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ABSTRACT

Recent advances in network function virtualization have
prompted the research community to consider data-center-
scale deployments. However, existing tools, such as E2 and
SOL, limit VNF chain allocation to rack-scale and provide
limited support for management of allocated chains.
We define a narrow API to let data center tenants and

operators allocate and manage arbitrary VNF chain topolo-
gies, and we introduce NetPack, a new stochastic placement
algorithm, to implement this API at data-center-scale. We
prototyped the resulting system, dubbed Daisy, using the
Sonata platform.

In data-center-scale simulations on realistic scenarios and
topologies that are orders of magnitude larger than prior
work, we achieve in all cases an allocation density within 96%
of a recently introduced, theoretically complete, constraint-
solver-based placement engine, while being 82× faster on
average. In detailed emulation with real packet traces, we
find that Daisy performs each of our six API calls with at
most one second of throughput drop.
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1 INTRODUCTION

Network processing is increasingly being outsourced to third-
party hardware (e.g., [50]). Outsourcing reduces complexity
and operational cost [21, 41] in much the same way that
public clouds do so for compute and storage.

To outsource network processing, a tenant requests a net-
work function (NF) topology encapsulated in a chain1. Fig. 1
shows an example placement of the 4-node NF chain in a
data center (DC). In this example, the NAT is placed on a top-
of-rack switch (consuming TCAM), the Firewall is placed on
a server, and the IDS and VPN are placed on another server.
Traffic enters and exits through the gateway switch, and
traverses each of the NFs in a chain.
The DC operator, therefore, takes on the difficult task of

allocating and managing large numbers of such chains. This
can be broken down into three challenges. First, the mapping
of chains onto physical DC resources (CPU, memory, TCAM,
link bandwidth, etc.) must satisfy the tenants’ SLAs. Ensur-
ing sufficient throughput may require replicating some NF
elements in a chain across dozens of servers and/or switches.
Furthermore, NF placement must guarantee sufficient band-
width between chain elements, across the entire network,
and may require NF elements to communicate using multiple
paths. Second, the operator wants to maximize DC utiliza-
tion to serve as many tenants as possible using the given,
limited resources. Third, requirements change over time, so

1We use the term chain to be consistent with the literature, although we sup-
port arbitrarily connected directed graphs of NFs. The ETSI standardization
community refers to these as NF forwarding graphs [10].

https://doi.org/10.1145/3230718.3230724
https://doi.org/10.1145/3230718.3230724


ANCS ’18, July 23–24, 2018, Ithaca, NY, USA N. Kodirov, S. Bayless, F. Ruffy, I. Beschastnikh, H. H. Hoos, A. J. Hu

FWNAT IDS

40

Physical
Data Center ToR2

AggSw2AggSw1

  1/8 core
1/2 GB[ ]

VNF
Chain

40 40 4040

10 10

1

1

2

Gateway
100 100

  3/8 core
1/2 GB[ ]   1/2 core

2 GB[ ]   1/4 core
1/2 GB[ ]

  32 core
128 GB[ ]

1

  32 core
128 GB[ ]

[ 2048 TCAM ] [ 2048 TCAM ] 

2 2VPN

ToR1

Figure 1: Example of a 4-node VNF chain allocation

on a physical DC. Placement of each elementmust sat-

isfy physical resource constraints and bandwidth con-

straints between chain elements.

the operator needs chain update mechanisms, e.g., to scale
up bandwidth, or take down a server for maintenance.

Prior work addresses the challenges of small-scale alloca-
tion [2, 5, 14, 25, 30, 31, 39, 47]. In this work, we tackle the
problem of NF placement at DC scale, with the goal of allo-
cating chains consisting of 5–10 NFs to physical DCs with
1000+ servers quickly and in a way that permits optimal or
near-optimal utilization of the given resources.
We define an API of six operations that jointly permit

not only chain allocation, but also efficient in-place chain
modifications, such as NF element upgrades, chain capac-
ity scale-out, and chain expansion with new NF nodes. We
demonstrate how those operations can be realized with chain
allocation algorithms that support end-to-end, multi-path
bandwidth guarantees across the entire network infrastruc-
ture, from servers to top-of-rack and gateway switches.
Initially, we consider a simple stochastic placement algo-

rithm, Random, introduced as a baseline. Next, we introduce
NetPack, a new stochastic algorithm, which performswell in
practice at DC scales and greatly improves network through-
put. Finally, we compare to VNFSolver, which is based on
an algorithm in the constraint-solving literature [4]. VNF-
Solver is complete (guaranteed to find an allocation if one
exists), but is orders of magnitude slower than NetPack.
We prototyped a system, called Daisy, using the Sonata

platform [32] to empirically evaluate the performance of
these algorithms. Our prototype uses each of the above place-
ment algorithms to allocate and manage VNF chains. Using
Daisywe tested the proposed six APIs on dozens of emulated

API Description

cid ← allocate-
chain(C,bw)

Allocate the VNF chain topology
C with aggregate throughput bw ;
return chain identifier cid .

add-node(f , cid) Add NF f to allocated chain cid .
add-link-
bandwidth(a,b,bw, cid)

Add bw bandwidth between NFs
a,b in chain cid .

remove-e2e-
bandwidth(cid,bw)

Decrease end-to-end throughput
in chain cid by bw bandwidth.

remove-node(f , cid) Remove NF f from allocated
chain cid .

remove-link-
bandwidth(a,b,bw, cid)

Decrease the bandwidth between
NFs a,b by bw in chain cid .

Table 1: Proposed (abstract) chain management API.

virtual hosts and realistic VNF chains with real enterprise
traffic. Furthermore, we simulated the algorithms at DC scale
(with as many as 1200 nodes, across three families of realistic
topologies) and evaluated (1) their DC utilization, and (2) the
performance of the chain allocation and chain operations.

To summarize, we make three contributions: (1) we define
an API the data center tenants use to allocate and manage
VNF chains, (2) we develop a scheduling algorithm,NetPack,
to allocate andmanage VNF chains at data center scale, (3) we
implement a prototype, Daisy, that integrates NetPack and
supports the proposed six API in the Sonata platform [33].
Our simulation results show that at DC scales, NetPack is
able to achieve at least 96% of the throughput of VNFSolver,
while requiring only a small fraction of the compute time as
VNFSolver (in some cases, seconds rather than hours). In
detailed emulation with real network packet traces, we find
that Daisy is able to perform each of our six API calls while
experiencing at most one second of throughput drop.

2 CHAIN MANAGEMENT OPERATIONS

Table 1 presents our narrow API of chain management oper-
ations. We demonstrate their utility via three use cases:

Use case 1: Chain scale-out/in.Chainsmust be dynamic
to respond to changes in traffic. For example, when the ratio
of unsafe traffic grows, an operator (or a monitoring tool)
may need to update the allocated chain to handle the in-
crease in load. Fig. 2a illustrates this scale-out when an extra
bandwidth unit of suspicious trafficmust be handled by an ex-
isting chain. In this case, Daisy2 uses the add-link-bandwidth
operation five times to increase the bandwidth along the IDS
path of the chain. Alternatively, the remove-link-bandwidth
API can be used to scale-in VNF chains.

2Daisy refers to our prototype that implements the API, and also more
generally to any system that aims to support the API.
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Figure 2: Illustrations of initial/intermediate/final VNF chains in 3 use cases. Changes are marked in bolded red.

Use case 2: Chain upgrade.When a new software ver-
sion for an NF is released, an operator needs to upgrade de-
ployed chains without disrupting existing flows. We model
this workflow as an in-place upgrade; Fig. 2b illustrates how
an in-place upgrade of an IDS element is expressed using the
API. To go from the chain in Fig. 2.Initial to the one in Fig.
2.b1, Daisy first uses add-node to create a new IDS instance
(IDS2), and then uses add-link-bandwidth to connect IDS2
to the destination and source elements of IDS1 with equal
amount of bandwidth. IDS1 will keep running until all active
flows terminate or migrate to IDS2. Once no traffic is passing
through IDS1, Daisy will transition from Fig. 2.b1 to Fig.
2.b2 (effectively disconnecting IDS1 from the chain) using
remove-link-bandwidth followed by remove-node.
Use case 3: Traffic engineering.Chains should be exten-

sible and permit traffic optimization and monitoring. Fig. 2c
shows a case when an tenant observes redundant traffic and
wants to add a Redundancy Eliminator (RE) to prevent such
traffic from passing to the corporate network via the VPN.
This change should be transparent to the existing flows. The
operator would use the add-node and add-link-bandwidth
API to add the RE (Fig. 2.c1). Then, new flows are directed
to pass through RE, and once no further traffic is flowing
through the initial links to the VPN, two calls to remove-link-
bandwidth would remove these links (Fig. 2.c2).
The three APIs at the top of Table 1 require new physi-

cal resources and may fail. By default, Daisy handles these
failures transparently, by deallocating the existing chain and
allocating a new, updated, chain. Since extra resources exist
elsewhere in the DC, in this mode, Daisy hides the chain
movement. Operators may disable this behavior to manually
handle failures, e.g., by gracefully terminating existing chains
or provisioning extra hardware to avoid chain relocation.
The three use cases hint at the generality of the API in

Table 1. More broadly, any VNF topology can be transformed
into any other VNF topology using a finite sequence of these
API operations. This follows because the API calls can inde-
pendently change a VNF chain’s links/nodes/bandwidths.

Abstract and concrete chains. Our discussion so far as-
sumed that an operator defines, allocates, and then manages
a single chain using the API in Table 1. In practice, a tenant

may request a chain that requires more physical server/link
capacity than is available on any single server or switch in
the DC. To enable scaling VNF chains past the physical re-
source constraints, we introduce the notions of abstract and
concrete chains. The chain that the operator defines and op-
erates on, and a tenant behaviorally observes, is an abstract

chain. This abstract chain captures the SLA constraints, the
NF elements, and their sequence. However, an abstract chain
does not necessarily map as a whole onto the physical re-
sources. In particular, Daisy may realize, or implement, an
abstract chain on physical resources as several concrete
chains. In Section 6 we demonstrate how Daisy implements
an abstract-to-concrete chain mapping mechanism.
For example, in use case 1 above, the original abstract

chain in Fig. 2.Initial may be instantiated as a single concrete
chain. The additional unit of bandwidth added to the abstract
chain by the operator may require instantiating a second
concrete chain. This may happen because, for example, the
existing physical resources hosting the concrete chain cannot
cope with the new demand, or because one or more of the NF
elements cannot handle the new load. Daisy automatically
determines the set of concrete chains that are necessary
to support an abstract chain and performs the allocation
of concrete chains, rather than abstract chains, onto the
physical resources.

3 CHAIN ALLOCATION ALGORITHMS

The core algorithmic problem in VNF chain allocation is to
place the NFs of a concrete chain onto servers and switches,
and then to allocate sufficient bandwidth between them.
Here, we formalize the problem and present three algorithms
for solving it. Then, we show howwe implemented our chain
management API using the allocation algorithms.

In both algorithms described in the next two subsections,
allocate-concrete() takes a physical network PN and a
concrete chain CN as input. The physical network PN con-
sists of a set of servers and switches S , and a graph (S,L),
with capacities c (u,v ) for each link in L. The VNF chain CN
consists of a set of NFs F and a set of pairwise bandwidth re-
quirements R ⊆ F × F ×Z+. For each server/switch s ∈ S , we
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are also given a vector of integers P[s] representing the phys-
ical resources available for consumption by NFs placed on s ;
and similarly, for each network function f ∈ F , we are given
vector P[f ] representing the required server resources for
that function. For example, P[f ][0]might represent the num-
ber of cores required; P[f ][1], the amount of RAM; P[f ][2],
the number of TCAM entries, etc. In order to place NF f
on server/switch s , the following condition should be met:
(P[f ] ≤ P[s]), i.e., s should have sufficient resources to host
f . The objective is to find an assignment A : F 7→ S of NFs
f ∈ F to servers/switches s ∈ S , and, for each bandwidth
requirement (u,v,bw ) ∈ R, an assignment of non-negative
bandwidth Bu,v (l ) to links l ∈ L, such that the following sets
of constraints are satisfied:

LocalResourceAllocationConstraints: (1) Ensure that
each NF is assigned to exactly one server/switch (of course,
multiple NFs may be assigned to a server/switch), and (2)
ensure that each server/switch has sufficient resources P[s]
available to serve the sum total of requirements of the NFs
allocated to it:

∀s ∈ S,∀i ∈ 1..|P[s]| : *.
,

∑
{f ∈F |A(f )=s }

P[f ][i]+/
-
≤ P[s][i]

Global BandwidthAllocationConstraints: Ensure that
sufficient bandwidth is available in the physical network to
satisfy all bandwidth requirements simultaneously. Formally,
we require that∀(u,v,bw ) ∈ R, the assignmentsBu,v (l ) form
a valid A(u)–A(v ) network flow greater or equal to bw , and
that we respect the capacities of each link l in the physical
network: ∀l ∈ L :

∑
(u,v,b )∈R Bu,v (l ) ≤ c (l ). We model band-

widths using integer values and assume that communication
bandwidth between NFs allocated to the same server/switch
is unlimited.

3.1 Random Allocation

Our first allocation algorithm, Random (Algorithm 1), is a
simple, stochastic placement algorithm, which serves as a
baseline for our empirical experiments. Random performs
concrete chain allocation in two stages. First, for each NF
f ∈ F , it assigns f to a random server s ∈ S with sufficient
resources. Then, it tries to find sufficient bandwidth to satisfy
the global bandwidth constraints of the VNF. Both the server
placement step and the bandwidth allocation step are greedy
processes, which can fail even in cases where a placement is
feasible. For this reason, if either allocation step fails, Ran-
dom restarts and tries again, up tomax_attempts times (set
to 100 in practice). In the Algorithm 1, assume the variable
InitialAllocation is the empty set.Wewill use it in Section 3.4
to extend the behaviour of allocate-concrete().
For each function in f ∈ F , Random visits each server

at most max_attempts times. Each time a server is visited,

Algorithm 1 Random allocation algorithm.
procedure allocate-concrete(PN : (S, L), CN : (F , R ), P )

Physical network PN has servers/switches S and links L. Chain CN
has NFs F with bandwidth requirements R . P contains resource vectors
for each NF, server, or switch.
repeat up tomax_attempts times:

failed← False, P ′ ← P , A← Init ialAllocation
for all f ∈ F (in random order) do

S ′ ← {s ∈ S : P [s] ≥ P [f ]}
if S ′ = ∅ then failed← True, break
else s ← RandomChoice(S ′)

P [s]← P [s] − P [f ], A[f ]← s
if failed or not AllocatePaths(PN , CN , A) then

P ← P ′ ▷ Undo resources used by failed allocation.
else return True

return False
procedure AllocatePaths(PN , CN : (F , R ), A : F 7→ S )

A is an allocation of network functions to servers.
PN ′ ← PN
for all u, v, bw ∈ R do

while bw > 0 do
path ← ShortestPath(PN , A[u], A[v])
if path = ∅ then

PN ← PN ′ ▷ Restore PN to original value
return False

else

bw ′ ←min (bw, {PN [a, b] |(a, b ) ∈ path })
bw ← bw − bw ′

for (a, b ) ∈ path do

PN [a, b]← PN [a, b] − bw ′
if PN [a, b] = 0 then RemoveEdge(PN , a, b )

return True

AllocatePaths() may be called atmost once.AllocatePaths()
repeatedly computes shortest paths in the unweighted net-
work (using depth first search), quiting when either no more
bandwidth can be allocated, or bw units of bandwidth have
been allocated. Assuming integer bandwidth values, each
iteration either decrements bw or exits. As a result,
AllocatePaths() takesO (bw· |S |) steps. Random as a whole
then requires O (BW · |S |2 · |F |) time in the worst case, with
BW sum of the bandwidths requirements of F . However, ex-
perimentally we have found the runtime to be approximately
linear on realistic instances (see Fig. 4 and Fig. 6).

3.2 Stochastic Bin-Packing (NetPack)

Randommakes no attempt to place adjacent NFs together
on the same server, resulting in excessive bandwidth us-
age. NetPack (Algorithm 2) improves on this in three ways.
The first improvement is to allocate the NFs of the chain in
topological, rather than random, order. Finding this order-
ing requires linear time (using Kahn’s algorithm [20]), and
needs to be done once for each chain, as a preprocessing
step. For example, one topological ordering of the 10-node
chain in Fig.3e is (VPN, NAT, LB, FW3, FW1, FW2, WC, DPI,
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Algorithm 2 NetPack allocation algorithm.
procedure allocate-concrete(PN : (S, L), CN : (F , R ), P )

Arguments are as in Alg. 1. Additionally, Racks and Clusters each
contain a list of subsets of S .
for all ServerSets ∈ {{S }, Racks, Clusters } do

if allocate-local(PN , CN , P, ServerSets ) then
return True

return False
procedure allocate-local(PN , CN , P, ServerSets )

ServerSets contains one or more subsets of S .
repeat up tomax_attempts times:

for all Servers ∈ ServerSets (in random order) do

failed← False, P ′ ← P , A← Init ialAllocation
sl ← nil
for all f ∈ F (in topological order) do

if sl = nil or P [sl ] < P [f ] then
S ′ ← {s ∈ Servers : P [s] ≥ P [f ]}
if S ′ = ∅ then failed← True, break
else sl ← RandomChoice(S ′)

P [sl ]← P [sl ] − P [f ], A[f ]← s
if failed or !AllocatePaths(PN , CN , A) then

P ← P ′ ▷ Restore P to original value
else return True

return False

IPS, GW ). Allocating NFs in a topological sorted order avoids
unnecessary bandwidth consumption. For example, in Fig. 1,
a random allocation order might swap the placement of the
Firewall and VPN. This would result in the chain consum-
ing 5 Gbps of extra bandwidth from the aggregation layer
switches, and 4 Gbps extra from ToR switches as compared
to the (current) topologically ordered placement.
The second optimization in NetPack is network-locality.

NetPack gradually increases the network scope for alloca-
tion. First it tries to place all NFs of the chain on the same
server. If that is impossible, it explores servers on the same
rack, then servers within the same cluster, etc. Network-
locality further reduces network consumption of the chain.

The last optimization in NetPack is server-locality, which
preferentially re-uses the previously selected server when
placing consecutive NFs (when possible). This differs from
the network-locality optimization described above: if the
chain does not fit onto a single server, the network-locality
optimization will try to place the chain in the same rack,
but will make no effort within that rack to place consecutive
NFs on the same server. By applying both optimizations, we
attempt to achieve high density packing within each server,
and low-latency packet processing for the chain as a whole.
Notice that in Algorithm 2, each server set is processed

at most once, and each server appears in each server set at
most once (once at the cluster level, once at the rack level,
and once at the individual server level). When placing a
chain F , for each NF f ∈ F , each server is visited at most

max_attempts · |ServerSets| times (both of which are con-
stant factors). As with Random, each time a server is visited,
AllocatePaths() may be called once, requiring O (bw · |S |)
time. As the topological sort step requires O ( |F |) and is per-
formed only once, the algorithm as a whole requires worst-
case O (BW · |S |2 · |F |) runtime, where BW is the sum of the
integer bandwidth requirements of F . However, as with Ran-
dom, we have found the runtime to be approximately linear
in practice (and faster than Random in most cases).

While the optimizations proposed are straightforward im-
provements to naive random bin-packing, as we will see in
Section 6, these optimizations greatly improve the allocation
density achieved by NetPack (as compared to Random), in
many cases achieving 300% as many allocations as Random.
In fact, we will show experimentally that across a wide vari-
ety of realistic scenarios, these optimizations are always able
to achievewithin 96% of the allocations achieved by a theoret-
ically complete (but much more expensive) constraint-based
allocation algorithm we describe next.

3.3 Constraint-Based Allocation (VNFSolver)

A natural question, of course, is how much improvement
is possible over NetPack? To attempt to answer this ques-
tion, we use VNFSolver, which allocates concrete chains
by directly solving the formal constraints. Although such
an approach is not guaranteed to find the globally optimum
utilization of a DC (because earlier allocations are done with-
out knowledge of later requests),3 it is complete in the sense
that it will always find an allocation for a chain if one exists.
Prior work has used constraint solving for VNF alloca-

tion, but scaled only to under 100 servers [14]. We have
leveraged recent advances in constraint solving in order
to reach DC scale. In particular, VNFSolver builds closely
on our recently published placement algorithm called Net-
Solver [4]. NetSolver is a SAT-based network allocation
algorithm, originally designed to perform virtual data cen-
ter (VDC) allocation, as opposed to VNF allocation. Briefly,
NetSolver frames VDC allocation in terms of a constrained
multi-commodity flowproblem, inwhich themulti-commodity
flow enforces global bandwidth connectivity, while the added
constraints enforce that the sources and sinks of the flow
problem correspond to legal mapping of VMs to servers.
Although NetSolver was not designed for performing

VNF allocation, the local and global allocation constraints
defined above are the same. As such, NetSolver can directly
perform allocate-concrete() without major modifications.
However, to support the API in Table 1, we needed to modify
NetSolver in two significant ways: First, we added support

3Indeed, in Section 6, we will describe one case that we are aware of where
NetPack got lucky and was able to achieve slightly greater throughput
than VNFSolver.
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for affinity constraints in order to force some NFs to pre-
selected servers, instead of allowing the solver to select them.
This change requires adding an extra constraint into the
underlying SAT solver, for each NF in question, forcing its
assignment to the selected server. Secondly, we modified
NetSolver to record the servers that each assigned NF are
placed on, as well as the associated bandwidth they utilize
(if any), to facilitate deallocation.

In general, the main algorithmic contribution of this work
is NetPack. As we demonstrate in our evaluation in Section
6 NetPack scales well to data center settings while being
82× faster than VNFSolver on average.

3.4 Chain Management Primitives

Returning to the six operations in Table 1, the last three op-
erations remove allocated bandwidth or resources from the
network. They are implemented with simple book-keeping
operations to remove the allocation and release the resources
used. The first three operations, however, allocate new band-
width or resources, and hence require using the placement al-
gorithm as described next. In order to support allocate-chain,
an implementation must decompose a requested abstract
chain into reasonably-sized concrete chains. In our imple-
mentation, we find the greatest common divisor, D, among
the requested edge bandwidths in the full NF chain, and split
the request up intoD separate calls to allocate-concrete().
As we show in Section 6, this allocation process proceeds
quickly in practice, with NetPack requiring less than 0.05
seconds per individual concrete allocation on even the most
challenging DC network that we consider.
The add-node primitive inserts a new NF into an already

allocated abstract chain, simultaneously placing the new NF
on a physical server or switch with sufficient local resources,
while also allocating the required bandwidth between that
node and its neighbours in the VNF chain. As the abstract
chain to be upgraded may be composed of multiple concrete
chains, our algorithms proceed iteratively through those
concrete chains, adding nodes to each of them individually.

For each concrete chain, the algorithms initially attempt to
incrementally upgrade that concrete chain, adding the new
node while leaving the rest of the concrete chain in place.
Let (F ,L) be the concrete NF chain that has already been al-
located, while (F ′,L′) is a new concrete NF chain, consisting
of a single node to be placed, F ′ = { f ′}, and one or more
links between f ′ and the nodes of F . Notice that while L′
contains links between f ′ and the nodes of F , F ′ (the set of
nodes to be allocated) contains only the new node. If the allo-
cation algorithm is Random or NetPack, we set the variable
InitialAllocation to hold the allocation of the original con-
crete NF (so that the AllocatePaths() knows which servers
the nodes of F are located at). If the allocation algorithm is

VNFSolver, we use the affinity constraints described in the
previous section to force the previously allocated nodes of F
to their existing hosts during allocation.

As we will show in Section 6, this process is fast. However,
this incremental approach to add-node might not always be
feasible; even in cases where there is lots of bandwidth avail-
able in the DC, it may be that some of the NFs are allocated to
a part of the DC that is locally congested, in such a way that
no additional bandwidth can be added between those NFs
and f ′. In the case where the above approach to add-node
is infeasible, the algorithm deallocates the congested NFs
completely (with calls to remove-link-bandwidth and remove-
node), and then makes a separate call to allocate-chain to
re-allocate F ′ all in one go, elsewhere in the DC.

The remaining API is add-link-bandwidth, which allocates
additional bandwidth between two existing NFs in an already
allocated VNF chain. The algorithms implement add-link-
bandwidth exactly as add-node, except that there are only
new links in (F ′,L′), and no new node. As with add-node,
add-link-bandwidth can potentially fail, in which case we
would re-allocate the chain.

Both add-node and add-link-bandwidth APIs use full con-
crete chain re-allocation for locality. Partial chain re-allocation
can scatter NFs across servers and racks, increasing chain
packet processing latency. We plan to study the trade-off
between partial and full re-allocation in our future work.

4 DAISY PROTOTYPE EVALUATION

To verify the feasibility of our proposed API (Table 1), and to
evaluate the network impact of selected operations, we im-
plemented the Daisy prototype. Daisy is built on Sonata, an
ETSI affiliated NFV management and orchestration stack [32,
33] that uses Mininet [22] to deploy and link NFs encap-
sulated in Docker containers. Sonata allows us to quickly
prototype VNF chains and perform management operations
with arbitrary topologies and resource constraints, while
steering real traffic to test chain functionality. Each emu-
lated DC contains a number of containers connected to a
central Open vSwitch [28]. The DC topology and NF chains
are enforced by a Ryu controller [37] that configures VLANs
and flow routing rules. Resource constraints are enforced by
Linux cgroups and by Sonata. However, Sonata is appropriate
for modeling only rack-scale DCs, in which the allocation of
NF chains is relatively trivial. In Section 6, we will explore the
performance of our allocation algorithms beyond the scale
that Sonata and our physical hosts can support, including
multi-rack, DC scale settings.
We deployed Daisy on an Azure E64s v3 instance with

64 cores and 432 GB of memory [3]. As a sample scenario,
we implemented the 4-node chain in Fig. 3c (the same VNF
chain we used to motivate our examples in Fig. 1 and Fig. 2).
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Figure 3: VNF chains used in experiments in Section 6.

All NFs were run as Docker containers with a Ubuntu Trusty
image using the 4.11.0 kernel. The NAT and the Firewall use
an iptables configuration with the firewall being configured
to redirect FTP traffic directly to the tenant VPN. All the
remaining packets are processed by the IDS, a Snort con-
tainer that inspects packet payloads and generates alerts for
SSH connections across all ports. The last element in the
chain is an OpenVPN client that connects to a VPN server,
acting as the sink NF. A source container connected to the
NAT generates traffic by replaying packet traces from an
enterprise network [7].

4.1 Chain allocate

In this scenario, we emulate a cloud provider with a rack of
40 servers to host tenant VNFs. Traffic comes into the net-
work from 10 off-cloud servers. That is, we split the resources
of our host machine to emulate a rack-scale topology with
50 servers: 40 are chain-servers and 10 serve as source-sink
servers to generate/receive traffic. The 50U rack is connected
to a single ToR switch. In order to compare our chain allo-
cation algorithms’ performance in different DC settings, we
used a rack with homogeneous servers and a rack with hetero-
geneous servers. The homogeneous rack contains identical
servers, while the heterogeneous rack contains two gener-
ations of servers: 20 chain-servers are identical to those in
the homogeneous rack, and 20 have 2x more resources. The
source-sink servers are likewise of two types. The hetero-
geneous rack has 1/3 more VNF hosting capacity than the
homogeneous rack.
To model the limited resources of each server, we use

Sonata’s modeling techniques. An homogeneous server is
represented by 20 compute units (CU), a total of 1000 CU
for the DC4. Each server has approximately 8 GB of RAM

420 CU corresponds to 1.2 virtual cores per server. Refer to the original
paper about Sonata framework [32] for a more detailed description of CUs.

Network function type CPU

(core)

Memory

(GB)

Switch

support

DPI (IDS, Exfiltr. detection) 1/2 2 No
Firewall 3/8 1/2 Yes
Load-balancer 3/8 1 No
VPN, Gateway 1/4 1/2 No5
Web-cache, Redund. Elim. 1/4 3/2 No
NAT 1/8 1/2 Yes

Table 2: Resource requirements of different NFs to

process 1 Gbps traffic. CPU and memory has linear

increase as traffic volume passing through NF grows.

Switch support means NF can be placed on the switch

by consuming one TCAM space.

Figure 4: Aggregate throughput of chains allocated by

different algorithms in the Daisy prototype.

and can provide space for at most seven VNFs before over-
subscription. We deploy NF containers with resources based
on Table 2. The NAT consumes 1 CU for a unit of bandwidth,
the firewall 3 CUs, the IDS 4 CUs, and the VPN 2 CUs. A com-
plete chain consumes 16 CUs for 2 units of bandwidth passing
through the chain (1 unit of bandwidth passing through the
IDS, but 2 units from all other NFs). Thus, with a total of 800
CUs available across 40 chain-servers, up to 50 chains can
be allocated. Since the heterogeneous setting has 1/3 more
server capacity, it can host up to 75 chains before running
out of compute resources.
Fig. 4 shows the aggregate throughput achieved by the

chains allocated in a heterogeneous setting. Here, Random
allocated 61 chains, and NetPack made 67 chain allocations,
whileVNFSolver allocated an optimal number (75) of chains.
In this experiment, we iteratively allocate each chain and
steer traffic through it, i.e., allocate the chain once the pre-
vious one is deployed and network traffic is flowing. As
our network traffic we replay real enterprise traffic [7] at
10 Mbps and measure throughput through a chain at the
sink interface. Fig. 4 shows increasing aggregate throughput
5The switch model we consider does not have VPN or load-balancer support,
but other models do [17]. For the experiments in this paper, we do not
support the placement of VPN and load-balancer NFs on switches, but our
algorithms can place any NF on switches that support them.
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Figure 5: Throughput of inter-NF element links in a

single concrete chain in the scale-out and upgrade sce-

narios in Daisy.

as more chains are allocated and the throughput plateaus
once the chains have been allocated. The 75 chains allocated
by VNFSolver achieve 687 Mbps of throughput, 67 chains
by NetPack achieve 633 Mbps, and 61 chains by Random
achieve 561 Mbps. The chain bandwidths are not precisely
10 Mbps due to the irregular nature of the enterprise traffic
and the resource limitations of the physical host, which is
running over 500 Docker containers to support 75 chains.
Due to the tcpreplay overhead, our host machine consumed
93% CPU after allocating all chains. We repeated this experi-
ment with TCP traffic generated by iperf3 and achieved the
expected throughput (750 for VNFSolver, 670 for NetPack,
610 for Random) with only 3% host CPU utilization (figure
omitted due to lack of space). This experiment illustrates the
practical benefit of NetPack and VNFSolver: high through-
put/DC utilization by packing more chains onto the same
rack. It also illustrates the elasticity offered by the abstract-
concrete chain decoupling.
We repeated this experiment with a homogeneous rack.

Due to the simple topology, the three algorithms performed
similarly: Random allocated 47 chains with 495 Mbps aggre-
gate throughput, NetPack allocated 48 chains achieving 507
Mbps, and VNFSolver got the optimal (50) chains with 526
Mbps aggregate throughput.

4.2 Chain scale-out and chain upgrade

We also evaluated the first two use-cases in Section 2. The
chain scale-out use-case exercises the allocate-chain and add-
link-bandwidth API calls, and the chain upgrade use-case
utilizes allocate-chain, add-node, add-link-bandwidth, remove-
link-bandwidth and remove-node. Combined, these two exper-
iments make full use of our API. For these experiments, we
emulated a rack with one chain-server, one source-sink server,
and one ToR switch to perform chain scale-out and upgrade.
In both cases, we reuse the 4-node chain from Fig. 3c, and
pass 10 Mbps of real traffic plus 10 Mbps of additional FTP
traffic to stress the firewall-to-VPN link (VPN-FW). This FTP
traffic rate is expected to remain constant throughout the
test. We run the experiments for 300 seconds and call the re-
spective API function after 150s. For scale-out (as in Fig. 2a),

we increase the link-bandwidth of all VNF links except VPN-
FW; for upgrade (as in Fig. 2b), we switch an IDS running
Snort 2.9.6 on Ubuntu Trusty to a new IDS element that uses
Snort 2.9.7 on Xenial.

Fig. 5a shows the throughput impact of the scale-out use
case on a single concrete chain (the figure omits some of the
chain links for readability). In Fig. 5a the VPN-FW link main-
tains a 10 Mbps throughput rate on both links, while the VPN
and sink VNFs receive 20 Mbps until add-link-bandwidth is
triggered at the 150th second. Except for the VPN-FW link,
which is held constant in this use case, the API call increases
the bandwidth of all links by 10 Mbps. Fig. 5b highlights the
link throughput during the upgrade experiment. We only
show the source VNF egress, the to-be-upgraded IDS ingress
(IDS1), the upgraded IDS ingress (IDS2), and the sink VNF
ingress. The source and sink VNF throughputs remain nearly
constant during the upgrade, experiencing a short through-
put drop, under 1s, when we trigger remove-link-bandwidth
and remove-node to replace the IDS. The throughput drop
occurs because the network path is switched from IDS1 to
IDS2without state-awareness.When the switch is performed,
packets of all ongoing flows are dropped and the through-
put is restored because of newly established flows through
IDS2. Thus, the throughput drop window could be longer
than 1s if our realistic packet traces had a large number of
long-running (elephant) flows. State-aware path switching,
also known as flow migration, has been extensively studied
in the literature [12, 36, 45] and various mechanisms exist
to perform zero-loss flow migration. We leave it to future
work to optimize flow migration during upgrades and will
build on existing research efforts [12, 36].

5 SIMULATION METHODOLOGY

Our emulation with Sonata does not scale beyond rack-scale,
so we use simulation to evaluate the allocation algorithms at
DC scale. Here, we present our methodology, and Section 6
presents our results.

Physical topologies. In our simulation experiments, we
consider three classes of physical topologies. The first is
based on a rack-scale topology used by E2 [30], where a ToR
switch has N ports of which K are external and N −K are in-
ternal. External ports are northbound interfaces connecting
the ToR switch to a higher-level network component, such as
an access or gateway switch. Internal ports are southbound
interfaces connecting the ToR switch to servers. E2 uses Intel
Seacliff Trail switches [9], which have 48 internal ports of
10 Gbps bandwidth each and 4 external 40 Gbps ports. Thus,
each ToR has 160 Gbps uplink and 480 Gbps downlink (1:3
oversubsription). We extrapolate from this setting to gener-
ate topologies with as many as 32 racks and 1536 servers.
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The extrapolated multi-rack setting has a leaf-spine topol-
ogy, where the leaf consists of 32 ToR switches, each with
160 Gbps aggregate uplink to the single spine switch. The
spine switch has no oversubsription and acts as the gateway
switch with full-bisection bandwidth. Each ToR switch in
the E2 topology also has support for 2048 TCAM rules [9].
We use TCAM to offload some NFs from servers to ToRs.

The second physical topology we consider is a real-world
commercial DC topology, used for hosting a private cloud.6
This private cloud is deployed across four DCs in two ge-
ographic availability zones (AZs): us-west and us-middle.
These DCs contain between 280 and 1200 servers, arranged
into 1, 2, or 4 clusters, with 14 to 60 racks in total. Each server
has 32 cores, 128 GB RAM, and 20 Gbps network bandwidth
(over two 10 Gbps links). The network in each DC has a
leaf-spine topology, where all ToR switches connect to two
distinct aggregation switches over 40 Gbps links each (a total
of 2 links with 80 Gbps; one on each aggregation switch),
and aggregation switches are interconnected with four 40
Gbps links each. For each cluster, there is a gateway switch
with a 240 Gbps link connected to each aggregation switch.

The third physical topology is from Facebook’s Altoona
DC [1]. This topology has a modular design with no over-
subscription across its networking fabric. Facebook uses a
pod as a building block where each pod has 48 ToR switches,
and each rack connects together 16 servers with 10 Gbps per
server. Thus, a rack has 160 Gbps throughput to anywhere
across the DC. A pod has 768 servers and its network fabric
consists of ToR, fabric, edge, and spine switches, each with 48
ingress and egress ports with 40 Gbps bandwidth. This net-
work guarantees full-bisection bandwidth across the entire
DC, and is well suited for VNF service providers in general,
and our algorithms in particular. Because no part of the net-
work is oversubscribed, this design prevents any network
segment from being a bottleneck during chain allocation.
Further, its modularity allows scalable deployment of our
algorithms: each algorithm instance can manage each pod.

Network functions. We consider VNF chains composed
of as many as 10 NFs, listed in Table 2. For example, some of
the NFs we consider include DPI (Deep Packet Inspection),
NAT, Firewall, and VPN. Given that a DC-grade server CPU
core typically operates at around 3 GHz, we estimate that
each core can sustain a DPI with 2 Gbps traffic (or two 2
DPIs with 1 Gbps, if each DPI belongs to different tenant and
each DPI is provisioned for 1 Gbps traffic). We account 2 GB
memory for each 1 Gbps of DPI traffic, i.e., 4 GB of RAM
per core. We also empirically confirmed such CPU and RAM

6The company that manages this DC provides network security for enter-
prises and has requested to remain anonymous. Although the company’s
portfolio includes hosting third party NFs on its DC, we do not know if this
particular topology actually hosts these NFs.

consumption per Gbps traffic with our Daisy prototype (Sec-
tion 4). This 4:1 RAM/CPU core ratio roughly matches that
of commodity DC servers [8, 15], including the commercial
DC servers we consider (128 GB RAM per 32 core server).

The DPI element is one of the most compute- and memory-
intensive NFs in common use. Therefore, we model other
NF requirements relative to DPI (Table 2). Since IDS and
exfiltration detection services can be implemented with the
same software as DPI [42], we model these two NFs and
DPI as having the same resource requirements. Other NFs,
such as NAT or Web Cache, have relatively low compute and
memory footprints. Furthermore, some NFs can be placed
directly on switches, using TCAM rules. In our experiments,
we allow NAT and Firewall to be allocated to TCAM (as both
of these functions are supported by this switch model [17]);
the remaining NFs we consider in Table 2 cannot be imple-
mented using TCAM. If placed on a switch, NAT and Firewall
NF consume one TCAM space, and if placed on the server,
they consume core and memory as shown in Table 2. See
Section 7 for further discussion on the variability of NF re-
source footprints and the metrics a VNF scheduler may take
into account to perform VNF chain placement.

VNF Chains.We consider five different VNF chains from
the literature, depicted in Fig. 3. These chains cover a variety
of sizes, functionalities, and use cases, ranging from 2 to 10
NFs. Chains (a) and (b) are from OpenBox [5], (c) and (e) are
from E2 [30], and (d) is from Embark [21].

6 SIMULATION EVALUATION RESULTS

We ran our simulation experiments on a server with two
2.66GHz (12MB L3 cache) Intel Xeon x5650 CPUs, with 12
cores per CPU and 96GB of RAM, running Ubuntu 12.04. All
processes were limited to 16GB of RAM and 30,000s of CPU
time, however neither of these limits were ever reached in
practice (all processes ran to completion successfully).

6.1 Allocations from single tenants

In Fig. 6, we evaluate the scalability and DC utilization of our
algorithms on DCs of increasing sizes. We did this by using
each algorithm to allocate as many concrete chains as possi-
ble. These two graphs show the total allocated bandwidth
achieved by Random, NetPack, and VNFSolver, as well
as the time required to find these allocations, for different
physical topologies. These experiments were run for two
VNF chains: (1) 4-node chain from Fig. 3c, and (2) 10-node
chain from Fig. 3e. We show results for the 10-node chain
(4-node results provide similar insights). The two chain types
are representative: the 4-node chain represents linear VNF
chains while the 10-node chain represents VNF chains with
complex topologies. Later, in Section 6.2, we perform chain
allocation using all five VNF chains in Fig. 3.
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Figure 6: Runtime and total throughput achieved by Random, NetPack, and VNFSolver algorithms allocating

10-node VNF chain from Fig. 3e. Left. Allocating within DCs of the E2 [30] topology with increasing size (up to

1536 total servers). Right. Allocating the same chain in the commercial DCs of Section 5. Here, the largest DC

has 1200 servers arranged in 60 racks. In both settings, NetPack always achieves at least 96% of VNFSolver’s

allocations, while completing in less than 2.5% of VNFSolver’s runtime.

In Fig. 6a (left), we plot each algorithm’s performance on
DCs in the E2 topology with 1–32 racks, when allocating the
10-node VNF chain. In these topologies, the bandwidth out
of the gateway switch becomes a bottleneck. As described in
Section 5, each ToR switch has 4 external ports with a total
bandwidth of 160 Gbps to the gateway switch. As the chain
must start and end at the gateway, the maximum throughput
through this one rack instance is 156 Gbps since each con-
crete 10-node chain requires 6 Gbps of combined bandwidth
for incoming and outgoing traffic. In the one rack experi-
ment NetPack allocates 150 Gbps of throughput, requiring
a total of 0.19 CPU seconds to allocate the chains. For the
same instance, Random allocates only 36 Gbps also in 0.04s,
and VNFSolver allocates 156 Gbps but in 7.77s.

In the remainder of Fig. 6a, we can see that the number of
concrete chain allocations grows linearly as we increase the
total number of racks, reaching 5120 Gbps of total through-
put for 32 racks. NetPack required a total of 247s to allocate
4950 Gbps in this 1536-server DC with median time of 0.2s
per concrete chain. For the same instance, VNFSolver allo-
cates 4992 Gbps (+0.84% from NetPack) in 17105 seconds,
requiring a median time of 19.31s per concrete chain.
Fig. 6b (right) shows results from an analogous experi-

ment conducted on the commercial physical topologies de-
scribed in Section 5. Here, we can see that in all but one case,
VNFSolver and NetPack achieve the maximum possible
throughput, saturating the gateway switch. For example, in
the 280-server region, the total possible bandwidth out of the
gateway is 480 Gbps, allowing at most 240 Gbps of through-
put into the chain (as 240 Gbps must also exit the chain
back through the gateway switch). VNFSolver fully utilizes
this bandwidth, allocating all 480 Gbps through the chain,
requiring a total of 93.84s to make the allocations. For the
same instance, Random allocates only 168 Gbps aggregate
bandwidth in 0.71s, andNetPack gets the optimum 480 Gbps
in 1.19s. For the largest DC with 1200 servers, VNFSolver
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Figure 7: Number of VNF chain allocations over time

by each algorithm, for the 384 server commercial DC

from Fig. 6b. In this case, NetPack achieved slightly

more allocations in total than VNFSolver, while also

being nearly 2 orders of magnitude faster.

allocates the maximum possible bandwidth of 960 Gbps in
1370s, while NetPack gets the same bandwidth in 6.6s.

In all but one of our experiments, VNFSolver achieves
either the same throughput as NetPack, or a higher through-
put. However, in one instance (384 servers, in Fig. 6b), Net-
Pack was able to achieve a greater allocation density than
VNFSolver. In fact, as can be seen in Fig. 7, NetPack was in
this case able to make all of its allocations before VNFSolver
was able to achieve even a single allocation. As described in
Section 3, even though VNFSolver is based on a complete
allocation process and NetPack is not, it is possible for VN-
FSolver to make suboptimal allocations because it makes
repeated, greedily allocated calls to the underlying constraint
solver. As NetPack is stochastic, one potential explanation
for this is that variability due to the random seed in NetPack
allowed it to make unusually good choices in this particular
example. To address this question, we re-ran each algorithm
10 times on the 384 server instance. Across these runs, the
total number of allocations found by VNFSolver varied by
less than 3.7%; while NetPack’s allocations varied by less
than 0.7%, both much less than Random (which varied by as
much as 10.4%). In fact, across these 10 runs, even the least
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Figure 8: Chains with five different topologies from

the literature [5, 21, 30]. In these experiments, all

three algorithms allocated a total of 160Gbps through-

put, combined, to these five chains, in each of the four

commercial topologies described in Section 5.

number of allocations made by NetPack was larger than the
best solution found by VNFSolver.
In this particular case, a total of 1920 Gbps can theoreti-

cally be allocated through the chain. However, VNFSolver
achieves only 1806 Gbps in 603s while NetPack achieves
1872 Gbps (+3.6%) in 15.95s, corresponding to 94% and 99%
of the maximum possible throughput, respectively. Even
though NetPack and VNFSolver are unable to achieve full
utilization in this one case (due to the complex structure of
this particular topology), both algorithms’ total utilization
remains reasonable.

In addition to the E2 rack and commercial topologies, we
performed chain allocation on the Facebook DC topology
described in Section 5, with between 1 and 48 pods. As in
the previous settings, we found that NetPack consistently
achieved within 99% of VNFSolver’s allocations (while re-
quiring < 1% of the runtime). In one case (discussed in the
next section), Random nearly matched NetPack’s alloca-
tions; in the remaining cases Random achieved < 40% of the
allocations as NetPack. There, Random only managed to al-
locate chains to saturate 606 Gbps (32%) bandwidth under 18s,
while both NetPack and VNFSolver were able to saturate
the full 1920 Gbps pod bandwidth requiring 31s and 9328s,
respectively. This experiment confirms that NetPack is fast,
and is a good fit for modular DCs with no oversubscription.
In addition to data center size, the algorithm’s time to

allocate a chain also depends on the chain length. As we
show in Section 3.2, the chain length is a multiplying factor
in NetPack’s algorithmic complexity. However, in practice,
NetPack performs well for chain lengths that are likely to
be encountered during VNF allocation. Our experiments
with allocating 4-node chain and 10-node chain across three
classes of DC topologies show that in theworst caseNetPack
consumes 94% more time to allocate 10-node chain, and only
54% on average. These results demonstrate that NetPack
can handle chains with various lengths, 10 being the longest
considered in the literature.
In all of the above experimental settings, NetPack and

VNFSolver achieve a high degree of locality, placing all
nodes on either a single server, or on a single server and that

100%   99%

3% loss with 
topo. sort

4-node 10-node   4-node 10-node   4-node 10-node   

Figure 9: Contribution of eachNetPack optimization

on the number of allocations, as compared to Ran-

dom. Allocations are shown as a percentage of those

achieved by VNFSolver. In most cases, topological

sorting provided a small benefit, though in some cases

it decreased allocations slightly (dashed region above).

server’s ToR switch. This ensures that the allocated chains
also achieve low end-to-end latency.

6.2 Allocations from multiple tenants

So far, we discussed cases in which an operator allocates
bandwidth for a single chain topology. In practice, we expect
allocations to the same infrastructure for multiple tenants
with different topologies. To demonstrate our support for
this case, we simultaneously allocated a combined 160 Gbps
of bandwidth through five VNF chain topologies from Sec-
tion 5, in each of the four commercial DCs. That is, we choose
a chain at random from Fig. 3 with its corresponding band-
width, and allocation continues until 160 Gbps is reached.
Results are shown in Fig. 8, ranging from under 5s required
in the smallest DC with NetPack, to 907s in the largest DC
(with 1200 servers) with VNFSolver.

6.3 Evaluating each NetPack optimization

Fig. 9 shows the contribution to NetPack by each optimiza-
tion in Section 3: topological sort, network-locality, and
server-locality. We allocate chains with two different lengths
(the 4-node chain from Fig. 3c and 10-node chain from Fig. 3e)
on each of the largest topologies from our three DC topology
classes. To compare NetPackwith Random and VNFSolver,
we start with Random as a baseline and normalize the total
chain allocations against VNFSolver.
As Fig. 9 shows, Random does poorly on all instances

except one: 4-node chain allocation on a Facebook pod. Ran-
dom does well here because locality matters less for short
chains, and this DC topology has full-bisection bandwidth.
On the same topology Random struggles with a 10-node
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Figure 10: Use case completion time of scale-out,
chain-upgrade, and expand on the commercial top.

with 1200 servers. Operations are applied to an allo-

cated abstract 4-node chainwith 100 Gbps throughput.

chain, while topological sort contributes an extra 3%, network-
locality an additional 12%, and server-locality an additional
53%, which completely closes the gap with VNFSolver. The
other point of significance is one case when topological sort
(on its own) results in 3% fewer allocations than Random.
This happens with the 10-node chain allocation on the 1200
server commercial DC. The 3% drop is indicated in Fig. 9
with a dashed box on top of the baseline (zoomed in, right).
Our experiments show that when used by itself, topological
sorting results in at most a small increase, and occasionally
a small decrease, in the total number of allocations.
Overall, enabling all three optimizations (including topo-

logical sort) yields best results for NetPack (typically within
99% of VNFSolver’s allocations), while also being as fast or
faster than Random, as seen in Fig. 8.

6.4 Chain API operations

Finally, we evaluate management use cases from Section 2:
scale-out, chain-upgrade, and expand. For each use case we
first place a single abstract 4-node chain to handle 100 Gbps.
Then, we perform the API operations to achieve the three
use cases on the allocated concrete chains. Each of these use
case experiments were run independently.

We run three use cases on all commercial topologies. Fig. 10
shows results for the largest topology (due to lack of space).
For the smallest topology with 280 servers (not shown) Net-
Pack completes scale-out in 0.32s and VNFSolver completes
it in 57.07s. On the largest topology (Fig. 10), NetPack com-
pletes scale-out in 1.74s and VNFSolver in 438s, which is
reasonable given the 100 Gbps throughput along the allo-
cated chain. The chain-upgrade and expand cases are similar,
and require 1.84s/1.68s for NetPack, and 447s/337s for VNF-
Solver, respectively, for the smallest/largest topologies.

All three use cases remain practical with NetPack on E2
and Facebook topologies, as well (not shown for brevity).
For the E2 topology with 32 racks, NetPack required 1.75s
for scale-out, 2s for chain-upgrade, and 1.64s for expand. For
the same use case VNFSolver required 711s, 675s, and 708s,
respectively. A Facebook pod with 48 racks required 1.79s

for scale-out, 1.91s for chain-upgrade, and 1.84s for expand
from NetPack, while VNFSolver required 1199s, 1196s, and
632s for each.

7 DISCUSSION

7.1 Steady-state operation

Cloud operators would like to maintain high DC utilization
during steady-state operation, where VNF chains arrive, mu-
tate, and depart. In this work, we mainly focus on a VNF
chain scheduler’s ability to achieve high DC utilization dur-
ing initial allocation and demonstrate the scheduler’s support
for lifecycle operations. However, its performance during
chain deallocation and reallocation remains under-explored.
Although we expect that NetPack will be able to maintain
high DC utilization during steady-state operation, it might
introduce several challenges in practice. The main practical
concern is reconfiguration minimization, where existing VNF
chains should not be relocated to optimize the overall place-
ment. Relocation disturbs the existing flows and potentially
violates tenant SLAs by causing latency variations. Thus, a
good VNF scheduler should maximize DC utilization during
steady-state while minimizing reconfiguration for already
allocated chains. Similar optimizations have been previously
explored in SOL [14]; we see this as a promising direction
for future research.
As discussed in Section 2, we split each tenant’s abstract

chain into multiple concrete chains and request the sched-
uler to allocate those concrete chains. We believe this chain
decoupling mechanism will help maintain high utilization
during steady-state operation. This decoupling allows the
scheduler to operate on chains with fine-grained resource
footprints. Thus, the scheduler should be able to spread thin-
footprint concrete chains into different parts of a potentially
fragmented DC. Although this seems promising, such allo-
cation must be accomplished without violating tenant SLAs,
in particular latency requirements. We leave empirical vali-
dation of this intuition to future work.

7.2 NF profiles and scheduler input

Our VNF chain scheduling algorithms consume three types
of input described in Table 2. These includeNF’s compute and
memory footprint per unit of bandwidth, and a flag indicating
whether this NF can be placed on a switch. Note that all three
inputs are internal to the cloud provider (tenants only specify
the chain bandwidth) and the scheduler can be extended with
additional input types.

Cloud providers can leverage existing tools, such as NFVPerf
[26], NFV-Vital [6], or Probius [27], to create compute and
memory profile of each NF. This prior work demonstrates
that VNF resource requirements depend on many factors,
such as NF configuration (rulesets in the Firewall), traffic
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pattern (packet size, burst rate), and NF position in the chain.
For example, Probius [27] reported that the throughput of
a chain with four NFs can vary by up to 5× when the NF
sequence is shuffled.

We argue that such variations should be resolved outside
the scheduler. The only requirement for the scheduler is
to produce a valid placement given an accurate input. For
example, to achieve high DC utilization while guaranteeing
chain SLA (e.g., throughput and latency), a cloud provider
can use NF’s worst-case profile and adjust DC’s overcommit
ratio [29] appropriately. For example, if a cloud provider finds
the actual DC utilization to be only 60% when the scheduler
reports 100% allocation, the cloud provider can increase the
overcommit ratio from 1.0 to 1.4 to make the DC capacity
appear 40% greater to the scheduler. Such indirect solutions
allow the scheduler to handle a wide range of NFs in diverse
DC settings.
Our approach to handling the compute, memory, and

switch resource requirements of an NF is mostly consistent
with the literature [14, 25, 30, 35]. However, there are other
work which model additional constraints during chain place-
ment. These include reduced packet processing latency due
to CPU core-affinity of chain NFs [48], and packet (or flow, or
request) arrival rate and size [24, 38, 46]. We consider such
fine-grained metrics to fall out of scope of the data center
scale VNF chain scheduler. For example, Zhang et al. [47]
found that such fine-grained metrics will overwhelm a VNF
scheduler even in the single host setting, given a high packet
arrival rate.

Cloud providers can also combine a DC-level global chain
scheduler with a VNF-aware local OS scheduler. In such a
setting, the host-local scheduler accepts the VNFs assigned
to a single host (by the global scheduler) and further opti-
mizes the host-level placement by adjusting core-affinity,
Rx/Tx queue sizes, flow priorities, etc. Splitting the schedul-
ing duties in this way allows for high DC utilization while
guaranteeing chain SLAs [25].

We believe that this approach is particularly appealing in
the context of lightweight VNF chains at scale [23, 47]. For
example, the authors of Flurries [47] consider an OS-level
VNF scheduler in which over 80,000 VNFs run on a single
server, each second, where each VNF handles a separate
flow. We believe cooperative VNF chain scheduling between
NetPack and a VNF-aware OS scheduler would be able to
handle such high-churn VNF chain allocation.

7.3 Failures

Hardware failures. Failures in large-scale deployments are
inevitable. A study across tens of geographically distributed
Microsoft DCs found that over 20% of devices have availabil-
ity of three nines [13]. In other words, over 20% of devices

experience 8.76 hours of annual downtime. The same study
found that network redundancy reduces the median impact
of failures by up to 40%.
The abstract-concrete chain decoupling that we propose

in this paper allows for failure masking: concrete chains
implementing the same abstract chain can be assigned to dif-
ferent hardware resources, improving fault tolerance. This is
analogous to approaches based on replication and hardware
redundancy. Note that server-locality described in Section 3.2
refers to the individual NFs of the concrete chain, not to
concrete chain instances. This is important as our allocation
algorithms do not co-locate concrete chain instances at the
same server as this would void the fault tolerance benefit.

Individual VNF failures. VNFs may also fail due to soft-
ware bugs, mis-configuration, and upgrades. A recent study
of 2000+ physical NFs across 10+ DCs found that 5% of Fire-
wall, 4% IDS, and 7% of load-balancer failures are due to
software issues [34]. Although orthogonal to the VNF chain
allocation and management, which is the focus of this paper,
reliability of an individual VNF is a critical operational aspect.
Recent work, such as FTMB [40], can improve individual NF
robustness. Our allocation algorithms and management API
can be extended with support for such techniques.

API failures. Our prototype assumes no API failures. We
believe that API failures should be handled transparently to
the tenants, for example by using recent work on providing
ACID semantics within a SDN [43]. For example, this can be
achieved with a shim layer between the controller and the
network infrastructure [49]. Such built-in design not only
prevents inconsistent packet processing due to partial API
failures but also simplifies the tenant API.

7.4 Emulator limitations

Because we leverage Sonata’s VNF chaining API to build
individual concrete chains, our Daisy implementation does
not handle several practical concerns: (1) efficiency loss due
to duplicated NF elements, and (2) complexity of coordinat-
ing state between several, logically identical, NF elements.
We believe that both of these must be solved at lower layers
of the stack. Recent work on NF consolidation [18] may help
with the first concern, and stateless NFs [19] or S6 [44] may
help with the second concern.

8 RELATEDWORK

We review the VNF literature in relation to our primary con-
tribution: scalable VNF chain allocation and management.

Chain allocators. Slick [2] and SOL [14] address chain
allocation and placement. Slick provides a heuristic-based
algorithm while SOL uses a constraint solver (CPLEX [16])
to perform the allocation. Neither of them consider scales
beyond 100 servers nor develop an API for scalable chain
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management. A body of VNF chain allocation work assumes
that a single VNF instance can process flows from different
tenants [24, 38, 46]. This assumption is counter to existing
cloud isolation guarantees and is unrealistic due to concerns
around security, performance variation, and the need to sup-
port custom NF images. The algorithms by Yu et al. [38] and
Zhang et al. [46] are therefore incompatible with ours, since
in our setting tenants explicitly request isolated chains. Ad-
ditionally, the algorithm by Zhang et al. [46] simplifies the
problem by excluding network infrastructure as a bottleneck,
considering only edge server resources for optimization. This
is an over-simplification as most of the chain allocation com-
plexity stems from the end-to-end bandwidth guarantees.
The ILP constraint-based algorithm proposed in VNF-

P [24] can be applied in our setting. However, that algorithm
is not scalable. It takes around 2s to allocate 100 VNF chains
with length two on DC with 19 elements (10 edge nodes,
5 switches, 4 core routers). NetPack takes only 0.69s (3x
shorter) to allocate 100 chains of length 10 (5x longer) on the
largest commercial topology with 1265 elements (66x larger).
Another ILP based VNF chain allocation algorithm is de-

veloped by Qazi et al. in SIMPLE [35]. In that work, the
authors optimize middlebox policy enforcement in an en-
terprise setting, where network topology and middlebox
policies (which can be modeled as a VNF chain) are expected
to change infrequently. Such infrequent change assumption
allows authors to apply a pruning stage to reduce the number
of physical nodes considered for a chain placement. Their
evaluation shows that the pruning stage takes around 1800
seconds for a DC with 250 nodes, and needs to be redone
when middlebox policies change. However, middlebox policy
changes frequently in our setting: each time a new chain
allocation (or update, or deallocation) request is made, which
we expect to happen every second (or fraction of a second)
at DC scale. Such a high churn rate leaves no room for an
expensive pruning stage, and renders SIMPLE’s ILP based
algorithm prohibitively expensive for chain placement at
data center scale.

VNF frameworks. APLOMB [41] surveys NF outsourc-
ing and builds a system for low-latency packet processing in
the cloud. Embark [21] goes a step further with a mechanism
for handling encrypted traffic. Dysco [45] proposes a pro-
tocol to dynamically chain network functions. E2 [30] and
NetBricks [31] are frameworks for developing and deploying
high-performance NF chains. E2 develops a chain placement
heuristic and demonstrates its ability to handle chain alloca-
tion on one rack. None of these solve chain allocation and
management beyond a single rack. In our work, we consider
a DC scale with dozens of racks and 1000+ servers.

VNF consolidation.CoMb [39], OpenBox [5], andmOS [18]
are examples of systems that use VNF consolidation to achieve

high-speed packet processing. These works address the im-
portant problem of hardware resource utilization by an indi-
vidual NF or a VNF chain, but none directly address chain
allocation and management.

VNF state management. Split/Merge [36], Stratos [11],
OpenNF [12], Stateless [19], and S6 [44] are examples of
systems which deal with NF state consistency during chain
management scenarios, like the scale-out and other scenarios
we consider in Section 2. These works are complementary to
our chain allocation and management API, and can be used
as a more robust mechanism to implement these APIs.

9 CONCLUSION

We introduced techniques for VNF chain allocation and man-
agement at data-center-scale: a set of operations that serve
as an API for chain management, and NetPack, a heuristic
bin-packing algorithm for scalable VNF chain allocation.

In addition to handling physical topologies that are orders
of magnitude larger than prior work, our work supports (1)
realistic topologies composed of racks, switches, and servers;
(2) locality-aware allocation of arbitrary VNF chain topolo-
gies; and (3) management of allocated chains, such as scaling
out and in-place upgrades (adding/removing NFs).

Despite the simplicity of NetPack, in our experiments it
always achieved at least 96% of the throughput allocated by
VNFSolver, a complete algorithm based on constraint solv-
ing, while running 82× faster. We prototyped our approach
by building Daisy and evaluated it on real traffic. We also
compared the utilization and runtime of the algorithms on 3
types of realistic DC topologies and 5 different VNF chains.
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