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Abstract. We investigate per-instance algorithm selection techniques
for solving the Travelling Salesman Problem (TSP), based on the two
state-of-the-art inexact TSP solvers, LKH and EAX. Our comprehensive
experiments demonstrate that the solvers exhibit complementary perfor-
mance across a diverse set of instances, and the potential for improving
the state of the art by selecting between them is significant. Using TSP
features from the literature as well as a set of novel features, we show
that we can capitalise on this potential by building an efficient selec-
tor that achieves significant performance improvements in practice. Our
selectors represent a significant improvement in the state-of-the-art in
inexact TSP solving, and hence in the ability to find optimal solutions
(without proof of optimality) for challenging T'SP instances in practice.

1 Introduction

The travelling salesman problem (TSP) is arguably the most prominent NP-
hard combinatorial optimisation problem. Given a set of n locations — which, by
convention, are called cities — and pairwise distances between those cities, the
objective in the TSP is to find the shortest round-trip or four through all cities,
i.e., a sequence in which every city is visited exactly once, except for the last city,
which is the same as the first, and the sum of the distances between successively
visited cities along the tour is minimal. Here, we consider the 2D Fuclidean TSP
in which the cities correspond to points in the Euclidean plane and the distances
between them are simply the Euclidean distances between those points. This is
the most commonly studied special case of the TSP, and, like the general TSP,
it is known to be NP-hard. The Euclidean TSP has important applications (e.g.,
in the fabrication of printed circuit boards) and also arises in the context of
various transportation and logistics applications.

There are two types of TSP algorithms: exact algorithms, which are guar-
anteed to find an optimal solution to any TSP instance and, when run to com-
pletion, produce a proof of optimality; and inexact algorithms, which cannot
guarantee or prove the optimality of the solutions found. Intriguingly, the state
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of the art for both types of algorithms has been defined by a single solver each
for many years: the exact solver Concorde [1] and the inexact solver LKH [4].
Furthermore, LKH typically finds high-quality and even optimal solutions much
more quickly than Concorde, and therefore, for the purpose of finding such solu-
tions, per-instance algorithm selection techniques (see, e.g., [8]) were inapplicable
to the TSP.

Recently, however, an improvement in the state of the art in inexact TSP
solving in the form of a new evolutionary algorithm, EAX, has been reported
[13], and from the performance comparison against LKH, it appeared possi-
ble that per-instance selection between those two solvers might yield further
improvements.

In this work, we pursue this possibility and show, for the first time, that
per-instance algorithm selection techniques can be used to improve the state of
the art in inexact TSP solving. After providing some preliminary information
about the TSP solvers, benchmark instances and algorithm selection techniques
we use in our study in Sect. 2, we report performance results for LKH and EAX
that clearly indicate the potential benefit of per-instance algorithm selection
(Sect. 3). Next, we report the performance that can be obtained from actual
algorithm selectors, using broad sets of instance features from the literature
[6,12,15,19] (Sect. 4). Finally, we demonstrate how an effective selector can be
constructed based on a small number of efficiently computable probing features
extracted from the initial phase of EAX runs (Sect.5), before concluding with
some general observations and directions for future work.

2 Background and Experimental Setup

TSP Solvers. We consider two state-of-the art inexact TSP solvers in this
work: LKH [4] and EAX [13].

LKH is a stochastic local search algorithm based on the Lin-Kernighan pro-
cedure. It uses an improved variant of the Lin-Kernighan algorithm, based on
5-exchange moves in combination with a construction procedure loosely related
to the nearest neighbour heuristic. LKH has defined the state of the art in inexact
TSP solving since it was first introduced in 2000.

Besides the reference implementation of LKH, we used a modification of
version 1.3, developed in the context of a study of LKH’s scaling behaviour [9].!
This modification adds a simple dynamic restart mechanism to the original LKH
algorithm, based on the observation that the performance of the former suffered
frequently from stagnation of the underlying stochastic search process. We dub
this variant LKH+restart.

EAX is a recently introduced evolutionary algorithm for inexact TSP solv-
ing. Its key ingredient is a new edge assembly crossover procedure, which obtains

1 A similar modification can in principle be applied to the current version 2.0.3 of
LKH, but as we will see, the performance of version 1.3, for which the modification
was made available to us, is sufficient to obtain better performance than EAX in
many cases.
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high-quality tours by combining edges from two parent tours with a small num-
ber of new, short edges. EAX uses 2-opt local search to determine the initial
population, as well as a specific tabu search procedure for generating offspring
from very high-quality parent solutions. Furthermore, an entropy-based mech-
anism is used to preserve diversity in the population of candidate solutions.
A rather complex combination of termination criteria is used to determine when
a run of EAX is ended, at which point the best tour encountered during the run
is returned. Nagata and Kobayashi [13] provide empirical evidence that EAX
often, but not always, outperforms LKH on several sets of commonly studied
Euclidean TSP instances in terms of the solution qualities reached within simi-
lar or shorter running times.

We modified the official implementation of EAX to permit setting the ran-
dom seed (which had previously been fixed to one value) and to terminate when
a given solution quality or bound in running time is reached (or exceeded).
These modifications were necessary to facilitate our comparative performance
analysis and did not compromise performance. During initial experiments, we
noticed that EAX often terminates prematurely. We therefore created two vari-
ants, which we studied in the following. The first, simply dubbed EAX, disables
the original termination criterion and ends a run only when a given solution
quality or bound in running time is reached (or exceeded). We verified that sin-
gle runs of this variant performed no worse than the original version of EAX.
Our second variant uses the original termination criterion to trigger a restart,
by initialising another run; this is done until a given solution quality or bound
in running time is reached (or exceeded). We dub this variant EAX+restart.

Benchmark Instances. Consistent with other work in this area, we use four
types of benchmark instances.

Random uniform Euclidean (RUE) instances are obtained by placing n points
uniformly at random in a square, with integer coordinates between 1 and 1 000 000;
each point corresponds to a city to be visited. Distances between these cities are
defined as Euclidean distances between the respective points, rounded to the near-
est integer. We generated instances with 1 000, 1 500, and 2 000 cities, 1 000 each.
After filtering the instances that no solver could solve within 1 CPU hour on our
reference machine and instances for which features could not be computed because
the computation ran out of memory, we were left with 999 instances with 1000
cities, 1 000 with 1500 cities, and 998 with 2 000 cities. The RUE instances used in
our experiments were generated using the portgen generator from the 8th
DIMACS Implementation Challenge. Optimal solution qualities for all RUE
instances were obtained using Concorde [1].

TSPLIB is a widely used collection of TSP instances with different charac-
teristics, including instances from various applications of the TSP. In our exper-
iments, we used 74 instances with edge types EUC 2D, CEIL 2D and ATT and
sizes between 48 and 11 849. Again we excluded instances that no solver was able
to solve within 1 CPU hour on our reference machine and instances for which
we were unable to compute features.
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Finally, we used two sets of instances from the TSP webpage at http://
www.math.uwaterloo.ca/tsp/index.html. The National instances are based on
the locations of cities within different countries, and we used 8 National instances
with 734 to 9882 cities. The VLSI instances stem from an application in VLSI
circuit design, and we used 27 VLSI instances with 662 to 2924 cities. These
instances are known to be particularly hard for many TSP solvers, including
Concorde and EAX.

We limited our study to instances for which the optimal solution is known,
since we were interested in the ability of our solvers to find optimal solutions and
in the time required for doing so. This is the most ambitious goal for any TSP
solver, and even though inexact solvers, such as the ones we consider here, cannot
prove optimality, they are typically able to find solutions whose optimality is later
proven using other methods much more effectively than the best exact solvers.

Automated Algorithm Selection. The per-instance algorithm selection prob-
lem [16] involves selecting from a set of candidate algorithms the one expected
to perform best on a given problem instance. It is relevant where algorithm port-
folios [3,5] are employed — instead of tackling a set of problem instances with
just a single solver, a set of them is used with the best being selected for each
instance.

Algorithm selection systems build performance models of the algorithms or
the portfolio they are contained in to forecast which algorithm to use in a par-
ticular context. Usually, these models are induced using machine learning. Using
the model predictions, one or more algorithms from the portfolio are selected to
be run sequentially or in parallel.

Here, we consider the case where exactly one algorithm is selected for solving
the problem. One of the most prominent and successful systems that employs
this approach is SATzilla [20], which defined the state of the art in SAT solv-
ing for a number of years. Since then, additional algorithm selection systems
have been developed and proved their worth in the annual SAT competition
(e.g. CSHC [10], which has also been applied to MaxSAT). Other successful
application areas have been constraint solving [14], continuous black-box opti-
mization [2,11], mixed integer programming [21], and AI planning [18].

The interested reader is referred to a recent survey [8] for additional infor-
mation on algorithm selection.

Construction and Evaluation of Algorithm Selectors. In the following, we
use the LLAMA algorithm selection toolkit [7], version 0.7.2, to build algorithm
selectors for the TSP and consider a range of different approaches to algorithm
selection used in the literature. We build models that treat algorithm selection
as a classification problem and predict the algorithm to use. We furthermore build
models that use regression to predict the performance of the individual algorithms
in the portfolio separately and choose the algorithm with the best predicted perfor-
mance. Finally, we consider models that, for each pair of algorithms, use regression
to predict the performance difference between them. The solver with the largest
performance improvement over all other algorithms is chosen.
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In addition to a range of algorithm selection models, we also consider a range
of different machine learning techniques. For classification, we use C4.5 decision
trees (J48), random forests (RF), and recursive partitioning trees (RPART). For
regression, we consider random forests (RF), support vector machines (KSVM),
and multivariate adaptive regression spline (MARS) models. All machine learn-
ing models were used with their default parameters.

We generally consider the portfolio that contains all four solvers — LKH
and EAX as well as their respective restart variants. From our original set of
instances, we selected all that at least one of these solvers was able to find
the optimal solution for within the specified cutoff time of one hour. We also
filter instances for which we were unable to compute feature values because the
computation ran out of memory or unsupported constructs in the input. This
leaves us with a total of 3106 instances.

We use 10-fold cross-validation to determine the performance of the algorithm
selection models. The entire set of instances was randomly partitioned into 10
subsets of approximately equal size. Of the 10 subsets, 9 were combined to
form the training set for the algorithm selection models, which were evaluated
on the remaining subset. This process was repeated 10 times for all possible
combinations of training and test sets. At the end of this process, each problem
instance in the original set was used exactly once to evaluate the performance
of the algorithm selection models.

Execution Environment and Performance Measurement. All experi-
ments were run on 24-core 2.5 GHz Intel XEON machines with 64 GB of RAM
running CentOS 6.4 64 Bit. We measured execution times using the time com-
mand and limited the CPU time of solvers with the runsolver tool [17] where
necessary. We set the cutoff time to 3600 CPU seconds. We ran each solver 10
times on an instance with different random seeds and took the median of the
results.

The mean PAR10 score over all instances is 2062.15 for LKH, 422.48 for
LKH+restart, 11462.98 for EAX, and 104.01 for EAX+restart. The PARI10
score is the penalized average runtime. That is, if the solver chosen for the
respective instance was able to solve it within the cutoff time of one hour,
the actual runtime is the score. Otherwise, we penalise the solver by multiplying
the cutoff time by a factor of 10.

3 Potential for Portfolios

Figure 1 shows scatter plots of the CPU times on our benchmark sets of TSP
instances for the four inexact TSP solvers we considered in our study. It is obvious
that there is substantial potential for algorithm selection — the solvers show very
different behaviour on different sets of instances. There are many instances with
large performance differences; in particular, many instances are easily handled
by one solver, while the other times out after an hour.
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Fig. 1. Performance differences for EAX and LKH (left) and the respective restart
variants (right). Each point represents a problem instance. The axes show the CPU
time consumed by the respective solver as the median over 10 runs on a log scale. Both
solvers exhibit the same performance for points on the diagonal line. The points at the
top and right of the plots represent instances on which one of the solvers timed out,
the instances in the top right corner could not be solved by either of the solvers.

The RUE instances (triangles), which comprise the vast majority of our
instance set, are clustered in the centers of the plots — most of them can be
solved by all solvers, and often there are only small performance differences.
Still, there are a few instances that at least one of the solvers cannot solve
within the time limit of one CPU hour. The TSPLib instances are more varied.
While most of them are easily solvable within a few seconds by all solvers, a
few are very hard for one solver, but easily solvable by another. The VLSI and
National instances are in between very easy and very hard.

The left hand side of Fig.1 shows that there is a large set of instances that
EAX is unable to solve within the time limit. However, the right hand side,
which compares the restart variants of the solvers, shows that EAX+restart is
able to solve the vast majority of these instances within the time limit. This
suggests that EAX-+restart effectively improves over plain EAX; further analy-
sis of the performance correlation between the two variants indicates potential
for automated selection between those. Similar observations apply to LKH vs.
LKH+restart.

While in general solving times tend to increase with instances size, the solver
behaviour is not completely consistent with the size of the problem instances.
For example, there is a large number of relatively small instances on which EAX
times out after an hour. Similarly, there are small instances where LKH exhibits
the same behaviour. This suggests, consistent with earlier work on performance
modelling of TSP solver performance (e.g. [6]) that more information is required
to forecast solver behaviour.

We note that, as can be clearly seen from Fig. 1 and from the performance of
the single and virtual best solvers shown in Table 1, by simply running the algo-
rithms we consider (and in particular: LKH+restart and EAX+restart) in paral-
lel, an improvement can be achieved over the single best solver (EAX+restart),
and hence over the current state of the art in incomplete TSP solving.
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4 Building Algorithm Selectors Using Features
from the Literature

There are several approaches in the literature that attempt to characterise TSP
instances by computing features. We focus on the two presented in [12]? and [6]3,
as they comprise a large set of syntactic and dynamic features, and consider them
in isolation as well as combined with each other. As mentioned above, the cost of
computing the feature values can play a major part in the success of an algorithm
selection system. We therefore split the feature set described in [6] further into
relatively cheap features and the full set of features that in addition comprises
more expensive characteristics and ones that are computed through probing.

We denote the feature set described in [12] TSPmeta and the one from [6]
UBC. Based on these, we use the following four sets of features in our experi-
ments.

UBC (cheap) The feature set from [6] without the more expensive features, in
particular, the local search, branch and cut, and clustering distance features
(13 features). The mean time of computing this set of features was 0.98 s per
instance, with the median at 0.97s (standard deviation 0.42).

UBC The full feature set from [6] (50 features). The mean time of comput-
ing this set of features was 20.71s per instance, with the median at 16.47 s
(standard deviation 46.36).

TSPmeta The full feature set from [12] (64 features). The mean time of com-
puting this set of features was 33.61 s per instance, with the median at 28.51 s
(standard deviation 39.47).

UBC U TSPmeta The union of UBC and TSPmeta (114 features). Some of
the features in the constituent sets contain the same information.

An additional set of features based on k-nearest neighbour analysis has been
introduced very recently in [15]. These features will be included in future studies.

4.1 Results

The results we achieve with the feature sets described above are detailed in
Table 1 (we report PAR10 scores over the union of our four benchmark sets).

We are able to improve upon running the single best solver (EAX+restart)
only in two cases overall. All other selectors are (sometimes much) worse than
simply choosing the single best solver statically. In particular, the classification-
based models exhibit very bad performance. The regression-based models per-
form much better, in particular, the random forest and MARS models.

To what extent these results are caused by the cost of computing the features
becomes clear when examining the results that ignore this cost, presented in
Table 2. While the differences for the classification-based models are relatively

2 http://cran.r-project.org/web/packages/tspmeta/index.html.
3 http://www.cs.ubc.ca/labs/beta/Projects/EPMs/ TSP _features_UBC2012.tar.gz.
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Table 1. Summary of algorithm selector results using sets of features from the litera-
ture. The numbers represent mean PAR10 scores, including the cost of feature compu-
tation, over the entire set of instances and rounded to two digits. We show the scores
for the virtual best and single best solver for comparison. The scores for the models
that are better than the single best algorithm are shown in bold face.

UBC (cheap) UBC | TSPmeta UBC U TSPmeta

Virtual best 18.52

Single best 104.01

Classification J48 3077.42 3725.07 | 3773.81 | 3542.36
RF 2676.62 2176.89|2312.16 | 2252.69
RPART | 1931.51 1580.83 | 1628.55 | 1612.98

Regression RF 119.96 126.40 | 151.20 158.14
MARS | 95.88 223.23 | 204.23 204.97
KSVM | 295.76 911.49 | 3906.04 | 2140.11

Regression pairs | RF 144.48 139.35| 151.50 170.33
MARS | 95.08 138.87 | 208.21 205.86
KSVM | 345.48 850.06 | 1733.45 | 1948.49

small, there are major changes for the random forest and MARS regression
models.

The cost of computing the probing features can be substantial; this can be
seen, e.g., when comparing the performance of the random forest regression
model with the TSPmeta feature set without costs (118.57) with the performance
including the overhead (151.20). The average cost of computing this feature set
is almost twice as large as the average PAR10 score of the virtual best solver.

Figure2 (right) shows the performance of the best overall model, MARS
regression on pairs of solvers trained using the UBC (cheap) feature set, com-
pared to the single best solver. There is a large number of instances where the
solver the selector chooses is better than the single best (points below the diag-
onal); in particular, there are 3 instances where the single best solver times
out (right margin of plot), while the selector chooses a solver that does not.
There are, however, a significant number of instances where the choice made
by the selector is incorrect, and EAX-+restart exhibits better performance than
the chosen solver. In particular, there are two instances that are easy for the
single best solver, while the solver chosen by the selector times out (top margin
of plot). Unsurprisingly, as can be seen when comparing the left and right plots
in Fig.2, the cost of feature computation mainly affects selector performance
on easy instances. Detailed inspection of our results indicates that on struc-
tured TSP instances, the selector tends to achieve more substantial performance
improvements than on RUE instances.

Additionally, we performed forward feature selection, where we start with an
empty set and repeatedly add the feature that gives most additional information,
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Table 2. Summary of algorithm selector results using features from the literature. The
numbers represent PAR10 scores over the entire set of instances without taking the cost
for feature computation into account and rounded to two digits. We show the scores
for the virtual best and single best solver for comparison. The scores for the models
that are better than the single best algorithm are shown in bold face.

UBC (cheap) | UBC | TSPmeta | UBC U TSPmeta

Virtual best 18.52

Single best 104.01

Classification J48 3076.55 3696.60 | 3734.90 | 3495.63
RF 2675.73 2148.1212271.91 |2194.63
RPART | 1930.59 1551.95 | 1597.61 | 1553.29

Regression RF 119.00 106.40 | 118.57 106.00
MARS | 94.91 192.36 | 171.74 152.90
KSVM | 294.80 892.43 | 3867.60 | 2069.93

Regression pairs | RF 143.52 119.86 | 118.87 118.19
MARS | 94.10 107.93 | 175.72 154.00
KSVM | 344.52 831.01 | 1702.98 | 1877.95
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Fig. 2. Algorithm selector performance for the best model trained with features from
the literature without and with taking feature costs into account (left and right plot,
respectively) — in both cases, the best model was MARS regression on pairs of solvers
with the UBC (cheap) feature set. The z-axis shows the log PAR10 score of the single
best solver, the y-axis the log PAR10 score of the selector. Each point represents a
TSP instance. Points on the diagonal indicate that the selector chose the single best
solver, below the diagonal that the selector chose a better solver than the single best.

based on entropy and correlation on the full feature set UBC U TSPmeta to
determine the features that are most important for determining the solver to run.
No cost-sensitive feature selection strategy was applied (we plan to improve on
this approach in future work). The resulting set included eight features from [6]
(the mean and standard deviation cluster distances, the average tour cost from
the construction heuristic, the skew of the probability of edges in local minima,
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the time required for the local search probing feature computation, the maximum
depth, the median and standard deviation of the distances of the minimum
spanning tree) and one from [12] (the fraction of nodes on the convex hull).

We also performed feature selection on the features used by the best overall
model, MARS on pairs of solvers with the UBC (cheap) feature set. Just a single
feature was chosen, the average length of the minimum spanning tree.

While feature selection was able to improve the performance slightly in some
cases, selectors trained on the reduced feature set showed worse performance in
other cases. There is significant overlap in the type of features computed in the
UBC and TSPmeta feature sets, which may explain the inconsistent results we
achieved with feature selection. All results reported in this paper are without fea-
ture selection, as feature selection does not significantly and consistently improve
the results and increases the conceptual complexity of selector construction.

5 Building Algorithm Selectors Using EAX Probing
Features

In the previous sections, we have shown that there are significant complemen-
tarities in performance between the four solvers we consider and therefore signif-
icant potential for algorithm selection to improve the current state of the art in
TSP solving. Using features described in the literature, we can already achieve
a significant performance improvement over the single best solver on our set
of instances. In this section, we investigate whether we can improve on this by
using a different, novel set of features.

As explained earlier, there is a trade-off between the cost of computing the
features characterising a TSP instance and the information obtained through
them. In particular, computing the features that cannot be determined directly
from the description of the instance itself is expensive, but does help learn better
algorithm selection models.

In this section, we propose a new set of features that allows us to investigate
the trade-off of cost of feature computation vs. information in a much more fine-
grained and principled manner. We harness one of the solvers from our portfolio
and analyse its progress when run for a small amount of time. We can control the
amount of time directly — the longer the solver is run, the more information we
get, but the more expensive the feature computation becomes. This information
is then used to derive novel features.

Our single best solver, EAX+restart, provides the user with a trace of its
execution as it progresses through the different generations. For each generation,
the evolutionary algorithm outputs the best and average tour length found over
the individuals of the current population. This gives an indication of how the
solver progresses. By comparing the tour lengths of successive generations to the
initial one, we get information on how quickly the solver is able to improve on
initial solutions.

We consider the information obtained during the first n generations. Each
best and average tour length is normalised by the best and average tour lengths
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of the initial population to obtain the improvement over these. We compute
the minimum, maximum, mean, and median of both best and average improve-
ments over the n generations. As the solving trajectory varies between different
executions, we compute the median values of these numbers over m runs of
EAX+restart with different random seeds.

This feature computation can be seen as a pre-solving step, during which we
are running the actual algorithm used to find a solution. If the solver finds the
solution during the first n generations, no further work needs to be done. Pre-
solving is an effective means of quickly solving easy instances without incurring
the overhead of feature computation costs. It is used with great success in the
SAT7zilla system [20] for example.

5.1 Determining the Number of Generations and Probing Runs

We first investigated the impact of the parameters n and m on selector per-
formance. The results of these preliminary experiments were somewhat incon-
clusive, but led us to choose n = 10 generations and m = 1 algorithm run for
computing our probing features. This keeps the cost of feature computation low,
while still providing us with valuable information that can be used effectively to
decide which solver to use.

The results vary not only with n and m, but also between different probing
runs. As our probing algorithm is stochastic, we obtain different feature values
for different random seeds. The resulting performance differences can be quite
high, especially for easy instances that are solved almost instantaneously if the
solver starts its search process with a good set of initial tours. This means that
not only the computed feature values, but also the cost of feature computation
is different for different runs. This introduces additional stochasticity and noise
into our evaluation.

We therefore average feature costs and values over 10 independent algorithm
runs with different random seeds, and the results reported below are averages
over those runs. In each of these runs, we extract the features as described above
and build and evaluate the models. Averaging the results in this manner makes
our conclusions statistically more robust.

The mean cost of computing this set of features (mean over all instances
that are not solved during feature computation, and median over 10 independent
runs per instance) is 2.81s, and the mean number of presolved instances over all
independent runs is 26.60, all from TSPLIB.

5.2 Results

In the subsequent evaluation, we focus on the approaches that we have identified
as the most promising in the previous experiments, namely random forest and
MARS models for regression and regression on pairs of algorithms. Table 3 shows
the results we were able to achieve with selectors using only our new features. The
overall best model is random forest regression and achieves better performance
than the single best solver on average.
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We note that the performance of the virtual best solver is very slightly worse
than that observed in our experiments from Sect. 4, although the difference is
less than the two significant digits we round to. This is because for the instances
that are solved during feature computation, we take the runtime of the solver
used to compute those features, even though a different solver may be faster.

The selector performance obtained using our new models is worse than the
single best solver when taking into account the full cost of feature computation;
however, because of the nature of our new probing features, this is not necessary:
If the solver used for the feature computation is chosen as the solver to be run
on the given TSP instance, the features are obtained at no additional cost, by
simply continuing the probing run. The performance results for this ‘accelerated’
feature computation are shown in the third column of Table 3.

On average over all probing runs with different random seeds, the selectors
trained using the new features perform worse than the selectors trained using
features from the literature. However, there are clear indications for potential
to obtain much better performance. In Table 3, we report, in parentheses, the
first quartiles of the distributions of mean PAR10 scores over the 10 independent
runs per TSP instance. According to these results, the MARS models for pairs
of solvers, using our new probing features, can yield better performance than
any of the models we have studied previously, using instance features from the
literature.

The performance variation between the 10 independent runs underlying the
results in Table 3 is quite high, considering the relatively small difference in per-
formance to the single best algorithm; for our accelerated random forest models
and our accelerated MARS models for pairs of solvers, we observe standard devi-
ations of 21.77 and 28.09, respectively. The best performance achieved over the
10 independent runs is up to =30 % better than that of the single best solver.
While these results indicate the potential inherent in our new probing features,
statistically robust ways to exploit this potential will be investigated in future
work.

Figure 3 illustrates the performance of our new algorithm selectors, based on
EAX probing features, in more detail. In contrast to the situation when using
features from the literature, illustrated in Fig. 2, we are now able to match the
performance of the single best solver for the vast majority of easy instances.
This is in part due to the fact that the very easy instances are now solved during
feature computation. Furthermore, there are no more cases where our selector
chooses a solver that times out while the single best solver does not. On the con-
trary, there are three instances where the single best solver times out, but our
selector chooses a solver that does not. This fact further illustrates the potential
of our new probing features, which enable us to make better predictions, espe-
cially in extreme cases, where incorrect decisions are particularly detrimental.

When comparing the left- and right-hand plots in Fig. 3, we see the impact of
the feature computation costs. There is no difference in the top and right-hand
parts of the plots, as the instances in these areas take longer to solve, and the
time for feature computation is insignificant. In the centre part, however, a small
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Table 3. Summary of algorithm selector results using our new EAX probing features.
The numbers represent the mean of the mean PARI10 scores over the entire set of
instances (including the ones solved during feature computation) and 10 independent
runs per instance, rounded to two digits. The numbers in parentheses represent the
first quartiles over ten independent runs. The ‘accelerated’ column denotes the average
PARI10 score where the cost of computing the features was added only if the chosen
solver was different from the one used for computing those features. We show the scores
for the virtual best and single best solver for comparison. The scores for the models
that are better than the single best algorithm are shown in bold face.

Without costs ‘ With costs ‘ Accelerated
Virtual best 18.52
Single best 104.01
Regression RF 103.42 (95.04) | 106.24 (97.86)  103.83 (95.46)
MARS | 126.20 (116.93) |129.02 (119.73) | 126.53 (117.24)
Regression pairs | RF 128.74 (119.76) | 131.56 (122.58) | 129.28 (120.27)
MARS | 107.13 (85.91) | 109.95 (88.74) | 107.51 (86.30)
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Fig. 3. Algorithm selector performance for the best model trained with the new EAX
probing features, random forest regression, without (left) and with (right) feature cost,
where in the latter case, the ‘accelerated’ feature computation method was used. The
- and y- axes show the log PAR10 scores of the single best solver and the selector,
respectively. Each point represents one TSP instance. Points on the diagonal correspond
to cases where the selector chooses the single best solver, and points below the diagonal

to cases where the selector chooses a solver with even better performance for that
instance.

shift of points towards the top of the plot can be observed — there is no shift
to the right, as the single best solver can be determined statically and does not
require features. Easy instances are not affected as much, as the solver used to
compute the probing features is also chosen as the solver to continue solving.
Since our use of EAX probing features effectively combines feature computa-
tion with presolving, we see considerable benefits over other algorithm selection
approaches for relatively easy instances. With further optimised feature compu-
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Table 4. Summary of algorithm selector results using the combined set of all features
from the literature and our own. The numbers represent the mean of the mean PAR10
scores over the entire set of instances (including the ones solved during feature com-
putation) and all 10 random seeds rounded to two digits. The numbers in parentheses
are the first quartiles over 10 independent runs. The ‘accelerated’ column denotes the
average PAR10 score where the full cost of computing the features was added only if
the chosen solver was different from the one used for computing those features. If the
same solver was chosen, only the cost for the features not derived during the probing
run was added. We show the scores for the virtual best and single best solver for com-
parison. The scores for the models that are better than the single best algorithm are
shown in bold face.

Without costs ‘ With costs ‘ Accelerated
Virtual best 18.52
Single best 104.01
Regression RF 103.89 (95.93) | 163.16 (161.73) | 160.76 (159.32)
MARS | 216.89 (190.69) |277.84 (260.15) | 275.73 (257.83)
Regression pairs | RF 125.73 (119.59) |180.63 (174.48) | 178.29 (172.13)
MARS | 159.13 (145.45) |221.65 (210.95) | 219.41 (208.64)

tation and presolving strategies, it should be possible for the selector to focus
on improving performance on difficult instances and thus to obtain additional
overall performance improvements.

5.3 Combining with Features from the Literature

As we have seen above, our new features have the potential to give rise to better
selectors than those obtained by using only features from the literature. For our
final set of experiments, we combined the feature sets from the literature with
our new EAX probing features to assess whether this could result in even better
selectors.

Table4 shows the performance results for selectors using the combined set
of features. Overall, when accounting for the cost of determining the features,
performance is worse than for the individual sets in isolation. This is mostly
caused by the high cost of feature computation. However, even when ignoring this
cost, the selectors do not perform better than before. In particular, while the best
selector achieved performance similar to the single best algorithm on average,
it appears to be unable to capitalise on the additional information contained in
the larger feature set. We believe that the redundant information contained in
the set of all features has a detrimental effect on selector performance.

6 Conclusions

The Travelling Salesman Problem is one of the most iconic NP-hard optimisation
problems. It has been extensively studied over the years, and many approaches
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for solving it have been developed. Until recently, a single solver, LKH, has
defined the state of the art for inexact TSP solving. With the recent introduction
of a new state-of-the-art inexact TSP algorithm, EAX, this picture has changed.

In this work, we have extensively studied the empirical performance of LKH,
EAX, and improved variants of these base solvers on a large set of TSP instances
ranging from trivial to hard. We have demonstrated the huge potential for algo-
rithm selection in this context. We then successfully applied algorithm selection
techniques to improve the state of the art in inexact TSP solving.

On the large set of instances we consider in this paper, we have computed
features defined in the literature. We empirically investigated how informative
these features are with respect to choosing the best solver for a specific instance.
The initial results are very encouraging. Even with features that are relatively
cheap to compute, we are able to build algorithm selection models that outper-
form the current state of the art — the single best solver over the entire set of
instances, EAX+restart.

Motivated by this observation, we proposed a new set of features based on
information gleaned from the execution trace of one of the solvers in our portfolio.
Controlling the trade-off between the amount of information and the cost of
computing it, we were able to show that the quality of the selector can improve
significantly over selectors that use existing features. Our approach to feature
computation combines the extraction of instance characteristics with presolving,
which has the additional benefit that trivial instances are solved during this
phase and the selector does not have to consider them.

In future work, we will further investigate our new EAX probing features,
with the goal of obtaining additional, statistically robust performance improve-
ments. We will also endeavour to add additional features and investigate the
impact of cost-sensitive feature selection methods. Our data is available on
the Algorithm Selection Benchmark Repository ASlib (http://aslib.net, beta
datasets) as scenario TSP-LION2015.
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