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Abstract

We propose VNF chain abstraction to decouple a tenant’s
view of the VNF chain from the cloud provider’s implementa-
tion. We motivate the benefits of such an abstraction for the
cloud provider as well as the tenants, and outline the chal-
lenges a cloud provider needs to address to make the chain
abstraction practical. We describe the design requirements
and report on our initial prototype.

1 INTRODUCTION

Network Functions (NF) are an important part of the enter-
prise networks. A large-scale survey by Sherry et al. [10]
reveals that on a typical enterprise the number of NFs and
traditional L2/L3 routers are comparable. The authors also
propose to outsource the network processing of an enterprise
as a Virtual Network Function (VNF) deployed in the cloud.
Recent work extends this model with a VNF chain where
network traffic can be processed by multiple VNFs [3].

However, VNF chain allocation and management at scale
remains under-explored. In particular, only a few papers ad-
dress the scaling of VNF chains in a resource-agnostic way
[2, 6], but these do not apply to the cloud setting where
tenant isolation and SLA guarantees are a primary concern.
Consider a VNF chain with 8 Gbps bandwidth shown in
Fig. 1(a). The actual bandwidth the cloud allocates is 16 Gbps:
sum of ingress and egress traffic. How can this VNF chain
be allocated on the resources in Fig. 1(c)? Answer: it can-
not, because there is only 10 Gbps of servers-to-ToR uplink
bandwidth available in Fig. 1(c).

We propose an abstract-concrete decoupling, or abstraction
for short, of VNF chains to (1) free cloud service offerings
from infrastructure limitations, and (2) enable high resource
utilization to the cloud provider. Such decoupling splits VNF
chains into abstract and concrete chains. An abstract chain
is the one that a tenant requests to allocate. It describes NF
elements, their topology, and SLA constraints. A cloud oper-
ator realizes the abstract chain using one or more concrete
chains. Fig. 1(b) shows two concrete chains that correspond
to the single abstract chain from Fig. 1(a).

Unlike cloud resources consumed by VMs today, where
VM flavor cannot exceed compute and memory available
on an individual server, an abstract chain (or an abstract
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Figure 1: VNF chain decoupling: (a) an abstract chain
the tenant requests to allocate, (b) the abstract chain is
split into two concrete chains, and (c) cloud resources
where concrete chain NFs get placed. Note that NAT1
and NAT2 are placed on ToR. The other NFs of the
concrete-chain-1 are placed on server-1, and NFs of
the concrete-chain-2 are placed on server-2.

VNF) is resource-agnostic, i.e., not restricted by an individ-
ual server’s capacity. Since the abstract chain can be realized
using multiple concrete chains, the cloud operator can mul-
tiplex the throughput of several concrete chains to match
the abstract chain capacity, e.g., the aggregate bandwidth of
the concrete-chain-1 and concrete-chain-2 are multi-
plexed to provide 16 Gbps bandwidth of the abstract chain in
Fig. 1(a). Such multiplexing not only frees the cloud provider
from bounding their services because of the infrastructure
limitations, but multiplexing also simplifies the tenant expe-
rience. Tenants manage their VNF chain using the same API
regardless of the resource footprint of the VNF chain. More-
over, chain abstraction allows for high data center (DC) uti-
lization by enabling finer grained resource allocation. Cloud
operators can achieve higher density packing of the concrete
chains as resource requirements of the concrete chains make
a subset of the abstract chains.
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However, there are multiple challenges associated with
making chain abstraction practical. These include (1) state
synchronization between multiple concrete chains, (2) guar-
anteeing low-latency packet processing across concrete chains,
(3) packet loss during normal operation and scaling up/down
of an abstract chain, and (4) potential efficiency losses due to
splitting a single abstract chain into multiple concrete chains.
Next, we describe our approach to handle these challenges.

2 CHALLENGES

State synchronization between multiple concrete NFs in-
troduces a trade-off between consistency and latency. As
reported by earlier work, e.g., E2 [6], designs with full consis-
tency are computationally expensive, operationally complex,
and incur high latency [4, 8]. As we target cloud scale de-
ployment with latency SLAs, the challenge is to design a
low-latency state synchronization mechanism without violat-
ing correct functionality across multiple concrete chains.

Low-latency. In addition to latency inflation because of
state synchronization, another latency contributing factor
across multiple concrete chains is the network distance be-
tween physical servers where chains are deployed. For ex-
ample, when all concrete chains of an abstract chain get
deployed on the same server the packet processing latency
across these concrete chains is going to be comparable and
minimal. However, if one concrete chain gets deployed across
two servers of the same rack, that concrete chain instance
will incur extra rack-level round trip latency. This latency im-
pacts a subset of the flows and must not violate the abstract
chain SLA. As the distance is an artifact of the scheduler the
challenge is to design a distance-minimizing chain scheduler.

Packet loss rate is specified by tenants as part of the SLA.
The cloud provider has to ensure that the packet loss during
normal operation and scale up/down operations do not vio-
late the requested SLA. Scaling down the throughput of an
(already deployed) abstract chain, in particular, is susceptible
to packet loss, as the number of concrete chains has to be
decreased in response to the decreasing load. If a concrete
chain has a long-lived flow, deallocating that concrete chain
introduces a packet loss. Thus, the challenge is to design a
chain scale up/down mechanism with minimal packet loss.

Efficiency loss. Consolidating VNFs saves server CPU
and RAM resources [9]. Proposed chain abstraction goes
against such optimization as we not only prevent consolida-
tion between different types of NFs, but also split a single
abstract NF into multiple concrete NFs. Although we argue
that VNF consolidation is not practical in the cloud setting
due to the tenant-level isolation requirements, such as secu-
rity and predictable performance expectations, the challenge
is to design abstract-concrete chain decoupling mechanism
with minimum compute and memory overhead.
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3 PROTOTYPE AND FUTURE WORK

Our initial prototype confirms the feasibility of chain ab-
straction [5]. We used the Sonata framework [7] to build and
deploy VNF chains. We used an Azure VM with 64 cores and
432 GB RAM to create 50 virtual hosts emulating a rack-scale
deployment. The tenant requested allocation of the Fig. 1(a)
abstract chain with the maximum bandwidth. We configured
each concrete chain to support 10 Mbps bandwidth (due to
VM resource limitations) and our algorithm allocated a total
of 75 concrete chains, which is the maximum possible. We
successfully passed 10 Mbps of traffic through each concrete
chain with full performance isolation. We also performed
large scale simulations on Facebook’s recently published [1]
DC topology. In a pod with 768 servers we achieved 100%
server-locality (i.e., all NFs of the concrete chains are co-
located) by allocating a total of 480 concrete chains, which
is the maximum possible.

Although the preliminary results show that chain abstrac-
tion can indeed facilitate high DC utilization with a simple
tenant-facing chain management API, we are yet to scale
an abstract chain across multiple physical servers. We plan
to overcome Sonata’s single-server runtime limitation by
building an E2-like system and by integrating a low-latency
state synchronization mechanism, designing scale up/down
mechanism with minimal packet loss, and implementing a
lightweight abstract-concrete chain decoupling mechanism
to thoroughly evaluate the benefits of our chain abstraction.
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