techniques, even when containing the same number of members. Accuracy

Weighted Ensemble performs pretty constant, regardless of the amount of
ensemble members. As the ensemble size grows, both accuracy and run time
slightly increase. We will compare BLAST against the heterogeneous ensembles
containing 128 ensemble members.

Ensemble members. We evaluate an instantiation of BLAST, using a set
of differing classifiers. These are selected using the dendrogram from Figure 7,
setting the COD threshold to 0.2. Using this threshold, it recommends a set
of 12 classifiers. After omitting simple models such as No Change, Majority
Class and Decision Stumps, we end up with the set of classifiers described in
Table 3. One nice property is that all base-classifiers consist of different model
types, making the resulting ensemble very heterogeneous. As for the baselines,
Majority Vote Ensemble uses the same classifiers.

5 Results

We ran all ensemble techniques on all data streams. BLAST was run both with
fading factors (α = 0.999) and Windowed (w = 1,000). For each prediction,
one classifier was selected as the active classifier (i.e., k = 1). We explore the
effect of other values for both parameters in Section 6.

Figure 9(a) shows violin plots and box plots of the results in terms of
accuracy. An important observation is that both versions of BLAST are com-
petitive with state of the art ensembles. The highest median score is obtained
by Leveraging Bagging, which performs very well in various empirical stud-
ies (Bifet et al 2010b; Read et al 2012; van Rijn 2016), closely followed by both
versions of BLAST. Both versions of BLAST have less outliers at the bottom than
Leveraging Bagging. As Leveraging Bagging solely relies on Hoeffding

Trees as base-classifier, it will perform averagely on datasets that are not

The Online Performance Estimation Framework 21

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

0.25

0.50

0.75

1.00

M
ajo

rit
y V

ot
e

Ens
em

ble

AW
E(J

48
)

Bes
t S

ing
le

Clas
sif

ier

Onli
ne

 B
ag

gin
g

BLA
ST (W

ind
ow

)

BLA
ST (F

F)

Le
ve

ra
gin

g
Bag

gin
g

P
re

di
ct

iv
e

A
cc

ur
ac

y

(a) Accuracy

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

1

10

100

1000

10000

Bes
t S

ing
le

Clas
sif

ier

AW
E(J

48
)

M
ajo

rit
y V

ot
e

Ens
em

ble

BLA
ST (W

ind
ow

)

BLA
ST (F

F)

Onli
ne

 B
ag

gin
g

Le
ve

ra
gin

g
Bag

gin
g

R
un

 C
pu

 T
im

e

(b) Run time (in seconds)

Fig. 9 Performance of the proposed techniques averaged over 60 data streams.

22 Jan N. van Rijn et al.

easily modelled by trees. Contrarily, BLAST easily selects an appropriate set of
classifiers for each dataset, hence the fewer number of outliers.

As expected, both the Best Single Classifier and the Majority Vote

Ensemble perform less than most other techniques. Clearly, combining het-
erogeneous ensemble members by simply counting votes does not work in this
setup. It seems that poor results from some ensemble members outweigh the
diversity. A peculiar observation is that the Accuracy Weighted Ensemble,
which utilises historic performance data in a different way, does not manage
to outperform the Best Single Classifier. Possibly, the window of 1,000
instances on which the individual classifiers are trained is too small to make
the individual models competitive.

Figure 9(b) shows plots of the results in terms of run time on a log scale.
The results are as expected. The Best Single Classifier requires fewest
resources, followed by AWE(J48). Although AWE(J48) consists of 128 ensemble
members, it essentially feeds each training instance to just one ensemble mem-
ber. The Majority Vote Ensemble and both versions of BLAST also require a
similar amount of resources, as these already use the classifiers mentioned in
Table 3. Finally, both Bagging ensembles require most resources, which was
also observed by Bifet et al (2010b) and Read et al (2012). The fact that BLAST
performs competitively with the Bagging ensemble, while it requires far fewer
resources, suggests that Online Performance Estimation is a useful technique
when applied to heterogeneous data stream ensembles.

Figure 10 shows the accuracy of the three heterogeneous ensemble tech-
niques per data stream. In order to not overload the figure, we only show BLAST

with fading factors, Leveraging Bagging and the Best Single Classifier.
Both BLAST (FF) and Leveraging Bagging consistently outperform the Best
Single Classifier. Especially on data streams where the performance of the
Best Single Classifier is mediocre (Figure 10(b)), accuracy gains are em-
inent. The difference between Leveraging Bagging and BLAST is harder to
assess. Although Leveraging Bagging seems to be slightly better in many
cases, there are some clear cases where there is a big difference in favour of
BLAST.

To assess statistical significance, we use the Friedman test with post-hoc
Nemenyi test to establish the statistical relevance of our results. These tests
are considered the state of the art when it comes to comparing multiple clas-
sifiers (Demšar 2006). The Friedman test checks whether there is a statistical
difference between the classifiers; when this is the case the Nemenyi post-hoc
test can be used to determine which classifiers are significantly better than
others.

The results of the Nemenyi test (α = 0.05) are shown in Figure 11. It plots
the average rank of all methods and the critical difference. Classifiers that are
statistically equivalent are connected by a black line. For all other cases, there
was a significant difference in performance, in favour of the classifier with the
better average rank. We performed the test based on accuracy and run time.

Figure 11(a) shows that there is no statistically significant difference in
terms of accuracy between BLAST (using Fading Factors) and the homoge-

The Online Performance Estimation Framework 23

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

Stagger3

Stagger1

Stagger2

B
N

G
(m

ushroom
)

B
N

G
(derm

atology)

B
N

G
(vote)

20_new
sgroups.drift

codrnaN
orm

B
N

G
(kr-vs-kp)

A
graw

al1

B
N

G
(ionosphere)

B
N

G
(anneal)

B
N

G
(labor)

B
N

G
(trains)

B
N

G
(w

ine)

B
N

G
(zoo)

B
N

G
(SPEC

T)

B
N

G
(hepatitis)

B
N

G
(optdigits)

B
N

G
(lym

ph)

B
N

G
(page-blocks)

B
N

G
(soybean)

H
yperplane(10;0.0001)

B
N

G
(heart-statlog)

B
N

G
(heart-c)

B
N

G
(credit-a)

B
N

G
(w

aveform
-5000)

B
N

G
(segm

ent)

covertype

SEA
(50000)

Best Single Classifier
Leveraging Bagging

BLAST (FF)

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

SEA
(50)

B
N

G
(m

feat-fourier)

adult

R
andom

R
B
F(0;0)

electricity

vehicleN
orm

B
N

G
(satim

age)

B
N

G
(pendigits)

C
ovPokElec

B
N

G
(sonar)

R
andom

R
B
F(10;0.0001)

H
yperplane(10;0.001)

B
N

G
(JapaneseV

ow
els)

A
irlinesC

odrnaA
dult

B
N

G
(credit-g)

R
andom

R
B
F(10;0.001)

pokerhand

B
N

G
(tic-tac-toe)

B
N

G
(solar-flare)

B
N

G
(vow

el)

LED
(50000)

B
N

G
(bridges)

B
N

G
(spam

base)

B
N

G
(vehicle)

airlines

IM
D

B
.dram

a

R
andom

R
B
F(50;0.0001)

B
N

G
(cm

c)

B
N

G
(letter)

R
andom

R
B
F(50;0.001)

Best Single Classifier
Leveraging Bagging

BLAST (FF)

(b)

Fig. 10 Accuracy per data stream, sorted by accuracy of the best single classifier.

24 Jan N. van Rijn et al.

1 2 3 4 5 6 7

Leveraging Bagging
BLAST (FF)

Online Bagging
BLAST (Window)

Best Single Classifier
AWE(J48)
Majority Vote Ensemble

CD

(a) Accuracy

1 2 3 4 5 6 7

Best Single Classifier
AWE(J48)

Majority Vote Ensemble
BLAST (Window)

BLAST (FF)
Online Bagging
Leveraging Bagging

CD

(b) Run time

Fig. 11 Results of Nemenyi test, α = 0.05. Classifiers are sorted by their average rank (lower
is better). Classifiers that are connected by a horizontal line are statistically equivalent.

neous ensembles (i.e., Leveraging Bagging and Online Bagging using 128
Hoeffding Trees). BLAST (Window) does perform significantly worse than
Leveraging Bagging.2 Similar to Figure 9(a), the Best Single Classifier,
AWE(J48) and Majority Vote Ensemble are at the bottom of the ranking.
These perform significantly less than the other techniques.

Figure 11(b) shows the results of the Nemenyi test on run time. The results
are similar to Figure 9(b). The best single classifier (Hoeffding Option Tree)
requires fewest resources. There is no significant difference in resources be-
tween BLAST (FF), BLAST (Window), Majority Vote Ensemble and Online

Bagging. This makes sense, as these the first three operate on the same set of
base-classifiers. Altogether, BLAST (FF) performs equivalent to both Bagging
schemes in terms of accuracy, while using significantly fewer resources.

6 Parameter Effect

In this section we study the effect of the various parameters of BLAST.

2 van Rijn et al (2015) reported statistical equivalence between the Windowed version
and Leveraging Bagging, however their experimental setup was different: BLAST contained
a set of 11 base-classifiers and Leveraged Bagging contained only 10 Hoeffding Trees. In
this sense, the result of the Nemenyi test does not contradict earlier results.

The Online Performance Estimation Framework 25

0.6

0.8

1.0

a =
 0.

9

w = 10 a =
 0.

99

w = 10
0

a =
 0.

99
9

w = 10
00

a =
 0.

99
99

w = 10
00

0

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

BLAST (FF) BLAST (Window)

Fig. 12 Effect of the decay rate and window parameter.

6.1 Window Size and Decay Rate

First, for both versions of BLAST, there is a parameter that controls the rate
of dismissal of old observations. For BLAST (FF) this is the α parameter (the
fading factor); for BLAST (Windowed) this is the w parameter (the window
size). The α parameter is always in the range [0, 1], and has no effect on the
use of resources. The window parameter can be in the range [0, n], where n is
the size of the data stream. Setting this value higher results in bigger memory
requirements, although these are typically negligible compared to the memory
usage of the base-classifiers.

Figure 12 shows violin plots and box plots of the effect of varying these
parameters. The effect of the α (a) value on BLAST (FF) is displayed in the
left (red) violin plots; the effect of the window (w) value on BLAST (Window)

is displayed in the right (blue) violin plots. The trend over 60 data streams
seems to be that setting this parameter too low results in sub-optimal accuracy.
This is especially clear with BLAST (FF) with α = 0.9 and BLAST (Window)

with w = 10: there are more outliers at the bottom and the third quartile
of the box plot is slightly larger. Arguably, this value performs well in highly
volatile streams when concepts change rapidly, but in general we do not want to
dismiss old information too quickly. In the other cases, the higher values seem
to be slightly preferred, but it is hard to draw general conclusions from this.
Altogether, BLAST (FF) seems to be slightly more robust, as the investigated
values of the α parameter do not perceptibly influence performance.

26 Jan N. van Rijn et al.

0.5

0.6

0.7

0.8

0.9

1.0

g =
 1

g =
 10

g =
 10

0

g =
 10

00

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

BLAST (FF) BLAST (Window)

Fig. 13 Effect of the grace parameter on accuracy. The x-axis denotes the grace, the y-
axes the performance. BLAST (Window) was run with w = 1,000; BLAST (FF) was run with
α = 0.999.

6.2 Grace parameter

Prior work by Rossi et al (2014) and van Rijn et al (2015) introduced a grace
parameter that controls the number of observations for which the active clas-
sifier was not changed. This potentially saves resources, especially when the
algorithm selection process involves time consuming operations such as the
calculation of meta-features. On the other hand, it can be seen that in a data
stream setting where concept drift occurs, in terms of performance it is always
optimal to act on changed behaviour as fast as possible. Although we have
omitted this parameter from the formal definition of BLAST in Section 3, simi-
lar behaviour can be obtained by updating the active classifier only at certain
intervals. Formally, a grace period can be enforced by only executing Eq. 4
when c mod g = 0, where (following earlier definitions) c is the index of the
current observation, and g is a grace period defined by the user.

Figure 13 shows the effect of the (hypothetical) grace parameter on per-
formance, averaged over 60 data streams. We observe two things from this
plot. First, the difference in performance for various values of this parameter
is quite small. Second, although this difference is very small, it seems that
lower values are preferred.

The fact that the differences are small is supported by intuition. Although
the performance ranking of the classifiers varies over the stream, it only hap-
pens occasionally that a new best classifier is selected. Even when BLAST is
too slow in selecting the new active classifier, it is still the case that the old

The Online Performance Estimation Framework 27

active classifier will probably not be entirely outdated. It will still predict
with reasonable accuracy, until it is replaced. The fact that smaller values
are preferable also makes sense. In data streams that contain concept drift, it
is desirable to immediately act on the observed changes. Therefore, having a
grace parameter can only affect performance in a negative way. Moreover, the
algorithm selection phase of BLAST simply depends on finding the maximum
element in an array. For these reasons, the grace period would not have any
measurable influence on the required resources, and its default value can be
fixed to 1.

6.3 Number of Active Classifiers

Rather than selecting one active classifier, multiple active classifiers can be
selected that all vote for a class label. The votes of these classifiers can either
contribute equally to the final vote, or be weighted according to their estimated
performance. We used BLAST (FF) to explore the effect of this parameter. We
varied the number of active classifiers k from one to five, and measured the
performance according to both voting schemas. Figure 14 shows the results.

Figure 14(a) shows how the various strategies perform when evaluated
using predictive accuracy. We can make several observations to verify the cor-
rectness of the results. First, the results of both strategies are equal when
k = 1, as the algorithm selects only one classifier, weights are obsolete. Sec-
ond, the result of the Majority weighting schema for k = 7 is equal to the score
of the Majority Weight Ensemble (from Figure 9(a)), which is also correct,
as these are the same by definition. Finally, when using the weighted strategy,
setting k = 2 yields exactly the same scores for accuracy as setting k = 1.
This also makes sense, as it is guaranteed that the second best base-classifier
always has a lower weight as the best base-classifier, and thus it is incapable
of changing any prediction.

In all, it seems that increasing the number of active classifiers is not ben-
eficial for accuracy. Note that this is different from adding more classifiers in
general, which clearly would not decrease performance results. This behaviour
is different from the classical approach, where adding more classifiers (which
inherently are all active) yield better results up to a certain point (Caruana
et al 2004). However, in the data stream setting we deal with a time compo-
nent, and we can actually measure which classifiers performed well on recent
intervals. By increasing the number of active classifiers, we would add clas-
sifiers to the vote of which we have empirical evidence that they performed
worse on recent observations.

Similarly, Figure 14(b) shows the Root Mean Squared Error (RMSE).
RSME is typically used as a evaluation measure for regression, but can be
used in classification problems to assess the quality of class confidences. For
every prediction, the error is considered to be the difference between the class
confidence for the correct label and 1. This means that if the classifier had a
confidence close to 1 for the particular class label, a low error is recorded, and

28 Jan N. van Rijn et al.

0.4

0.6

0.8

1.0

k =
 1

k =
 2

k =
 3

k =
 4

k =
 5

k =
 6

k =
 7

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

Majority Weighted

(a) Accuracy

0.0

0.2

0.4

0.6

k =
 1

k =
 2

k =
 3

k =
 4

k =
 5

k =
 6

k =
 7

Ro
ot

 M
ea

n
Sq

ua
re

d
Er

ro
r

Majority Weighted

(b) Root Mean Squared Error

Fig. 14 Performance for various values of k, weighted votes versus unweighted votes.

The Online Performance Estimation Framework 29

vice versa. The box plots indicate that adding more active classifiers can lead
to a lower median error. This also makes sense, as the Root Mean Squared
Error tends to punish classification errors harder when these are made with a
high confidence. We observe this effect until k = 3, after which adding more
active classifiers starts to lead to a higher RMSE. It is unclear why this effect
holds until this particular value.

All together, from this experiment we conclude that adding more active
classifiers in the context of Online Performance Estimation does not necessarily
yields better results beyond selecting the expected best classifier at that point
in the stream. This might be different when using more base-classifiers, as we
would expect to have more similarly performing classifiers on each interval.
As we expect to measure this effect when using orders of magnitude more
classifiers, this is considered future work. Clearly, when using multiple active
classifiers, weighting their votes using online performance estimation seems
beneficial.

7 Conclusions

We introduced the Online Performance Estimation framework, which can be
used in data stream ensembles to weight the votes of ensemble members, in
particular when using fundamentally different model types. Online Perfor-
mance Estimation measures the performance of all base-classifiers on recent
training examples. We introduced two performance estimation functions. The
first function is based on a window, and counts the number of incorrect predic-
tions over this window. All are weighted equally. The second function is based
on fading factors, which considers all predictions from the whole stream, but
gives a higher weight to recent predictions.

BLAST is an heterogeneous ensemble technique based on Online Perfor-
mance Estimation that selects the single best classifier on recent predictions
to classify new observations. We have integrated both performance estimation
functions into BLAST. Empirical evaluation shows that BLAST with fading fac-
tors performs better than BLAST using the windowed approach. This is most
likely because Fading Factors are better able to capture typical data stream
properties, such as changes of concepts. When this occurs, there will also be
changes in the performances of ensemble members, and the fading factors
adapt to this relatively fast.

We compared BLAST against state of the art ensembles over 60 data streams
from OpenML. To the best of our knowledge, this is the largest data stream
study to date. We observe that there is no statistical significant difference
between the accuracy of the ensembles, although BLAST uses significantly sig-
nificant fewer resources. Furthermore, we evaluated the effect of the method’s
parameters on the performance. The most important parameter proves to be
the one controlling the performance estimation function: α for the fading fac-
tor, controlling the decay rate, and w for the windowed approach, determining
the window size. Our results show that the optimal value for these parameters

30 Jan N. van Rijn et al.

is dependent on the given dataset, although setting this too low turns out to
have a worse effect on accuracy than setting it too high.

To select the classifiers included in the heterogeneous ensemble, we created
a hierarchical clustering of 25 commonly used data stream classifiers, based on
Classifier Output Difference. We used this clustering to gain methodological
justification for which classifiers to use, although the clustering is mainly a
guideline. A human expert can still determine to deviate from the resulting
set of algorithms, in order to save resources. The resulting dendrogram has
also scientific value in itself. It confirms some well-established assumptions re-
garding the typically used classifier taxonomy in data streams, that have never
been tested before. Many of the classifiers that were suspected to be similar
were also clustered together, for example the various decision trees, support
vector machines and gradient descent models all formed their own clusters.
Moreover, some interesting observations were made that can be investigated
in future work. For instance, the Rule Classifier used turns out to perform av-
eragely, and was rather far removed from the decision trees, whereas we would
expect it to perform better and be clustered closer to the decision trees.

Utilizing the Online Performance Estimation framework opens up a whole
new line of data stream research. Rather than creating more data stream clas-
sifiers, combining them in a suitable way can elegantly lead to highly improved
results that effortlessly adapt to changes in the data stream. More than in the
classical batch setting, memory and time are of crucial importance. Experi-
ments suggest that the selected set of base-classifiers has a substantial influence
on the performance of the ensemble. Research should be conducted to explore
what model types best complement each other, and which work well together
given a constraint on resources. We believe that by exploring these possibilities
we can further push the state of the art in data stream ensembles.

Acknowledgements This work is supported by grant 612.001.206 from the Netherlands
Organisation for Scientific Research (NWO) and by the Emmy Noether grant HU 1900/2-1
from the German Research Foundation (DFG).

References

Apté C, Weiss S (1997) Data mining with decision trees and decision rules. Future generation
computer systems 13(2):197–210

Beringer J, Hüllermeier E (2007) Efficient instance-based learning on data streams. Intelli-
gent Data Analysis 11(6):627–650

Bifet A, Gavalda R (2007) Learning from Time-Changing Data with Adaptive Windowing.
In: SDM, SIAM, vol 7, pp 139–148

Bifet A, Gavaldà R (2009) Adaptive learning from evolving data streams. In: Advances in
Intelligent Data Analysis VIII, Springer, pp 249–260

Bifet A, Holmes G, Kirkby R, Pfahringer B (2010a) MOA: Massive Online Analysis. J Mach
Learn Res 11:1601–1604

Bifet A, Holmes G, Pfahringer B (2010b) Leveraging Bagging for Evolving Data Streams. In:
Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer
Science, vol 6321, Springer, pp 135–150

Bifet A, Frank E, Holmes G, Pfahringer B (2012) Ensembles of restricted hoeffding trees.
ACM Transactions on Intelligent Systems and Technology (TIST) 3(2):30

The Online Performance Estimation Framework 31

Bottou L (2004) Stochastic Learning. In: Advanced lectures on machine learning, Springer,
pp 146–168

Brazdil P, Gama J, Henery B (1994) Characterizing the applicability of classification algo-
rithms using meta-level learning. In: Machine Learning: ECML-94, Springer, pp 83–102

Brazdil P, Soares C, Da Costa JP (2003) Ranking learning algorithms: Using IBL and meta-
learning on accuracy and time results. Machine Learning 50(3):251–277

Breiman L (1996) Bagging Predictors. Machine learning 24(2):123–140
Caruana R, Niculescu-Mizil A, Crew G, Ksikes A (2004) Ensemble selection from libraries of

models. In: Proceedings of the twenty-first international conference on Machine learning,
ACM, p 18

Demšar J (2006) Statistical Comparisons of Classifiers over Multiple Data Sets. The Journal
of Machine Learning Research 7:1–30

Domingos P, Hulten G (2000) Mining High-Speed Data Streams. In: Proceedings of the sixth
ACM SIGKDD international conference on Knowledge discovery and data mining, pp
71–80

Domingos P, Hulten G (2003) A general framework for mining massive data streams. Journal
of Computational and Graphical Statistics 12(4):945–949

Gama J, Brazdil P (2000) Cascade Generalization. Machine Learning 41(3):315–343
Gama J, Kosina P (2014) Recurrent concepts in data streams classification. Knowledge and

Information Systems 40(3):489–507
Gama J, Medas P, Castillo G, Rodrigues P (2004a) Learning with Drift Detection. In: SBIA

Brazilian Symposium on Artificial Intelligence, Lecture Notes in Computer Science, vol
3171, Springer, pp 286–295

Gama J, Medas P, Rocha R (2004b) Forest Trees for On-line Data. In: Proceedings of the
2004 ACM symposium on Applied computing, ACM, pp 632–636

Gama J, Sebastião R, Rodrigues PP (2009) Issues in Evaluation of Stream Learning Algo-
rithms. In: Proceedings of the 15th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, ACM, pp 329–338

Gama J, Sebastião R, Rodrigues PP (2013) On evaluating stream learning algorithms. Ma-
chine Learning 90(3):317–346

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA
Data Mining Software: An Update. ACM SIGKDD explorations newsletter 11(1):10–18

Hansen L, Salamon P (1990) Neural Network Ensembles. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 12(10):993–1001

Hintze JL, Nelson RD (1998) Violin plots: a box plot-density trace synergism. The American
Statistician 52(2):181–184

Kolter JZ, Maloof MA (2007) Dynamic weighted majority: An ensemble method for drifting
concepts. Journal of Machine Learning Research 8:2755–2790

Ladha KK (1993) Condorcet’s jury theorem in light of de finetti’s theorem. Social Choice
and Welfare 10(1):69–85

Lee JW, Giraud-Carrier C (2011) A metric for unsupervised metalearning. Intelligent Data
Analysis 15(6):827–841

Littlestone N, Warmuth M (1994) The weighted majority algorithm. Information and Com-
putation 108(2):212–261

Nguyen HL, Woon YK, Ng WK, Wan L (2012) Heterogeneous Ensemble for Feature Drifts
in Data Streams. In: Advances in Knowledge Discovery and Data Mining, Springer, pp
1–12

Oza NC (2005) Online Bagging and Boosting. In: Systems, man and cybernetics, 2005 IEEE
international conference on, IEEE, vol 3, pp 2340–2345

Peterson AH, Martinez T (2005) Estimating The Potential for Combining Learning Models.
In: In Proc. of the ICML Workshop on Meta-Learning, pp 68–75

Pfahringer B, Bensusan H, Giraud-Carrier C (2000) Tell me who can learn you and I can
tell you who you are: Landmarking Various Learning Algorithms. In: Proceedings of the
17th international conference on machine learning, pp 743–750

Pfahringer B, Holmes G, Kirkby R (2007) New Options for Hoeffding Trees. In: AI 2007:
Advances in Artificial Intelligence, Springer, pp 90–99

Read J, Bifet A, Pfahringer B, Holmes G (2012) Batch-Incremental versus Instance-
Incremental Learning in Dynamic and Evolving Data. In: Advances in Intelligent Data

32 Jan N. van Rijn et al.

Analysis XI, Springer, pp 313–323
Rice JR (1976) The Algorithm Selection Problem. Advances in Computers 15:65118
van Rijn JN (2016) Massively collaborative machine learning. PhD thesis, Leiden University
van Rijn JN, Holmes G, Pfahringer B, Vanschoren J (2014) Algorithm Selection on Data

Streams. In: Discovery Science, Lecture Notes in Computer Science, vol 8777, Springer,
pp 325–336

van Rijn JN, Holmes G, Pfahringer B, Vanschoren J (2015) Having a Blast: Meta-Learning
and Heterogeneous Ensembles for Data Streams. In: Data Mining (ICDM), 2015 IEEE
International Conference on, IEEE, pp 1003–1008

Rokach L, Maimon O (2005) Clustering methods. In: Data mining and knowledge discovery
handbook, Springer, pp 321–352

Rossi ALD, de Leon Ferreira ACP, Soares C, De Souza BF (2014) MetaStream: A meta-
learning based method for periodic algorithm selection in time-changing data. Neuro-
computing 127:52–64

Schapire RE (1990) The Strength of Weak Learnability. Machine learning 5(2):197–227
Shaker A, Hüllermeier E (2015) Recovery analysis for adaptive learning from non-stationary

data streams: Experimental design and case study. Neurocomputing 150:250–264
Shalev-Shwartz S, Singer Y, Srebro N, Cotter A (2011) Pegasos: primal estimated sub-

gradient solver for SVM. Mathematical Programming 127(1):3–30
Vanschoren J, van Rijn JN, Bischl B, Torgo L (2014) OpenML: networked science in machine

learning. ACM SIGKDD Explorations Newsletter 15(2):49–60
Wang H, Fan W, Yu PS, Han J (2003) Mining Concept-Drifting Data Streams using En-

semble Classifiers. In: KDD, pp 226–235
Wolpert DH (1992) Stacked generalization. Neural networks 5(2):241–259
Zhang P, Gao BJ, Zhu X, Guo L (2011) Enabling Fast Lazy Learning for Data Streams. In:

Data Mining (ICDM), 2011 IEEE 11th International Conference on, IEEE, pp 932–941

