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Abstract

Algorithm selection (AS) techniques – which involve choosing from a set of algorithms
the one expected to solve a given problem instance most efficiently – have substantially
improved the state of the art in solving many prominent AI problems, such as SAT, CSP,
ASP, MAXSAT and QBF. Although several AS procedures have been introduced, not too
surprisingly, none of them dominates all others across all AS scenarios. Furthermore, these
procedures have parameters whose optimal values vary across AS scenarios. This holds
specifically for the machine learning techniques that form the core of current AS proce-
dures, and for their hyperparameters. Therefore, to successfully apply AS to new problems,
algorithms and benchmark sets, two questions need to be answered: (i) how to select an AS
approach and (ii) how to set its parameters effectively. We address both of these problems
simultaneously by using automated algorithm configuration. Specifically, we demonstrate
that we can automatically configure claspfolio 2, which implements a large variety of
different AS approaches and their respective parameters in a single, highly-parameterized
algorithm framework. Our approach, dubbed AutoFolio, allows researchers and practi-
tioners across a broad range of applications to exploit the combined power of many different
AS methods. We demonstrate AutoFolio can significantly improve the performance of
claspfolio 2 on 8 out of the 13 scenarios from the Algorithm Selection Library, leads
to new state-of-the-art algorithm selectors for 7 of these scenarios, and matches state-of-
the-art performance (statistically) on all other scenarios. Compared to the best single
algorithm for each AS scenario, AutoFolio achieves average speedup factors between 1.3
and 15.4.

1. Introduction

Over the last decade, tremendous progress in Boolean constraint solving technology has been
achieved in several areas within AI, such as SAT (Biere, 2013), ASP (Gebser, Kaufmann,
& Schaub, 2012), CSP (Tamura, Taga, Kitagawa, & Banbara, 2009), Max-SAT (Abramé
& Habet, 2014) and QBF (Janota, Klieber, Marques-Silva, & Clarke, 2012). In all these
areas, multiple algorithms with complementary solving strategies exist, and none domi-
nates all others on all kinds of problem instances. This fact can be exploited by algo-
rithm selection (AS) (Rice, 1976) methods, which use characteristics of individual prob-
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lem instances (so-called instance features) to choose a promising algorithm for each in-
stance. Algorithm selectors have empirically been shown to improve the state of the art
for solving heterogeneous instance sets and, as a result, have won many prizes at compe-
titions. For instance, SATzilla (Xu, Hutter, Hoos, & Leyton-Brown, 2008) won several
categories in multiple SAT competitions, claspfolio 1 (Gebser, Kaminski, Kaufmann,
Schaub, Schneider, & Ziller, 2011b) won the NP-track of the 2011 ASP Competition, CP-
Hydra (O’Mahony, Hebrard, Holland, Nugent, & O’Sullivan, 2008) won the the 2008 CSP
competition, ISAC++ (Ansótegui, Malitsky, & Sellmann, 2014) won the partial Max-SAT
Crafted and Industrial track of the 2014 Max-SAT Competition, and AQME (Pulina &
Tacchella, 2009) won the first stage of the main track of the 2010 QBF Competition.

Although many new AS approaches have been proposed over the years (cf. Smith-Miles,
2008; Kotthoff, 2014), there are only two flexible frameworks that allow for re-implementing
and comparing existing approaches in a fair and uniform way: LLAMA (Kotthoff, 2013)
and claspfolio 2 (Hoos, Lindauer, & Schaub, 2014). Of these, claspfolio 2 is more
comprehensive, encompassing strategies from the algorithm selection systems 3S (Kadioglu,
Malitsky, Sabharwal, Samulowitz, & Sellmann, 2011), aspeed (Hoos, Kaminski, Lindauer,
& Schaub, 2015), claspfolio 1 (Gebser et al., 2011b), ISAC (Kadioglu, Malitsky, Sell-
mann, & Tierney, 2010), ME-ASP (Maratea, Pulina, & Ricca, 2014), SNNAP (Collautti,
Malitsky, Mehta, & O’Sullivan, 2013) and SATzilla (Xu et al., 2008; Xu, Hutter, Hoos,
& Leyton-Brown, 2011).

Figure 1 illustrates the performance benefits these existing selection strategies (as real-
ized in claspfolio 2) yield across the wide range of AS benchmarks in the Algorithm Se-
lection Library (Bischl et al., 2015b, 2015a). We observe that each approach has strengths
and weaknesses on different scenarios. The SATzilla’11-like approach (the default of
claspfolio 2) performs best overall, but only achieves better performance than the other
approaches considered on 8 out of the 13 scenarios, with 3S, aspeed and ISAC yielding
better performance in the remaining cases.

We further note that each of the selection approaches used a fixed default parameter
configuration and might therefore fall short of its full performance potential. For exam-
ple, imputation of missing instance features was not used at all in the approaches con-
sidered in Figure 1; while its use does not improve performance on some scenarios (e.g.,
ASP-POTASSCO), it yields improvements on others (e.g., SAT12-RAND, where the
SATzilla’11-like approach plus mean imputation outperforms the single best algorithm
by a factor of 1.2).

Generally, it is well known that the performance of many machine learning techniques
depends on hyper-parameter settings (e.g., in the case of an SVM, the kernel, kernel hyper-
parameter and soft margin; cf. Bergstra, Bardenet, Bengio, & Kégl, 2011; Snoek, Larochelle,
& Adams, 2012; Thornton, Hutter, Hoos, & Leyton-Brown, 2013). However, the hyper-
parameters of the machine learning models used in Figure 1 were fixed manually, based on
limited experiments. Therefore, the performance of some of the algorithm selection systems
we considered could likely be improved by using more carefully chosen hyper-parameter
settings.

Facing a new algorithm selection problem, we thus have to answer three salient ques-
tions: (i) which selection approach to use; (ii) how to set the parameters of the selection
approach (and its underlying machine learning model) effectively; and (iii) how to make
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0.8 0.8 0.6 0.9 0.9 0.9 0.9 1.3
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Figure 1: Factors by which the selection approach re-implemented in claspfolio 2 outper-
formed the single best algorithm in the 13 ASlib scenarios w.r.t. penalized average runtime
(PAR10, which counts each timeout as 10 times the given runtime cutoff). These results
are for 10-fold cross-validation, ignoring test instances that were not solved by any solver.
The last row shows the geometric mean over all 13 scenarios.

best use of techniques augmenting pure AS, such as pre-solving schedules (Xu et al., 2008;
Kadioglu et al., 2011). Instead of the common, manual trial-and-error approach, we pro-
pose to automatically answer these questions by using automated algorithm configuration
methods (Hutter, Hoos, Leyton-Brown, & Stützle, 2009) to configure flexible AS frame-
works. While the manual approach is error-prone, potentially biased and requires substan-
tial human expert time and knowledge, the approach we introduce here is fully automatic,
unbiased, and leverages the full power of a broad range of AS methods. It thus facilitates
an easier and more effective use of algorithm selection and makes AS techniques accessible
to a broader community.

Specifically, we present AutoFolio, a general approach for automatically determining a
strong algorithm selection method for a particular dataset, by using algorithm configuration
to search through a flexible design space of algorithm selection methods. We also provide an
open-source implementation of AutoFolio (www.ml4aad.org/autofolio/) based on the
algorithm configurator SMAC (Hutter, Hoos, & Leyton-Brown, 2011) and the algorithm
selection framework claspfolio 2 (Hoos et al., 2014). The last column of Figure 1 previews
the results obtained with AutoFolio and clearly shows significant improvements over
claspfolio 2 on 10 of the 13 scenarios in ASlib.
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Figure 2: General outline of algorithm selection.

2. Background: Algorithm Configuration And Selection

In this section, we briefly introduce standard approaches to algorithm selection and algo-
rithm configuration that form the basis of our AutoFolio approach.

2.1 Algorithm Selection

Figure 2 shows the general outline of algorithm selection (Rice, 1976). For a given problem
instance, we first compute cheap instance features; these are numerical characteristics,
including simple ones (such as the number of variables or clauses in a SAT instance) and
more complex ones (such as statistics gathered from short probing runs of an actual SAT
solver on the given instance). Based on these features, an appropriate algorithm from an
algorithm portfolio (Huberman, Lukose, & Hogg, 1997; Gomes & Selman, 2001) is selected
to solve the given instance. The overall workflow is subject to a runtime cutoff.

One major challenge in algorithm selection is to find a good mapping from instance
features to algorithms. In the general offline algorithm selection approach we consider, this
is done based on training data. Specifically, given a portfolio of algorithms A and a set of
problem instances I, we use as training data a performance matrix of size #I ·#A and a
feature matrix containing a fixed-size feature vector for each i ∈ I. Based on this training
data, we learn a mapping from instance features to algorithms using machine learning
techniques, such as k-NN (Maratea et al., 2014), g-means (Kadioglu et al., 2010) or random
forests (Xu et al., 2011).

2.1.1 Related Work On Algorithm Selection Systems

Recent successful algorithm selection systems include SATzilla (Xu et al., 2008; Xu, Hut-
ter, Hoos, & Leyton-Brown, 2012a), 3S (Kadioglu et al., 2011; Malitsky, Sabharwal, Samu-
lowitz, & Sellmann, 2012, 2013b), ISAC (Kadioglu et al., 2010; Ansótegui et al., 2014),
CSHC (Malitsky, Sabharwal, Samulowitz, & Sellmann, 2013a) and claspfolio 1 (Gebser
et al., 2011b). In recent years, these systems showed excellent performance in competitions
for SAT, MAXSAT and ASP. We briefly review them in the following.

The original version of the pioneering algorithm selection system SATzilla (Xu et al.,
2008) learned the mapping from instance features to algorithms by training ridge regres-
sion models. Each regression model predicts the performance of an algorithm for a given
instance. Based on these predicted performances, SATzilla selects the algorithm with the
best predicted performance. SATzilla’s latest version (Xu et al., 2011) uses classification
models that, for each pair of algorithms, predict the better-performing one, and selects the
algorithm to be run using simple voting over the predictions thus obtained. These models
are also cost-sensitive, that is, each training instance in the pairwise classification models is
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weighted by the performance loss incurred when selecting the worse of the two algorithms.
Furthermore, SATzilla introduced the concept of pre-solving schedules, that is, a short
instance-independent schedule of algorithms running for a limited amount of time. If one
algorithm of the pre-solving schedule solves the given instance, SATzilla can immediately
terminate successfully, saving the time required to compute instance features. Furthermore,
pre-solving schedules increase the robustness of algorithm selectors by not only relying on
one selected algorithm but also on the pre-solvers to solve a given instance. One drawback
of SATzilla is its use of grid search over all possible pre-solving schedules with up to three
pre-solvers; for each schedule considered, SATzilla performs algorithm subset selection
and trains the classification models, which can require substantial amounts of time (in our
experiments, up to 4 CPU days).

3S (Kadioglu et al., 2011; Malitsky et al., 2012, 2013b) uses a k-nearest neighbour
approach to select an algorithm. For a given problem instance to be solved, it determines
a set of similar training instances in the instance feature space and selects the algorithm
with the best performance on this instance set. The performance of this k-NN approach
is further improved by distance-based weighting (that is, weighting algorithm performance
on an instance by the instance’s distance to the new given instance) and using a clustering-
based adaptive neighbourhood size (to adjust the size of the neighbourhood in different
areas of the feature space). Furthermore, 3S uses mixed integer programming to compute
pre-solving schedules more efficiently than SATzilla.

ISAC (Kadioglu et al., 2010) clusters instances in the instance feature space using the
g-means algorithm and stores the cluster centre as well as the best-performing algorithm for
each cluster. For each new problem instance, it then determines the nearest cluster centre
(1-NN) and selects the algorithm associated with it.

The cost-sensitive hierarchical clustering system CSHC (Malitsky et al., 2013a) also
partitions the feature space into clusters, but instead of ISAC’s unsupervised clustering
approach, it creates this partitioning in a supervised top-down fashion, much like a decision
or regression tree algorithm. Starting with all instances (the entire feature space) at the
root of a tree, it recursively splits the instances associated with a node into two child
nodes, choosing each split along a single feature value, such that the performance of the
best-performing algorithm in each child node is optimized. This cost-sensitive supervised
approach based on trees closely resembles the cost-sensitive random forests in SATzilla,
with the difference that, in contrast to SATzilla’s pairwise voting approach, it only builds
a single model.

Last but not least, claspfolio 1 (Gebser et al., 2011b) is the predecessor of claspfo-
lio 2, which we use here (and describe in Section 2.1.2). In contrast to the flexible frame-
work of claspfolio 2, claspfolio 1 was inspired by the earlier version of SATzilla and
uses the same regression approach, but with a different machine learning method (support
vector regression instead of ridge regression).

Further systems for algorithm selection combine and extend these techniques, for ex-
ample, by combining regression and clustering approaches (Collautti et al., 2013), or by
selecting algorithm portfolios (Yun & Epstein, 2012; Lindauer, Hoos, & Hutter, 2015a)
or schedules (Amadini, Gabbrielli, & Mauro, 2014) instead of a single algorithm. For ad-
ditional information, we refer the interested reader to two recent surveys on algorithm
selection (Smith-Miles, 2008; Kotthoff, 2014).
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Figure 3: General workflow of claspfolio 2. Objects such as algorithms and instances
are shown as rectangles, and activities are depicted as rectangles with rounded corners.
Activities related to algorithm selection are shown in red and activities related to algorithm
schedules in yellow.

2.1.2 The Algorithm Selection Framework claspfolio 2

We now explain the algorithm selection framework claspfolio 2 (Hoos et al., 2014; Lin-
dauer, Hoos, & Schaub, 2015c) in some more detail, since it provides the basis for the
concrete implementation of our general AutoFolio approach, as used in our experiments.

The claspfolio 2 framework implements the idea of algorithm selection in a flexible
and general way. It provides a general view on the individual components of algorithm
selectors, based on which it implements many different selection approaches and associated
techniques. Therefore, claspfolio 2 is a natural candidate to serve as a basis for our
AutoFolio approach.

Figure 3 shows the workflow of claspfolio 2, which is divided into an ASlib Scenario
as input of claspfolio 2; Offline Training of Selection and Scheduling ; and Online Solving
a new instance:

ASlib scenario. As an input, claspfolio 2 reads an algorithm selection scenario, sup-
porting the format of the Algorithm Selection library, ASlib. This consists of a
performance matrix, instance features, groups of instance features1 and some op-
tional information, such as cross-validation splits or ground truth about the problem

1. We note that, according to the definition of ASlib, each feature group enables a list of instance features
that are computed with a common block of feature computation code, and jointly incur the cost for
running this code.
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instances (for example, whether a SAT instance is satisfiable or unsatisfiable). For a
full specification of the ASlib format, we refer the interested reader to aslib.net.

Offline training – selection. Based on the given scenario (training) data, claspfolio 2
pre-processes the instance features (for example, normalization or feature imputation)
and performance data (for example, log-transformation). Using machine learning
techniques, claspfolio 2 learns a selection model that maps instance features to
algorithms.

Offline training – scheduling. To compute an efficient pre-solving schedule, claspfo-
lio 2 first estimates the performance of the Selection module by using an internal
cross-validation on the training data (Arrow I). Based on this performance estimation,
claspfolio 2 computes a timeout-minimal pre-solving schedule using Answer Set
Programming in aspeed (Hoos et al., 2015), assigning each algorithm a (potentially
zero-length) time slice of the overall runtime budget. The estimation of the Selection
module is necessary to compute the runtime budget for the pre-solving schedule. If
the Selection module performs well, the pre-solving schedule may be empty, because
the pre-solving schedule cannot perform better than a perfect predictor (that is, a pre-
dictor that always selects the best solver). In contrast, if the prediction performs very
poorly (for example, as a result of non-informative instance features), the pre-solving
schedule may be allocated the complete time budget, with the Selection module being
ignored.

Online solving. The Solving workflow is as follows: a feature generator computes the
instance features of a new problem instance to be solved; if this computation fails
(for example, because of time or memory constraints) and no feature imputation
strategy is selected, a backup solver – i.e., the single best performing solver in the
offline training – is run on the instance; otherwise, the previously trained selection
model uses the instance features to select an algorithm expected to perform well. If
a pre-solving schedule is available, the schedule runs either before instance feature
computation or after the selection of the algorithm, depending on a parameter setting
of claspfolio 2 — this latter version being shown in Figure 3. The former has the
advantage that the time to compute instance features can be saved if the instance is
solved during pre-solving. The latter has the advantage that the algorithm chosen by
the selector can be removed from the pre-solving schedule to prevent running it twice.

A list of all techniques we implemented for these modules is given in Section 3.2.

2.2 Algorithm Configuration

Figure 4 shows a general outline for algorithm configuration methods. Given a parameter-
ized algorithm A with possible parameter settings C, a set of training problem instances
I, and a performance metric m : C × I → R, the objective in the algorithm configuration
problem is to find a parameter configuration c ∈ C that minimizes m across the instances
in I. Prominent examples for the performance metric to be optimized are the runtime,
solution quality, or misclassification cost the target algorithm achieves. The configuration
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Figure 4: General outline of algorithm configuration.

procedure (or short configurator) iteratively evaluates the performance of parameter con-
figurations c ∈ C (by running A with them on one or more instances in I) and uses the
result to decide about the next configurations to evaluate. After a given budget for the con-
figuration process has been exhausted, the configurator returns the best known parameter
configuration it found until then.

When A has n parameters p1, . . . , pn, with respective domains D1, . . . , Dn, the parameter
configuration space C = D1 × · · · × Dn is the cross-product of these domains, and each
parameter configuration c ∈ C assigns a value to each parameter. There are several types of
parameters, including real-valued, integer-valued and categorical ones (which have a finite,
unordered domain; for example, a choice between different machine learning algorithms).
Furthermore, configuration spaces can be structured; specifically, a parameter pi can be
conditional on another parameter pj , such that the value of pi is only relevant if the parent
parameter pj is set to a specific value. For example, this is the case when pj is a categorical
choice between machine learning algorithms, and pi is a sub-parameter of one of these
algorithms; pi will only be active if pj chooses the algorithm it parameterizes further.

To date, there are four general configuration procedures: ParamILS (Hutter et al.,
2009), GGA (Ansótegui, Sellmann, & Tierney, 2009), irace (López-Ibáñez, Dubois-Lacoste,
Stützle, & Birattari, 2011), and SMAC (Hutter et al., 2011). In principle, we could use any
of these as the configurator in our general AutoFolio approach. In practice, we have
found SMAC to often yield better results than ParamILS and GGA (Hutter et al., 2011;
Hutter, Lindauer, Balint, Bayless, Hoos, & Leyton-Brown, 2015; Lindauer, Hoos, Hutter, &
Schaub, 2015b), and thus use it as the basis for the concrete implementation of AutoFolio
discussed in the following. We now describe SMAC in more detail.

2.2.1 SMAC: Sequential Model-Based Algorithm Configuration

The sequential model-based algorithm configuration method SMAC (Hutter et al., 2011;
Hutter, Hoos, & Leyton-Brown, 2015a) uses regression models that approximate the per-
formance metric m : C× I → R (Hutter, Xu, Hoos, & Leyton-Brown, 2014). It follows the
general algorithm configuration workflow from above, alternating evaluations of m for some
parameter configurations and instances with decision phases, in which the configurator uses
the data gathered so far to select which configurations to evaluate next on which instances.
SMAC’s decision phases involve constructing a regression model m̂ : C × I → R based
on the data observed so far, and then using this model (as well as the model’s uncertainty
in its predictions) to select promising configurations to try next. This step automatically
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trades off exploration (evaluating in regions of the configuration space where the model m̂
is very uncertain) and exploitation (evaluating configurations predicted to perform well).

In order to save time in evaluating new configurations cnew ∈ C, SMAC first evaluates
them on a single instance i ∈ I; additional evaluations are only carried out (using a doubling
schedule) if, based on the evaluations to date, cnew appears to outperform SMAC’s best
known configuration ĉ. Once it has evaluated the same number of runs for cnew as for ĉ, if
cnew still performs better, SMAC updates its best known configuration ĉ to cnew.

2.2.2 Previous Applications Of Algorithm Configuration

Algorithm configuration has been demonstrated to be very effective in optimizing algo-
rithms for a wide range of problems, including SAT-based formal verification (Hutter, Babić,
Hoos, & Hu, 2007), timetabling (Chiarandini, Fawcett, & Hoos, 2008), multi-objective op-
timization (López-Ibáñez & Stützle, 2010), mixed integer programming (Hutter, Hoos, &
Leyton-Brown, 2010), AI planning (Vallati, Fawcett, Gerevini, Hoos, & Saetti, 2013), gen-
eration of heuristics (Mascia, López-Ibáñez, Dubois-Lacoste, & Stützle, 2014), occupancy
scheduling (Lim, van den Briel, Thiébaux, Backhaus, & Bent, 2015) and kidney exchange
matching (Dickerson & Sandholm, 2015). An important special case of algorithm config-
uration is hyperparameter optimization in machine learning (Bergstra et al., 2011; Snoek
et al., 2012; Eggensperger et al., 2013).

The previous line of work most related to our application of configuration to algorithm
selection is Auto-WEKA (Thornton et al., 2013). Auto-WEKA addresses the combined
problem of selecting a machine learning algorithm from the WEKA framework (Hall, Frank,
Holmes, Pfahringer, Reutemann, & Witten, 2009) and optimizing its hyperparameters.
AutoFolio also needs to solve this combined algorithm selection and hyperparameter
optimization problem, and in particular needs to do so for each of the problem formulations
it considers: regression, classification and clustering. Further important design choices in
AutoFolio are pre-solving and its parameters, as well as which instance features to use.

AutoFolio applies one meta-solving strategy (algorithm configuration) to another one
(algorithm selection). A previous application of a meta-solving strategy to itself was the self-
configuration of ParamILS (Hutter et al., 2009). However, in that case, self-configuration
only yielded a modest improvement over the default configuration of ParamILS, whereas
here, we achieve substantial improvements over the default configuration of claspfolio 2.

Algorithm configuration and algorithm selection have previously been combined in a
different way, by using configuration to find good parameter settings of a highly param-
eterized algorithm, and then using selection to choose between these on a per-instance
basis. Two systems implement this approach to date: ISAC (Kadioglu et al., 2010) and
Hydra (Xu, Hoos, & Leyton-Brown, 2010). ISAC first clusters training problem instances
into homogeneous subsets, uses a configurator to find a good solver parameterization for
each cluster, and then uses a selector to choose between these parameterizations. Hydra
iteratively adds new solver parameterizations to an initially empty portfolio-based selector,
at each step tasking a configurator to find the solver parameterization that most improves
the current portfolio.
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Training Data Test Data

10-fold cross-validation = 10 meta instances

Figure 5: Split of instance sets in algorithm selection scenarios; cross-validation is performed
inside the configuration process, the test set is withheld for evaluating the configured selec-
tor.

3. Configuration Of Algorithm Selectors

We now present our AutoFolio approach of using algorithm configurators to automatically
customize flexible algorithm selection (AS) frameworks to specific AS scenarios. To apply
algorithm configuration in this context, we need to specify a parameterized selector and its
configuration space, as well as the performance metric by which we judge its performance.

3.1 Formal Problem Statement

To judge the performance of an algorithm selection (AS) system on an AS scenario, it is
crucial to partition the given set of problem instances into a training and a test set, use the
AS system only on the training set to train a selector s, and evaluate s only on the test
set instances. (If the training set was instead used to evaluate performance, a perfect AS
system could simply memorize the best solver for each instance without learning anything
useful for new problem instances). This is the standard notion of a training-test split from
machine learning.

An AS scenario includes algorithms A, problem instances I, performance and feature
data D, and a loss function l : A × I → R to be minimized (for example, the algorithms’
runtime or solution cost), with the data split into disjoint sets Dtrain and Dtest. Let
S(Dtrain) : I → A denote the selector learned by the AS system S when trained on the data
in Dtrain. Then, the performance of S, P (S) is the average performance of the algorithms
it selects on the instances in the test data set Dtest:

P (S) =
1

|Dtest|
·

∑
i∈Dtest

l(S(Dtrain), i). (1)

Likewise, we can evaluate the performance of an AS system Sc parameterized by a
configuration c as P (Sc). However, we can not perform algorithm configuration by simply
minimizing P (Sc) with respect to c ∈ C: this would amount to peeking at the test set
many times, and even though it would yield a configuration c∗ with low P (Sc∗), it could
not be expected to perform well on instances not contained in Dtest. Instead, in order to
obtain an unbiased evaluation of the configured selector’s performance in the end, we need
to hold back a test set of instances that is not touched during the configuration process. In
order to still be able to optimize parameters without access to that test set, the standard
solution in machine learning is to partition the training set further, into k cross-validation
folds. Overall, we use the instance set for each selection scenario as illustrated in Figure 5:
(i) we split the full set of instances into a training and a test set and (ii) the training data
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Algorithm 1: AutoFolio: Automated configuration of an algorithm selector

Input : algorithm configurator AC, algorithm selector S, configuration space C of
S, training data of algorithm scenario D (with performance and feature
matrix), number of folds k

1 randomly split D into D(1), . . . ,D(k)

2 start AC with D(1), . . . ,D(k) as meta instances, using average loss across
meta-instances as performance metric m, and using S as target algorithm with
configuration space C

3 while configuration budget remaining do
4 AC selects configuration c ∈ C and meta instance n ∈ {1 . . . k}
5 train Sc on D\D(n), assess its loss on D(n) and return that loss to AC

6 return best configuration c of S found by AC

is further partitioned into k folds (in our experiments, we use k = 10), which are used as
follows.

Let D
(1)
train, . . . ,D

(k)
train be a random partition of the training set Dtrain. The cross-

validation performance CV (Sc) of Sc on the training set is then:

CV (Sc) =
1

k
·

k∑
j=1

 1

|D(j)
train|

·
∑

i∈D(j)
train

l(Sc(Dtrain\D(j)
train), i)

 (2)

In the end, we optimize the performance CV (Sc) by determining a configuration ĉ ∈ C
of the selector S with good cross-validation performance

ĉ ∈ arg min
c∈C

CV (Sc), (3)

and evaluate ĉ by training a selector Sĉ with it on the entire training data and evaluating
P (Sĉ) on Dtest, as defined in Equation 1.

Following Thornton et al. (2013), we use each of the k folds D
(j)
train as one instance within

the configuration process. In order to avoid confusion between these AS instances and the
base-level problem instances (e.g., SAT instances) to be solved inside the AS instance, we
refer to the AS instance as a meta-instance. We note that many configurators, such as Fo-
cusedILS (Hutter et al., 2009), irace (López-Ibáñez et al., 2011) and SMAC (Hutter et al.,
2011), can discard configurations when they perform poorly on a subset of meta-instances
and therefore do not have to evaluate all k cross-validation folds for every configuration.
This saves time and lets us evaluate more configurations within the same configuration
budget. Based on these considerations, Algorithm 1 outlines the process to configure an
algorithm selector with AutoFolio.

Since the instances in an AS scenario could be split into configuration and testing sets in
many different ways, one such split does not necessarily yield a representative performance
estimate. Therefore, to yield more confident results in our evaluation, we perform an addi-
tional outer cross-validation (as given by an ASlib scenario) instead of a single training-test
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split. That is, we consider multiple training-test splits, configure the selector for each train-
ing set, assess its final configurations on the respective test data sets, and average results.
We note, however, that in a practical application of AS, one would only have a single train-
ing set (which we would still split into k cross-validation splits internally) and a single test
set.

3.2 Configuration Space Of Selectors

Most existing algorithm selectors implement one specific algorithm selection approach, using
one specific machine learning technique. We note, however, that most selection approaches,
at least implicitly, admit more flexibility, and in particular could be used with a range of
machine learning techniques. For example, SATzilla’11 (Xu et al., 2011) uses voting on
pairwise performance predictions obtained from cost-sensitive random forest classifiers, but,
in principle, it could use other cost-sensitive binary classifiers instead of random forests.

Based on this observation, we consider a hierarchically structured configuration space
with a top-level parameter that determines the overall algorithm selection approach —
for example, a regression approach, as used in SATzilla’09 (Xu et al., 2008) or a k-NN
approach, as used in ME-ASP (Maratea et al., 2014). For most selection approaches, we
can then choose between different regression techniques, for example, ridge regression, lasso
regression, support vector regression or random forest regression. Each of these machine
learning techniques can be configured by its own (hyper-)parameters.

Besides the selection approach, further techniques are used for preprocessing the train-
ing data (for example, z-score feature normalization as a feature preprocessing step or
log-transformation of runtime data as a performance preprocessing step). Preprocessing
techniques can be configured independently from the selection approach, and are therefore
also handled by top-level parameters.

We use a third group of parameters to control pre-solving schedules (Kadioglu et al.,
2011; Xu et al., 2011), including parameters that determine the time budget for pre-solving
and the number of pre-solvers considered. Pre-solving techniques can be freely combined
with selection approaches; because they are not always needed, we added a top-level binary
parameter that completely activates or deactivates the use of pre-solvers; all other pre-
solving parameters are conditional on this switch.

We implemented these choices in the claspfolio 2 system described in Section 2.1.2.
Figure 6 illustrates the complete configuration space thus obtained. Our current version,
which we use for the concrete implementation of our AutoFolio approach, covers six
different algorithm selection approaches:

(hierarchical) regression (inspired by SATzilla’09; Xu et al., 2008) learns a regression
model for each algorithm; for a new instace, it then selects the algorithm with best
predicted performance;

multiclass classification (inspired by LLAMA; Kotthoff, 2013) learns a classification
model that directly selects an algorithm based on the features of a new instance;

pairwise classification (inspired by SATzilla’11; Xu et al., 2011) learns a (cost-sensitive)
classification model for all pairs of algorithms; for a new instance, it evaluates all mod-
els and selects the algorithm with the most votes;
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Figure 6: Configuration space of claspfolio 2, including 22 categorial parameters, 15
integer valued parameters and 17 continous parameters. Parameters in double boxes are
top-level parameters; single boxes represent algorithm selection approaches based on classes
of machine learning techniques, dashed boxes machine learning techniques and dotted boxes
indicate the number of low-level parameters. Parameter boxes used in the default configu-
ration are filled in grey.

clustering (inspired by ISAC; Kadioglu et al., 2010) determines subsets of similar training
instances in the feature space and the best algorithm on these subsets; for a new
instance, it determines the nearest cluster center and selects the associated algorithm;

k-NN (inspired by 3S; Kadioglu et al., 2011, and ME-ASP; Maratea et al., 2014) deter-
mines a set of similar training instances in the feature space for a given new instance
and selects the algorithm with the best performance on this instance set;

SNNAP (inspired by Collautti et al., 2013) predicts the performance of each algorithm
with regression models and uses this information for a k-NN approach in the predicted
performance space.

For each of these approaches, claspfolio 2 covers at least three different machine
learning techniques (where appropriate). These are listed in Figure 6; for example, pairwise
classification can be based on random forests, SVMs or gradient boosting (with 3, 2 and 3
hyper-parameters, respectively). For preprocessing strategies, it supports:

Performance preprocessing:

transformation applies log (Xu et al., 2008) or z-score normalization (Collautti
et al., 2013) to the performance data;

instance weighting weights the instances by their impact on the performance of
an algorithm selector, that is, instances get a low weight if all available algo-
rithms perform equally, and high weight if the algorithms differ substantially in
performance (Kotthoff, Gent, & Miguel, 2012);

contribution filtering removes algorithms that have less than a specified contribu-
tion to the performance of the oracle (also known as virtual best solver) (Xu
et al., 2012a); this is a form of algorithm subset selection.
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Feature preprocessing:

normalization transforms the instance features with min-max, z-score, decimal-
point, log scheme or by application of PCA;

p:PCA applies principal component analysis on the features and selects the top p
principal components, where p is a parameter (if PCA was activated);

imputation fills in missing feature values as the median, average or most frequent
value of a feature – if imputation is deactivated and a feature vector is incomplete
for a given instance, the single best solver is statically selected;

max feature time limits the amount of time spent to collect features – this ensures
that not too much time is spent on feature computation; however, it can result
in incomplete features with missing values (which get imputed if imputation is
active).

We chose the default configuration of claspfolio 2 (used to initialize the algorithm
configurator) to be a SATzilla’11-like configuration, since this was shown to be effective on
SAT (Xu et al., 2012a) and ASP (Hoos et al., 2014), and since its overall high performance is
evident from the results in Figure 1. This configuration uses pairwise cost-sensitive random
forest classifiers, z-score feature normalization and a pre-solving schedule with at most three
pre-solvers. Since we assume no prior knowledge about the algorithm selection scenarios, the
default configuration uses the default instance features as defined by the scenario designers.

We chose claspfolio 2 as the basis for AutoFolio, because it has been designed to
be flexible and is known to perform well.2 We note that in principle, other selectors, such
as SATzilla (Xu et al., 2008), ISAC (Kadioglu et al., 2010), SNNAP (Collautti et al.,
2013) and LLAMA (Kotthoff, 2013), could be generalized in a similar way.

In addition to using claspfolio 2 as its algorithm selection framework, our current
version of AutoFolio employs the algorithm configurator SMAC (described in Section
2.2.1). Like the selection framework, this configurator is also exchangeable: while we chose
SMAC, because it performed best across the algorithm configuration problems we studied
so far, in principle, other configurators could also be used, such as, GGA (Ansótegui et al.,
2009) or irace (López-Ibáñez et al., 2011). Preliminary results (Lindauer et al., 2015b)
showed that ParamILS can also optimize the performance of claspfolio 2, but was
inferior to SMAC in all but one scenario, on which its performance advantage was small.

4. Empirical Performance Analysis

In this section, we empirically analyze the performance of our AutoFolio approach. In
these experiments, AutoFolio employs claspfolio 2 using the well-known machine learn-
ing package scikit-learn (Pedregosa et al., 2011) (version 0.14.1) and the algorithm config-
urator SMAC (version 2.08.00). We ran AutoFolio on the thirteen algorithm selection
scenarios that make up the Algorithm Selection Library 1.0 (Bischl et al., 2015b).3

2. Results on the performance of claspfolio 2 compared to other state-of-the-art algorithm selectors can
be found at aslib.net.

3. We note that for experiments on ASlib scenarios, claspfolio 2 and other algorithm selectors do not
need to perform actual runs of algorithms or feature generators, because the ASlib scenarios already
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As shown in Table 1, these scenarios comprise a wide variety of hard combinatorial
problems; each of them includes the performance data of a range of solvers (between 2 and
31) for a set of instances, and instance features organized in feature groups with associated
costs. For all scenarios we consider here, the performance objective is runtime minimization.
On a high level, these scenarios comprise the following data:

• ASP-POTASSCO: runtimes of different parameter configurations of the ASP solver
clasp on a broad range of ASP instances collected by the Potassco group (Gebser,
Kaminski, Kaufmann, Ostrowski, Schaub, & Schneider, 2011a);

• CSP-2010: runtimes of a single solver with two different configurations (with and
without lazy learning; Gent, Jefferson, Kotthoff, Miguel, Moore, Nightingale, & Petrie,
2010) on a collection of CSP instances;

• MAXSAT12-PMS: runtime data from the 2012 MaxSAT Evaluation;

• PREMARSHALLING: runtimes of A∗-based and IDA∗-based solvers for the pre-
marshalling problem, on real-world, time-sensitive pre-marshalling problem instances
from the operations research literature;

• PROTEUS-2014: runtimes of different CSP and SAT solvers on a range of CSP
instances, preprocessed with various CSP-to-SAT translation techniques;

• QBF-2011: runtime data for the QBF solvers from the AQME system (Pulina &
Tacchella, 2009) on QBF instances from the 2010 QBF Solver Evaluation;

• SAT11-HAND, SAT11-INDU and SAT11-RAND: runtime data from the respec-
tive tracks of the 2011 SAT Competition;

• SAT12-ALL, SAT12-HAND, SAT12-INDU and SAT12-RAND: runtimes of var-
ious SAT solvers on a broad range of SAT instances used to train the algorithm
selection system SATzilla (Xu, Hutter, Shen, Hoos, & Leyton-Brown, 2012b) for
the respective tracks of the 2012 SAT Challenge.

We refer to Bischl et al. (2015b) for further details on these scenarios, including baseline
experiments showing that algorithm selection can be applied effectively to all these scenar-
ios. We point out that using this common library allows us to compare AutoFolio in a
fair and uniform way against other algorithm selection methods. However, the price we pay
for this uniform comparison is that we do not necessarily consider current state-of-the-art
algorithms for solving the respective problems, since some of the ASlib data was collected
several years ago. Furthermore, we note that the current version of ASlib only consists of
deterministic performance data. We expect that future versions will also consider scenar-
ios with stochastic performance data and multiple runs per algorithm and instance, using
different pseudo-random number seeds. AutoFolio can be applied to such stochastic sce-
narios in a straightforward manner, by optimizing mean performance across all runs for the
same instance

contain all necessary performance data and feature vectors (in order to allow for a fair comparison of
algorithm selectors based on the same data, without confounding factor due to the hardware platform
used to run experiments).
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Scenario #I #U #A #f #fg tc Reference

ASP-POTASSCO 1294 82 11 138 4 600 (Hoos et al., 2014)
CSP-2010 2024 253 2 86 1 5000 (Gent et al., 2010)
MAXSAT12-PMS 876 129 6 37 1 2100 (Malitsky et al., 2013)
PREMARSHALLING 527 0 4 16 1 3600 (Tierney & Malitsky, 2015)
PROTEUS-2014 4021 428 22 198 4 3600 (Hurley et al., 2014)
QBF-2011 1368 314 5 46 1 3600 (Pulina & Tacchella, 2009)
SAT11-HAND 296 77 15 115 10 5000 (Xu et al., 2008)
SAT11-INDU 300 47 18 115 10 5000 (Xu et al., 2008)
SAT11-RAND 600 108 9 115 10 5000 (Xu et al., 2008)
SAT12-ALL 1614 20 31 115 10 1200 (Xu et al., 2012b)
SAT12-HAND 767 229 31 115 10 1200 (Xu et al., 2012b)
SAT12-INDU 1167 209 31 115 10 1200 (Xu et al., 2012b)
SAT12-RAND 1362 322 31 115 10 1200 (Xu et al., 2012b)

Table 1: Overview of algorithm selection scenarios in the Algorithm Selection Library,
showing the number of instances #I, number of unsolvable instances #U (U ⊂ I), number
of algorithms #A, number of features #f , number of feature groups #fg, cutoff time tc
and literature reference.

4.1 Algorithm Configuration Setup

Following standard practice (Hutter et al., 2009), we performed multiple (in our case, 12)
independent runs of the algorithm configurator SMAC for each scenario and then selected
the configuration of claspfolio 2 with the best performance on training data. Each config-
urator run was allocated a total time budget of 2 CPU days. A single run of claspfolio 2
was limited to 1 CPU hour, using the runsolver tool (Roussel, 2011). As a performance
metric, we used penalized average runtime with penalty factor 10 (PAR10), which counts
each timeout as 10 times the given runtime cutoff (runtime cutoffs differ between the ASlib
scenarios). We further study how the optimization of PAR10 influenced other metrics, such
as the number of timeouts. The time required to evaluate a single configuration of clasp-
folio 2 varied between 10 CPU seconds and 1 CPU hour on our reference machine (see
below), mostly depending on the difficulty of optimizing pre-solving schedules.

To obtain a robust estimate of AutoFolio’s performance, we used 10-fold outer cross-
validation as given in the specific ASlib scenarios, that is, we configured claspfolio 2 ten
times for each scenario (with different training-test splits). Therefore, in total, we performed
12 · 10 = 120 configuration runs of 2 CPU days each for three different configuration spaces
(see Section 4.2) and each of the thirteen ASlib benchmarks, requiring a total of 9 360
CPU days (25 CPU years). We note that although our thorough evaluation of AutoFolio
required substantial amounts of computation, applying it to a single benchmark set with
a given training-test split would only require 12 independent configuration runs of two
days each and could thus be performed over the weekend on a modern desktop machine.
Furthermore, applying AutoFolio to a new algorithm selection benchmark set is cheap
in comparison to collecting the data for a new benchmark set. For instance, to collect
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categorical integer real conditionals configurations

AutoFoliovote 18− 28 7 3 14 1 · 106 − 6 · 108

AutoFolio 28− 38 15 15 44 3 · 1011 − 2 · 1014

AutoFolioext 47− 247 15 15 44 2 · 1017 − 2 · 1077

Table 2: Overview of configuration spaces with the number of categorical, integer-valued
and real-valued parameters, the number of conditionals, and an estimation of the number
of configurations by ignoring the real-valued parameters. The number of categorical values
varies between the scenarios depending on the number of algorithms, features and feature
groups.

the algorithm performance data for the ASlib scenarios required between 25.7 CPU days
(ASP-POTASSCO) and 596.7 CPU days (PROTEUS-2014), with an average of 212.3
CPU days (9 times as much as our configuration budget for AutoFolio).

We performed these experiments on the bwUniCluster in Karlsruhe, whose machines
are equipped with two Octa-Core Intel Xeon E5-2670 (2.6 GHz, 20 MB cache) CPUs and
64 GB RAM each, running Hat Enterprise Linux 6.4. We note, however, that the runtimes
of the selected algorithms and feature computations are part of the ASlib scenarios and do
not depend on the hardware we used.

4.2 Different Configuration Spaces

As mentioned earlier, AutoFolio can be used to optimize the performance of single ap-
proach algorithm selectors, such as SATzilla, or multi-approach selectors, such as LLAMA
or claspfolio 2, with much larger configuration spaces (see Figure 6). Therefore, we stud-
ied three different parameter spaces of AutoFolio based on claspfolio 2:

AutoFolio considers the configuration space described in Section 3.2 and additionally
adds binary parameters that enable or disable feature groups4 that are defined by
the specific algorithm selection scenario. Algorithm subset selection is done using a
heuristic based on the marginal contribution of each algorithm to the oracle perfor-
mance;

AutoFoliovote considers only a subset of the configuration space of AutoFolio, that
fixes the algorithm selection approach to pairwise classification with a voting scheme;

AutoFolioext considers the same configuration space as AutoFolio, but instead of pa-
rameters for each feature group, we added binary parameters for each instance feature
and for each selectable algorithm. This increases the number of parameters substan-
tially – for example, it adds 220 additional parameters for the PROTEUS-2014
scenario.

4. If the selected feature groups result in an empty feature set, claspfolio 2 will statically select the single
best algorithm on training data.
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Scenario Default AutoFoliovote AutoFolio AutoFolioext

PAR10 #TOs PAR10 #TOs PAR10 #TOs PAR10 #TOs

ASP-POTASSCO 124.8∆ 19 119.8∆ 18 125.0∆ 19 152.7∆ 25
CSP-2010 384.7∆ 10 329.7∆ 8 355.1∆ 9 358.1∆ 9

MAXSAT12-PMS 264.0 7 135.7∗†∆ 3 246.3 7 268.2∆ 8

PREMARSHALLING 2513.8∆ 33 1953.6†∆ 24 2005.1†∆ 25 1922.5†∆ 24

PROTEUS-2014 3274.2 321 1274.0∗†∆ 110 1379.2∗† 117 3102.7 280

QBF-2011 1068.4∆ 26 866.6†∆ 19 910.2∆ 21 946.9∆ 22

SAT11-HAND 7093.2∆ 29 5781.4∆ 23 5552.8†∆ 22 8085.8 33

SAT11-INDU 7851.2 37 6616.5†∆ 31 5932.3∗†∆ 27 7671.3 36

SAT11-RAND 3684.0 34 1441.9∗† 12 967.4∗†∆ 7 1301.7∗† 10

SAT12-ALL 2087.0 261 890.4∗†∆ 102 979.1∗†∆ 115 1077.0∗† 126

SAT12-HAND 2081.2 86 1079.5∗†∆ 43 1212.3∗†∆ 49 1285.5∗† 52

SAT12-INDU 1019.8 69 682.9∗†∆ 44 774.6∗†∆ 52 990.7 67

SAT12-RAND 708.2 52 391.6∗†∆ 29 440.8∗† 33 543.1∗† 41

Table 3: Comparing different configuration spaces of AutoFolio based on test perfor-
mance. The best performance is shown in bold face; ∗ and † indicate performance signifi-
cantly better than that of the default configuration of claspfolio 2 at significance levels
α = 0.05 and α = 0.1, respectively, according to a one-sided permutation test with 100 000
permutations. Performances values that, according to the permutation test, are not signifi-
cantly worse (at α = 0.05) than the best performance for a given scenario are marked with
∆.

We fixed the selection approach in AutoFoliovote to pairwise classification with a
voting scheme, since SATzilla’11-like was the most promising single approach in our ex-
periments (see, e.g., Figure 1). On the other hand, the extended configuration space,
AutoFolioext, was obtained by adding algorithm subset selection and feature selection to
the configuration task. Feature selection is well known to improve many machine learning
models, and often only a small subset of instance features is necessary to predict the runtime
of algorithms (Hutter, Hoos, & Leyton-Brown, 2013).

We note that each configuration in AutoFoliovote can also be found in AutoFolio,
and each configuration of AutoFolio is also part of AutoFolioext, that is, AutoFoliovote

⊂AutoFolio ⊂AutoFolioext. Table 2 gives an overview of the configuration space sizes.

4.3 Analysis Of Configuration Process

In Table 3, we compare the performance of the default configuration of claspfolio 2
(namely, SATzilla’11-like) with that of the configurations optimized by AutoFoliovote,
AutoFolio and AutoFolioext. For all selection scenarios, AutoFoliovote improved
performance on test data in comparison to the default configuration of claspfolio 2.
AutoFolio improved on all but one scenario and AutoFolioext on all but three scenarios.
Performance improvements on test data were statistically significant at α = 0.1 and α = 0.05
for ten and seven scenarios for AutoFoliovote, for nine and seven for AutoFolio, and
five and four for AutoFolioext, respectively, according to a one-sided permutation test
with 100 000 permutations.
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On 11 of the 13 ASlib scenarios, configuration in at least one of the configuration
spaces we considered led to statistically significant improvements (α = 0.1); we now discuss
the remaining two scenarios, ASP-POTASSCO and CSP-2010. On ASP-POTASSCO,
performance improved substantially on the training data (AutoFolio reduced the PAR10
score by ≈ 30%), but this did not transfer to test data (with none of the differences between
test performances being statistically significant). We note that the default configuration
of claspfolio 2 was manually optimized on this scenario (Hoos et al., 2014), and that
AutoFolio found very similar configurations with very similar performance. On CSP-
2010, all AutoFolio variants improved over the default, but only insignificantly so. We
note that it is hard to improve performance substantially on this benchmark, which only
contains two algorithms.

On PREMARSHALLING, AutoFolio solved 8 additional problem instances and re-
duced PAR10 by more than 25%; nevertheless, this performance difference was only weakly
significant (at α = 0.1). This is due to the strong constraints on the pre-solving schedule
in the default configuration of claspfolio 2 (at most 3 solvers for at most 256 seconds).
While more extensive pre-solving schedules decreased the number of timeouts on PRE-
MARSHALLING, they also introduced overhead on many of the other instances in this
scenario, making it harder for AutoFolio to achieve more significant performance im-
provements. The scatter plot of Figure 7a shows that AutoFolio produced fewer timeouts
than default claspfolio 2, but AutoFolio required higher runtime on some other in-
stances (points above the diagonal). Similarly, AutoFolio solved a lot more instances on
PROTEUS-2014 and some more on QBF-2011, but AutoFolio had a higher runtime
on some other instances (see Figure 7c and 7b). However, the number of timeouts im-
proved so much on PROTEUS-2014 (from 321 to 117) that the performance improvement
was statistically significant here. Finally, SAT12-ALL is an example of a more clear-cut
case: AutoFolio improved the performance of claspfolio 2 on most instances and also
substantially reduced the number of timeouts (see Figure 7d).

Overall, AutoFoliovote performed best in these experiments, followed by AutoFolio,
and with some distance, AutoFolioext. With respect to statistical significance, Auto-
Foliovote and AutoFolio performed quite similarly, the former being better three times
and the latter being better once. Based on the results, we suspect that the added flexibility
in AutoFolio as compared to AutoFoliovote pays off when the configuration budget
is large enough to evaluate enough configurations to effectively search its larger space.
This was the case for the three SAT11 scenarios, for which AutoFolio reached the best
performance: these scenarios only contain relatively few problem instances, making each
evaluation of claspfolio 2 quite fast and allowing SMAC to evaluate about 40 000 con-
figurations within 2 days. In contrast, an evaluation of a configuration on the largest ASlib
scenario, PROTEUS-2014, can cost up to an hour, and SMAC evaluated only about 600
configurations, which was not enough to explore the design space of AutoFolio; accord-
ingly, the performance of AutoFolioext on PROTEUS-2014 improved only slightly in
comparison to the default configuration, while AutoFoliovote made progress faster and
performed statistically significantly better than AutoFolio. Therefore, we believe that
AutoFolio is a good choice when we can evaluate many configurations, be it because the
scenario is small or because a large configuration budget is available. On the other hand,
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(a) PREMARSHALLING. Number of timeouts
reduced from 33 (default) to 25 (configured).
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(b) QBF-2011. Number of timeouts reduced
from 26 (default) to 21 (configured).
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(c) PROTEUS-2014. Number of timeouts
reduced from 321 (default) to 117 (configured).
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(d) SAT12-ALL. Number of timeouts reduced
from 261 (default) to 115 (configured).

Figure 7: Scatter plots comparing the per-instance performance of default claspfolio 2
(SATzilla’11-like) and AutoFolio. Left: On PREMARSHALLING, AutoFolio im-
proved penalized average runtime (PAR10) by reducing the number of timeouts, at the
cost of increased runtimes on many other instances. Right: on SAT12-ALL, AutoFolio
improved performance on most instances and also reduced the number of timeouts.

AutoFoliovote should be used on larger scenarios or when the configuration budget is
quite small.

Figure 8 shows the progress of the configuration process in terms of training performance
as a function of time for SAT11-HAND and PROTEUS-2014, as the scenarios with the
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Figure 8: The training PAR10 performance of the best configuration over time. The line
shows the median over the 10 folds of the outer cross-validation and the filled area indicates
performance between the 25 and 75-quantile.

most and the fewest configuration evaluations performed in the fixed configuration budget.
For both scenarios, the very large configuration space of AutoFolioext resulted in a period
of stagnation before performance improved. On PROTEUS-2014, the performance started
to improve only near the end of the configuration budget. In contrast, AutoFolio and
AutoFoliovote performed quite similarly on both scenarios, with AutoFoliovote being
somewhat faster to make progress (note the logarithmic time axis). Surprisingly to us, very
different selection approaches were chosen for AutoFolio and AutoFoliovote. Because
of its restricted configuration space, AutoFoliovote had to choose pairwise classification
with a voting scheme, but AutoFolio also used other approaches for some outer folds of
these scenarios: regression (2 times in each of the two scenarios), clustering (1 and 3 times,
resp.) and SNNAP (3 and 4 times, resp.).

From Figure 8, we can also estimate the influence of the configuration budget on the
performance of our final algorithm selector. For example, if we halve the configuration time
budget to 1 day, the penalized average runtime on the training set only increases by about
8%.

4.4 Which Choices Lead To Good Performance?

To analyze which choices were most important in AutoFolio, we applied two comple-
mentary methods for assessing parameter importance in algorithm configuration spaces:
functional ANOVA (Hutter, Hoos, & Leyton-Brown, 2014, 2015b) for a global measure of
parameter importance and ablation analysis (Fawcett & Hoos, 2015b, 2015a) for a local
measure. For a high-level overview of the parameters in AutoFolio, we refer back to
Section 3.2; full details, including the default values and ranges of all parameters, are given
in an online appendix available at www.ml4aad.org/autofolio.
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4.4.1 Functional ANOVA (fANOVA)

Functional ANOVA (fANOVA, see, e.g., Sobol, 1993) is a general method for partitioning the
variance of a function into components corresponding to subsets of its arguments. Hutter
et al. (2014) demonstrated that this technique can be applied to efficiently quantify the
importance of an algorithm’s parameters. Their approach can re-use the performance data
collected during the configuration process for this purpose (without requiring new algorithm
executions) and is therefore computationally very efficient (in our experiments, it required
minutes). The overall approach is to fit an empirical performance model (Hutter, Xu, Hoos,
& Leyton-Brown, 2014) m̂ : C × I → R to the measured performance data, which can be
used to predict performance for arbitrary configurations and instances, and to then study
parameter importance in that model. After fitting that model, fANOVA marginalizes it
across problem instances:

f̂(c) =
1

|I|
·
∑
i∈I

m̂(c, i). (4)

It then computes the variance of the function f̂ across the entire configuration space C
and partitions this variance into additive components due to each subset of the algorithm’s
parameters. Of particular interest are unary subsets, which often explain a substantial part
of the variance and tend to be easiest to interpret. It is important to note that fANOVA
partitions the variance of f̂ over the entire configuration space. While this provides a
global measure of parameter importance, it takes into account many poorly-performing
configurations.

To use fANOVA in the context of our study, for each ASlib scenario, we merged the
performance data from 12 independent SMAC runs and removed all data points that re-
ported a timeout5 or that resulted in an empty feature set. We did the latter, because in
this case claspfolio 2 statically selects the single best solver, causing most parameters to
become unimportant for the performance of claspfolio 2.

For brevity, we only report results for scenario SAT12-ALL. Table 4 shows the ten
most important parameters of AutoFolio and AutoFolioext for this scenario. In both
configuration spaces, the maximal time spent to compute the instance features (max-feature-
time) turned out to be the most important parameter. This parameter is so important,
because setting it too small will result in too few features (or even none, disabling the
selection mechanism) and setting it too large will lead to an increased overhead in feature
computation (see Figure 9).

The second most important parameter of AutoFolio was the marginal contribution
filtering as a heuristic for algorithm subset selection. Algorithm subset selection is espe-
cially important for the AS scenarios based on SAT solving, because they include many SAT
solvers and because the performance of these solvers is often highly correlated (Xu et al.,
2012a). For AutoFolioext, the contribution filtering heuristic is less important, because
the configuration space includes binary parameters for each individual algorithm, allowing
the configurator (here SMAC) to directly perform subset selection. In this context, includ-
ing mphaseSATm and marchrw is of special importance. The solver mphaseSATm is the
single best algorithm on SAT12-ALL and has one of the highest marginal contributions to

5. We only observed timeouts for a particular configuration on the larger data sets: the clustering approach
with spectral clustering.
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Parameter Main Effect

max-feature-time 23.43%± 2.05
contr-filter 6.82%± 2.30
approach 6.39%± 0.63
feature-step:CG 0.76%± 0.09
pre-solving 0.69%± 0.09
impute 0.29%± 0.06
perf:transformation 0.26%± 0.05
time-pre-solving 0.22%± 0.06
feature:normalization 0.06%± 0.01
pre-solving:max-solver 0.05%± 0.01

(a) AutoFolio

Parameter Main Effect

max-feature-time 11.07%± 5.32
approach 5.90%± 4.40
pre-solving 1.29%± 1.61
contr-filter 0.80%± 0.92
algorithms:mphaseSATm 0.72%± 0.22
imputation 0.69%± 0.27
F:algorithms:marchrw 0.30%± 0.18
time-pre-solving 0.23%± 0.41
pre-solving:sec mode 0.11%± 0.24
perf:transformation 0.11%± 0.04

(b) AutoFolioext

Table 4: Average main effects (± stdev) over outer cross-validation splits of the ten most
important claspfolio 2 parameters on SAT12-ALL according to fANOVA.
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Figure 9: Marginal performance predictions for parameter max-feature-time on the data of
one outer fold in the configuration space of AutoFolio. The blue line indicates the mean
of the predicted marginal performance and the red area its standard deviation.

the oracle. Similarly, marchrw has a high marginal contribution and is the only algorithm
whose performance is not highly correlated with that of another solver (see the exploratory
data analysis by Bischl et al., 2015b).

We note once again that this analysis determines global parameter importance with
respect to the entire parameter space. For example, the importance of the maximal feature
computation time is mostly so high, not because it is crucial to change it to improve the
performance of claspfolio 2, but because the configuration space contains settings that
will drastically worsen its performance. To gain complementary insights about which pa-
rameters should be changed to improve performance, we next performed ablation analysis.6

6. We note that fANOVA can also be used to yield a more local analysis of parameter importance by par-
titioning the variance of performance in high-performance regions of a given configuration space (Hutter
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Figure 10: Ablation paths on two outer-folds of SAT12-ALL. In (a), the most important
parameter is impute and feature-step:CG has a smaller effect. In (b), feature-step:CG is the
most important parameter and impute has no effect on the performance.

4.4.2 Ablation Analysis

Ablation analysis provides an answer to the question “Which changes in parameter values
from one configuration to another caused the biggest improvement in performance?”. It
does so by iteratively changing the parameter value with the largest impact on performance
on a path between two given configurations, e.g., the default configuration of an algorithm
and an optimized configuration. Unlike fANOVA, ablation analysis does not attempt to
summarize parameter importance across an entire configuration space, but focusses locally
on paths between configurations of interest. The results obtained from ablation analysis
are therefore complementary to those from fANOVA. Unfortunately, ablation is costly,
since it requires new algorithm runs to assess the performance of configurations on the path
between the two given configurations. For our AutoFolio experiments on SAT12-ALL,
we allocated a time budget of 6 days – the maximum wall-clock time permitted for jobs
on our cluster – for ablation on each of our 10 outer cross-validation folds, and within that
budget, obtained results for 6 of those.

Our ablation results indicate that feature-step:CG – a Boolean parameter that enables or
disables the computation of clause graph features – is the single most important parameter
to change from claspfolio 2’s default. By default, feature-step:CG was activated, but
it turns out that the clause graph features are often too expensive to compute within the
time we allow for feature computation. Therefore, it was indeed a good decision by the
configuration procedure to deactivate this optional feature computation step. According to
our ablation results, this was done in 5 out of 6 outer cross-validation folds and, on average,
on these 5 folds, it was responsible for 99% of the performance improvements achieved

et al., 2014); here, we did not do this, since we used ablation analysis to study parameter importance
locally.
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by configuration (standard deviation 37%7). In contrast, as seen in our fANOVA results,
feature-step:CG is quite unimportant globally, with a main effect of only 0.76%. The second
most important parameter to change was the activation of feature imputation (impute); on
average, this was responsible for 39% of the overall performance improvement (standard
deviation 56%) and was made in all 6 outer cross-validation folds we analyzed.8 However,
impute only had an effect on the performance if feature-step:CG was not deactivated before
impute was changed in the ablation path. This was only the case in 2 out of the 6 ablation
paths (e.g., see Figure 10a) and hence, impute had no impact on performance for the other 4
paths (e.g., see Figure 10b). These two parameters have dependent effects, since imputation
is particularly important if clause graph features are computed: these features time out for
many large instances and thus require imputation.

The globally most important parameter, according to fANOVA, max-feature-time, was
found to be rather unimportant to change from its default value. The parameter was
changed between the default and optimized configuration in all outer folds of SAT12-ALL,
but – since the default value already was very good – on average only 2% of the over-
all performance improvement could be attributed to this change. We note that along the
Ablation path, max-feature-time was never flipped to a value that resulted in worse per-
formance than the default configuration, while many such such poorly-performing values
exist and explain the globally high importance of this parameter.

4.5 Comparison Against Other Algorithm Selectors

In Table 5, we compare AutoFolio with SATzilla’159 (Xu et al., 2011), SNNAP (ver-
sion 1.4; Collautti et al., 2013) and ISAC (implementation in SNNAP 1.4; Kadioglu
et al., 2010).10 We note that ISAC and SNNAP are pure algorithm selectors, whereas
SATzilla’15 and claspfolio 2 can additionally use pre-solver schedules. Furthermore,
we added a näıve approach, RandSel, by simulating an uninformed user who selects uni-
formly at random between SNNAP, ISAC and SATzilla’15. Overall, AutoFolio per-
formed best for 7 out of the 13 scenarios and was statistically indistinguishable from the
best system for all other scenarios, according to a one-sided permutation test with 100 000
permutations and significance level α = 0.05. Therefore, AutoFolio is the only system
that achieves state-of-the-art performance for all scenarios.

SATzilla’15 performed second best, but yielded statistically significantly worse perfor-
mance than AutoFolio on 5 of the 13 scenarios. Even though not statistically significant,
SATzilla’15 performed slightly better than AutoFolio on 5 scenarios. The reason for

7. This large standard deviation arises from the fact that in some folds, the parameter change was actually
responsible for more than 100% of the performance difference: in those folds, this change alone would
have sufficed to achieve better performance than the optimized configuration.

8. The sum of the relative performance of a subset of parameter improvements is not limited to 100%, since
it was computed relative to the difference between the default and the optimized configuration. In 5 out
of the 6 ablation paths, some parameter changes lead to a better performance than the final optimized
configuration, and some parameter changed worsened the performance again.

9. Alexandre Fréchette, the current main developer of SATzilla, provided an internal new implementation
of SATzilla (version 0.9.1b-count-cheap-feat-12) that is no longer limited to SAT.

10. Other state-of-the-art selectors, such as 3S (Kadioglu et al., 2011) and CSHC (Malitsky et al., 2013a),
are not publicly available with their training procedures, and we were therefore unable to train them on
our scenarios.
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Oracle SB SNNAP ISAC SATzilla’15 RandSel AutoFolio

ASP-POTASSCO 21.3 534.1 203.8 291.9 170 221.6 125∗

CSP-2010 107.7 1087.4 1087.5 1027 276∗ 796.8 355∗

MAXSAT12-PMS 40.7 2111.6 895 786.4 166.8∗ 615.6 246.3∗

PREMARSHALLING 227.6 7002.9 9042.1 5880.8 3179.1 6034 2005.1∗

PROTEUS-2014 26.3 10756.3 4058.7 3328 2050.3 3145.6 1379.2∗

QBF-2011 95.9 9172.3 7386.2 3813.5 1245.2 4148.3 910∗

SAT11-HAND 478.3 17815.8 9209.3 13946.2 6211.5∗ 9789 5552.7∗

SAT11-INDU 419.9 8985.6 6632.6∗ 8461.2 8048.8 7714.2 5932.3∗

SAT11-RAND 227.3 14938.6 4859 3140.4 877.5∗ 2958.9 967∗

SAT12-ALL 93.7 2967.9 1427.5 2989.3 876.9∗ 1764.5 979∗

SAT12-HAND 113.2 3944.2 2180.5 4110.8 1031.5∗ 2440.9 1212∗

SAT12-INDU 88.1 1360.6 789∗ 1409.5 839.7∗ 1012.7 774.6∗

SAT12-RAND 46.9 568.5 593.1 434.5∗ 485.3∗ 504.3 440∗

Table 5: Performance comparison between AutoFolio, SNNAP, ISAC, and
SATzilla’15, as well as the single best solver (SB, selected based on PAR10 on the training
set) as a baseline, and the oracle (also known as virtual best solver) as a bound on the op-
timal performance of an algorithm selector. We show PAR10 scores averaged over 10 outer
cross-validation folds, with instances not solved by any solver removed from the test set
to avoid artificially inflating the PAR10-scores. The RandSel column shows the expected
performance by picking uniformly at random one of SNNAP, ISAC and SATzilla’15.
The best performance is shown in bold face. All performance values that are not statisti-
cally significantly better than the best-performing system for a given scenario, according to
a one-sided permutation test with 100 000 permutations and a significance level α = 0.05,
are marked with ∗.

this might be that SATzilla’15 performs an extensive search to determine the best com-
bination of pre-solving schedule (grid search), algorithm subset (iterated local search) and
trained selection model.

We note that, in order to compensate for the 24 CPU days spent to find a well-performing
configuration of AutoFolio, compared to simply using the single best solver, on average
across all scenarios AutoFolio would have to consecutively solve instances for 42 CPU
days (standard deviation 23), less than two times the configuration budget.

Although AutoFolio improved substantially over the single best solver (SB) on all
scenarios (up to a speedup factor of 15.4 on SAT11-RAND), there is still a gap to the
Oracle performance (also known as virtual best solver in the SAT community). This
gap could be closed further in at least two ways: (i) using a larger configuration budget
for AutoFolio, or (ii) by developing better instance features, which are the basis for all
algorithm selection methods.

5. Conclusions

We presented AutoFolio – to the best of our knowledge, the first approach to automat-
ically configuring algorithm selectors. Using a concrete realization of this approach based
on the highly parameterized algorithm selection framework claspfolio 2, we showed that
by using state-of-the-art algorithm configurators, algorithm selectors can be customized to
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robustly achieve peak performance across a range of algorithm selection scenarios. The
resulting approach performs significantly (and sometimes substantially) better than manu-
ally configured selectors and can be applied out-of-the-box to previously unseen algorithm
selection scenarios.

In comprehensive experiments with the 13 algorithm selection scenarios from different
domains (SAT, Max-SAT, CSP, ASP, QBF, and container pre-marshalling) that make up the
algorithm selection library ASlib, our concrete realization AutoFolio outperformed the
best single solver for each selection benchmark by factors between 1.3 and 15.4 (geometric
average: 3.9) in terms of PAR10 scores. Overall, AutoFolio established improved state-
of-the-art performance on 7 out of 13 scenarios and performed on par with the previous
state-of-the-art approaches on all other scenarios; overall, it clearly yielded the most robust
performance across our diverse set of benchmarks.

We also studied the effect of different configuration spaces. Here, we showed that the
medium-size configuration space of AutoFolio can lead to state-of-the-art performance
if the configuration budget allows the evaluation of sufficiently many configurations. In
contrast, if the selection scenario is large (in terms of number of algorithms and problem
instances), or if the configuration budget is limited, configuration in a more constrained
space, as used in AutoFoliovote, typically leads to better performance.

The performance of AutoFoliovote was independently verified in the ICON Challenge
on Algorithm Selection (Kotthoff, 2015), which evaluated 8 different AS systems with a
small configuration budget of 12 CPU hours with respect to three metrics: PAR10 score,
number of instances solved and misclassification penalty. As throughout this paper, the
metric we optimized in AutoFolio was PAR10 score, and AutoFolio ranked first with
respect to this metric. It also ranked first with respect to number of instances solved and
second with respect to misclassification penalty (leading to an overall second place).

In future work, we plan to investigate how the potential gains of larger configuration
spaces (including feature and algorithm subset selection) can be used more effectively. To
this end, we would like to (i) study performance with larger configuration budgets that
allow the configurator to assess more configurations; (ii) evaluate other algorithm configu-
rators, such as irace (López-Ibáñez et al., 2011) and GGA (Ansótegui et al., 2009); (iii)
extend the configuration space of AutoFolio by implementing more algorithm selection
approaches (e.g., CSHC; Malitsky et al., 2013a); (iv) shrink the larger configuration space
based on the analysis of parameter importance through fANOVA (Hutter et al., 2014) and
Ablation (Fawcett & Hoos, 2015b), allowing the configurator to focus on the most impor-
tant parameters; and (v) automatically select between pre-configured algorithm selectors,
based on features of a given algorithm selection scenario, and further improve performance
by starting automatic configuration from the configurations thus selected (Feurer, Springen-
berg, & Hutter, 2015). Another promising avenue for reducing the computational cost of our
approach would be to pre-select algorithms, features, and problem instances based on the
techniques proposed by Hoos et al. (2013) or based on the collaborative filtering approach
by Misir and Sebag (2013). Finally, we plan to investigate to which extent AutoFolio
can configure algorithm selection systems for selecting parallel portfolios (Lindauer et al.,
2015a) to exploit the increasing availability of parallel computing resources.

Overall, we believe that the automated configuration of algorithm selection systems im-
proves the performance and versatility of those systems across a broad range of application
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domains. Our AutoFolio approach also facilitates future improvements, by making it eas-
ier to realize and assess the performance potential inherent in new design choices for the
various components of an algorithm selection system. Our open-source implementation of
AutoFolio is available at www.ml4aad.org/autofolio/.
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program bwHPC.

References
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Hutter, F., Babić, D., Hoos, H., & Hu, A. (2007). Boosting verification by automatic tuning
of decision procedures. In O’Conner, L. (Ed.), Formal Methods in Computer Aided
Design (FMCAD’07), pp. 27–34. IEEE Computer Society Press.

Hutter, F., Hoos, H., & Leyton-Brown, K. (2010). Automated configuration of mixed integer
programming solvers. In Lodi, A., Milano, M., & Toth, P. (Eds.), Proceedings of the
Seventh International Conference on Integration of AI and OR Techniques in Con-
straint Programming (CPAIOR’10), Vol. 6140 of Lecture Notes in Computer Science,
pp. 186–202. Springer-Verlag.

Hutter, F., Hoos, H., & Leyton-Brown, K. (2011). Sequential model-based optimization
for general algorithm configuration. In Coello, C. (Ed.), Proceedings of the Fifth
International Conference on Learning and Intelligent Optimization (LION’11), Vol.
6683 of Lecture Notes in Computer Science, pp. 507–523. Springer-Verlag.

Hutter, F., Hoos, H., & Leyton-Brown, K. (2014). An efficient approach for assessing
hyperparameter importance. In Xing, E., & Jebara, T. (Eds.), Proceedings of the 31th
International Conference on Machine Learning, (ICML’14), Vol. 32, pp. 754–762.
Omnipress.

Hutter, F., Hoos, H., & Leyton-Brown, K. (2015a). www.ml4aad.org/smac.

Hutter, F., Hoos, H., & Leyton-Brown, K. (2015b). www.ml4aad.org/fanova.

Hutter, F., Hoos, H., Leyton-Brown, K., & Stützle, T. (2009). ParamILS: An automatic
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