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Designing high-performance solvers for computationally hard problems is a difficult and 
often time-consuming task. Although such design problems are traditionally solved by the 
application of human expertise, we argue instead for the use of automatic methods. In this 
work, we consider the design of stochastic local search (SLS) solvers for the propositional 
satisfiability problem (SAT). We first introduce a generalized, highly parameterized solver 
framework, dubbed SATenstein, that includes components drawn from or inspired by 
existing high-performance SLS algorithms for SAT. The parameters of SATenstein determine 
which components are selected and how these components behave; they allow SATenstein 
to instantiate many high-performance solvers previously proposed in the literature, along 
with trillions of novel solver strategies. We used an automated algorithm configuration 
procedure to find instantiations of SATenstein that perform well on several well-known, 
challenging distributions of SAT instances. Our experiments show that SATenstein solvers 
achieved dramatic performance improvements as compared to the previous state of the 
art in SLS algorithms; for many benchmark distributions, our new solvers also significantly 
outperformed all automatically tuned variants of previous state-of-the-art algorithms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In Mary Shelley’s classic novel Frankenstein; or, The Modern Prometheus, a brilliant scientist, Victor Frankenstein, set out 
to create a perfect human being by combining scavenged human body parts. We pursue a similar idea: scavenging compo-
nents from existing high-performance algorithms for a given problem and combining them to build new high-performance 
algorithms. Our idea is inspired by the fact that many new solvers are created by augmenting an existing algorithm with 
a mechanism found in a different algorithm (see, e.g., [33,53]) or by combining components of different algorithms (see, 
e.g., [62]). Unlike Victor Frankenstein’s creation, we propose to use an automated construction process that enables us to 
optimize performance with minimal human effort.
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Traditionally, high-performance heuristic algorithms are designed through an iterative, manual process in which most 
design choices are fixed at development time, usually based on preliminary experimentation, leaving only a small number 
of parameters exposed to the user. In contrast, we propose a new approach to heuristic algorithm design in which the 
designer fixes as few design choices as possible, instead exposing all promising design choices as parameters. This approach 
removes from the algorithm designer the burden of making early design decisions without knowing how different algorithm 
components will interact on problem distributions of interest. Instead, it encourages the designer to consider many alter-
native designs, drawing from known solvers as well as novel mechanisms. Of course, such flexible, highly parameterized 
algorithms must be instantiated appropriately to achieve good performance on a given instance set. With the availability of 
advanced automated parameter configurators and cheap computational resources, finding a good parameter configuration 
from a huge parameter space becomes practical (see, e.g., [40,9,13]). Of course, we are not the first to propose building al-
gorithms by using automated methods to search a large design space. Rather, our work can be seen as part of a general and 
growing trend, fueled by an increasing demand for high-performance solvers for difficult combinatorial problems in practi-
cal applications, by the desire to reduce the human effort required for building such algorithms, and by an ever-increasing 
availability of cheap computing power that can be harnessed for automating parts of the algorithm design process (see also 
[34]). There are many examples of work along these lines [25,56,12,79,20,18,60,77,57,21].

Although our general approach is not specifically tailored to a particular domain, in this work we address the challenge 
of constructing stochastic local search (SLS) algorithms for the propositional satisfiability problem (SAT): an NP-complete 
problem of great interest to the scientific and industrial communities alike. SLS-based solvers are important because they 
have exhibited consistently dominant performance for several families of SAT instances; they also play an important role in 
state-of-the-art portfolio-based automated algorithm selection methods for SAT [79]. Substantial research and engineering 
effort has been expended in building SLS algorithms for SAT since the late 1980s (see, e.g., [67,33,62]), with new solvers 
being introduced every year.

We leveraged this rich literature (discussed in detail later) to design SATenstein-LS. This algorithm draws mecha-
nisms from 25 high-performance SLS SAT solvers and also incorporates many novel strategies. The resulting design space 
contains a total of 2.01 × 1014 candidate solvers, and includes most existing, state-of-the-art SLS SAT solvers that have 
been proposed in the literature. We demonstrate experimentally that our new, automatically-constructed solvers dramat-
ically outperform the best SLS-based SAT solvers currently available (with the default parameter configurations manually 
tuned by their authors) on six well-known SAT instance distributions, ranging from hard random 3-SAT instances to SAT-
encoded factoring and software verification problems. In most cases, our new solvers also significantly outperform the best 
SLS-based SAT solvers even when we automatically tune the originally exposed parameters of every one of these incumbent 
solvers. Because SLS-based SAT solvers are the best known methods for solving most of our benchmark distributions, our 
new solvers represent a substantial advance in the state of the art for solving the respective sub-classes of SAT. On one of 
the two instance families for which this is not the case—SAT-encoded number factoring problems—our new solvers narrow 
the gap between the performance of the best SLS algorithms and the best DPLL-based solvers.

This paper2 is organized as follows. Section 2 discusses related work; we describe the design and implementation of
SATenstein-LS in Section 3. We then describe the setup we used for empirically evaluating SATenstein-LS (Sec-
tion 4) and present the results from our experiments (Section 5). Section 6 presents some general conclusions and an 
outlook on future work.

2. Related work

The propositional satisfiability problem (SAT) asks, for a given propositional formula F, whether there exists a complete 
assignment of truth values to the variables of F under which F evaluates to true (see, e.g., [8]). F is called satisfiable if there 
exists at least one such assignment and unsatisfiable otherwise. A SAT instance is usually represented in conjunctive normal 
form (CNF), i.e., as a conjunction of disjunctions of literals, where each literal is a propositional variable or the negation of 
variables. Each disjunction of literals is called a clause. In this case, the goal for a SAT solver is to find a variable assignment 
that satisfies all clauses of a given CNF formula or to prove that no such assignment exists.

2.1. Local-search SAT solvers

Over the past decades, considerable research and engineering effort has been invested into designing and optimizing 
algorithms for SAT. State-of-the-art SAT solvers include tree-search algorithms (see, e.g., [69,28,7,16,2,30]), local search algo-
rithms (see, e.g., [42,61,50,64,62,11]) and resolution-based preprocessors (see, e.g., [70,15,3]). Every year, competitions are 
held, in which new state-of-the-art solvers emerge. The trend of continuing performance improvement in SAT competitions 
suggests that there is room for even further enhancements of current solver technology.

2 An early version of the work described in this article was published at IJCAI [45]. This article substantially extends that work in five key ways. (1) It 
describes SATenstein-LS’s architecture in considerably more detail, and (2) presents all-new experiments based on longer configuration runs, albeit on 
the same distributions. (3) Our comparison with tuned versions of challengers (Section 5.2) is entirely new, as is (4) our comparison with complete solvers 
(Section 5.3). (5) We extended SATenstein-LS with a local search strategy found in the recent high-performance SAT solver, Sattime, and compared 
the performance of the augmented SATenstein-LS with three recent SLS-based SAT solvers, including Sattime.
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Stochastic local search (SLS) algorithms represent the state of the art in solving certain types of SAT instances and have 
been the subject of an intense and sustained interest since the early 1990s (see, e.g., [67,76]). A typical SLS algorithm for 
SAT consists of an initialization phase and a local search phase. In the initialization phase, all variables are assigned truth 
values. At each step of the local search phase, the truth value of a single, heuristically chosen variable is changed. Exceptions 
include SLS solvers based on evolutionary algorithms (e.g., [47]) that maintain a population of candidate solutions and use 
recombination techniques. The search process is terminated when either a satisfying assignment is found or a given bound 
on the runtime or run length is reached or exceeded. Almost all SLS algorithms for SAT are incomplete, i.e., they cannot 
establish the unsatisfiability of a given formula.

The vast majority of existing SLS-based SAT solvers can be grouped into four broad categories: GSAT-based [67], WalkSAT-
based [66], dynamic local search algorithms [42,71], and G2WSAT variants [50]. Almost all of the recent high-performance 
SLS SAT solvers are based on WalkSAT, dynamic local search, or G2WSAT. SATenstein-LS thus draws deeply on these 
families of solvers, which we discuss in more detail in Section 3. GSAT-based algorithms are mostly of historical importance, 
but ideas that originated in GSAT remain important in more modern solvers. Partly for that reason, we briefly describe its 
architecture here.

At each step, GSAT evaluates each variable using a scoring function, then flips the variable with the highest score. The 
score of a variable is determined from two quantities, MakeCount and BreakCount. The MakeCount of a variable with respect 
to an assignment is the number of previously unsatisfied clauses that will be satisfied if the variable is flipped. Similarly, the 
BreakCount of a variable with respect to an assignment is the number of previously satisfied clauses that will be unsatisfied 
if the variable is flipped. The scoring function of GSAT is MakeCount – BreakCount.

2.2. UBCSAT

UBCSAT [74] is an SLS solver implementation and experimentation environment for SAT. It provides implementations of 
many existing high-performance SLS algorithms from the literature. These implementations generally match or exceed the 
efficiency of the respective implementations made available by the original authors. UBCSAT implementations have therefore 
been widely used as reference implementations for many well-known local search algorithms (see, e.g., [64,46]). In addition, 
UBCSAT also provides a rich interface that includes numerous statistical and reporting features facilitating empirical analysis 
of SLS algorithms.

Many existing SLS algorithms for SAT share common components and data structures. The general design of UBCSAT 
allows for the reuse and extension of such common components and mechanisms. This made UBCSAT an ideal environment 
for the implementation of SATenstein-LS (described below). However, UBCSAT and SATenstein-LS are quite different 
at a conceptual level. UBCSAT implements many well-known solvers in a stand-alone fashion; it does not provide for the 
creation of new solvers by combining existing solver components.

2.3. Automated algorithm design

There is a large body of literature in AI and related areas that deals with automated methods for building heuristic algo-
rithms. This includes work on automatic algorithm configuration (see, e.g., [25,56]), algorithm selection (see, e.g., [48,12,79,
78]), parallel portfolios (see, e.g., [24,20]), and, to some extent, genetic programming (see, e.g., [18,19,60]), hyper-heuristics 
(see, e.g., [54]), autonomous search (see, e,g., [27]), and algorithm synthesis (see, e.g., [77,57,21]). In what follows, we restrict 
our discussion to research efforts that are related particularly closely to our approach.

2.3.1. Automated construction of algorithms
Here we consider three closely related lines of previous work in more detail, contrasting them with our own. First, 

Minton [56] used meta-level theories to produce distribution-specific versions of generic heuristics, and then found the 
most useful combination of these heuristics by evaluating their performance on a small set of test instances. He focused 
on producing distribution-specific versions of candidate heuristics and only considered at most 100 possible heuristics. The 
performance of the resulting algorithms was comparable to that of algorithms designed by a skilled programmer, but not 
an expert. In contrast, our work lays out a generalized, highly parameterized framework that can be instantiated to yield 
many trillions of distinct candidate solvers. We achieved performance exceeding the current state of the art on most of the 
instance distributions we considered.

Second, Gratch and Dejong [25] presented a system that starts with a STRIPS-like planner and augments it by incremen-
tally adding search control rules. In contrast, SATenstein does not augment an existing solver; rather, our goal is to design 
a method for automatically building new solvers by combining components from as many existing solvers as possible.

Finally, and most closely related to our work, Fukunaga’s [18,19] genetic programming approach has a similar goal to our 
own: the automated construction of local search heuristics for SAT. Fukunaga considered a potentially unbounded design 
space, based only on GSAT-based and WalkSAT-based SLS algorithms up to the year 2000. His candidate variable selection 
mechanisms were evaluated on uniform random 3-SAT and graph coloring instances with at most 250 variables. While 
Fukunaga’s approach could in principle be used to obtain high-performance solvers for specific types of SAT instances, to 
the best of our knowledge, this potential has never been realized; the best automatically-constructed solvers obtained by 
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Fukunaga only achieved a performance level similar to that of the best WalkSAT variants available in 2000, based on an eval-
uation on moderately-sized SAT instances. In contrast, as mentioned above, we consider a huge but bounded combinatorial 
space of algorithms, based on components taken from two dozen of the best SLS algorithms for SAT currently available, 
and we employ an off-the-shelf, general-purpose algorithm configuration procedure to search this space. The solvers thus 
obtained perform substantially better than current state-of-the-art SLS-based SAT solvers on a broad range of challenging 
SAT instances with up to 4978 variables.

2.3.2. Automated algorithm configuration
Recently, considerable attention has been paid to the problem of automated algorithm configuration. F-Race [9,4,10] uses 

a non-parametric statistical test to iteratively filter out configurations that are significantly worse than others (“racing”), 
continuing until a cutoff time is reached and only a small number of good configurations are left. ParamILS [40,39] is a 
model-free method based on iterated local search and with a “challenge incumbent” procedure somewhat akin to racing. 
GGA [1] is a model-free method based on a genetic algorithm. Finally, SMAC [37] performs sequential model-based op-
timization, iterating between fitting models and using them to make choices about which configurations to investigate. 
The experiments in this paper make use of ParamILS; this method offers the advantages of scalability to large parameter 
spaces, stability, and previous success in applications (see, e.g., [36,13]). However, in principle, SATenstein-LS could be 
configured using any state-of-the-art algorithm configuration procedure.

2.3.3. Programming by optimization
SATenstein advocates designing new solvers by inducing a single parameterized solver from distinct examples in the 

literature, and then searching this parameter space automatically [45]. This approach is an example of—and indeed was 
part of the inspiration for—a design philosophy we call Programming by Optimization (PbO) [35]. In general, PbO means 
seeking and exposing design choices during a development process, and then automatically finding instantiations of these 
choices that optimize performance in a given use context. SATenstein-LS can be seen as an example of PbO in which 
the algorithm design space has been obtained by unifying a large number of local search schemes for SAT into a tightly in-
tegrated, highly parametric algorithm framework. However, the PbO philosophy goes further and is ultimately more general: 
it emphasizes encouraging developers to identify and expose design choices as parameters, rather than merely recovering 
parameters from existing, fully implemented examples. Because of its emphasis on changing the software development pro-
cess, the PbO paradigm is also supported by programming language extensions that allow parameters and design choices to 
be exposed quickly and transparently (for further details, see www.prog-by-opt.net).

2.3.4. Algorithm selection and SATzilla
To address a potential source of confusion, we contrast SATenstein with our similarly-named—but rather different—

previous work on SATzilla. For a given problem instance or problem distribution, we often have to solve an “algorithm 
selection problem” [65]: which algorithm(s) should be run in order to minimize some performance objective, such as ex-
pected runtime? Different machine learning techniques can be applied to solve this problem (see, e.g., [49,26,12,79,44,43]).
SATzilla [59,79] instantiates such an approach, using predictive models to select among a portfolio of existing algorithms 
on a per-instance basis. In contrast, SATenstein is an approach for automatically building solvers from components, 
yielding a huge candidate set of solvers, most of which have never been studied before. Indeed, the two approaches are 
complementary: methods like SATzilla can take advantage of solvers obtained using the automated design approach 
pursued in this work. In fact, SATzilla2009_R and 3S, which both performed extremely well in the random category 
of the 2009 and 2012 SAT Competitions (each winning a gold medal for random SAT+UNSAT), both make use of mul-
tiple SATenstein-LS solvers [80,43]. Indeed, the synergy between SATenstein and SATzilla runs even deeper: 
an approach dubbed Hydra [78] automatically builds portfolio-based algorithm selectors, based only on a single, highly 
parameterized algorithm such as SATenstein. Experiments show that Hydra outperformed SATzilla based on 17 state-
of-the-art SLS solvers, even when restricted only to multiple different instantiations of SATenstein-LS.

2.3.5. Further related work
Frankenstein was also used as a metaphor for algorithm design in work by Montes de Oca et al. [58], where a Particle 

Swarm Optimization (PSO) algorithm is created by combining algorithm components drawn from existing high-performance 
PSO algorithms. These component designs were hand-picked by the algorithm designer; in contrast, we specify a combi-
natorial design space from which we use an automated algorithm configurator to find a good design for a given problem 
distribution. Frankenstein’s PSO can thus be seen an example of manual algorithm design, whereas our goal is to automate 
the algorithm-building process.

Existing work on algorithm synthesis is mostly focused on automatically generating algorithms that satisfy a given formal 
specification or that solve a specific problem from a large and diverse domain (see, e.g., [77,57,21]). In contrast, like other 
research that falls under the PbO umbrella [35], our work is focused on finding an efficient solver from a huge space of 
candidate solvers that are all guaranteed to be correct by construction.

http://www.prog-by-opt.net
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Procedure SATenstein-LS(. . .).
Input: CNF formula φ; real number cutoff ;

Booleans performDiversification, singleClauseAsNeighbor,
usePromisingList;

Output: Satisfying variable assignment

Start with random assignment A;
Initialize parameters;
while runtime < cutoff do

if A satisfies φ then
return A;

varFlipped ← FALSE;
if performDiversification then

B1 with probability diversificationProbability() do
B1 c ← selectClause();
B1 y ← diversificationStrategy(c) ;
B1 varFlipped ← TRUE;

if not varFlipped then
if not usePromisingList then

if singleClauseAsNeighbor then
B2 c ← selectClause();
B2 y ← selectHeuristic(c) ;

else
B3 sety ← selectSet();
B3 y ← tieBreaking(sety);

else
B4 if promisingList is not empty then
B4 y ← selectFromPromisingList() ;

else
B4 c ← selectClause();
B4 y ← selectHeuristic(c) ;

flip y ;
B5 update();

3. SATenstein-LS

SATenstein-LS is a highly parameterized, stochastic local search (SLS) SAT solver that not only draws components 
from several high-performance SLS-based SAT solvers, but also incorporates several novel mechanisms. SATenstein-LS
can be configured to instantiate dozens of well-known SLS solvers, along with many trillions of others that have never been 
studied before. In this section, we present a high-level outline of SATenstein-LS and explain the functionality of the ma-
jor building blocks used in our design. We also give a detailed description of the parameters exposed by SATenstein-LS.

3.1. Design

As discussed in Section 2.1, most SLS algorithms for SAT fall into one of four broad categories: GSAT-based, WalkSAT-
based, dynamic local search, and G2WSAT variants. Since no recent, state-of-the-art SLS solver is GSAT-based, we constructed
SATenstein-LS by drawing components from algorithms belonging to the three remaining categories.

As shown in the high-level algorithm outline (Procedure SATenstein-LS), SATenstein-LS is comprised of five major 
building blocks, B1–B5. Any instantiation of SATenstein-LS follows the same high-level structure:

1. Optionally execute B1, which performs search diversification.
2. Execute either B2, B3 or B4, thus performing a WalkSAT-based, dynamic local search or G2WSAT-based procedure, 

respectively.
3. Optionally execute B5 to update data structures such as promising list, clause penalties, dynamically adaptable param-

eters or tabu attributes.

Each of our building blocks consists of one or more components (listed in Table 2); some of these components are 
shared across different building blocks. Each component is configurable by one or more parameters. Out of 42 parameters 
overall, 6 of SATenstein-LS’s parameters are integer-valued (listed in Table 11), 19 are categorical (listed in Table 12), 
and 17 are real-valued (listed in Table 13). All of these parameters are exposed on the command line so that they can be 
optimized using an automatic configurator. After fixing the domains of integer- and real-valued parameters to between 3 
and 16 values each (as we did in our experiments, reported later) the total number of valid SATenstein-LS instantiations 
was 2.01 × 1014.
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We now give a high-level description of each of the building blocks. In particular, we provide detailed descriptions 
of SATenstein-LS’s three key building blocks, B2, B3 and B4, which map to three broad categories of SLS-based SAT 
solvers.

3.1.1. Block B1
B1 is constructed using the SelectClause(), DiversificationStrategy() and DiversificationProbability() components. Select-

Clause() is configured by one categorical parameter and, depending on its value, either selects an unsatisfied clause uniformly 
at random or selects a clause with probability proportional to its clause penalty [74]. Component diversificationStrategy() can 
be configured by a categorical parameter to do any of the following with probability diversificationProbability(): flip the least 
recently flipped variable [50]; flip the least frequently flipped variable [64]; flip the variable with minimum variable weight 
[64]; or flip a randomly selected variable [33].

3.1.2. Block B2 (WalkSAT-based algorithms)
Block B2 instantiates WalkSAT-based algorithms, which—unlike GSAT or its variants—select in each step a single unsatis-

fied clause (typically uniformly at random from the set of all currently unsatisfied clauses), and consider only the variables 
appearing therein as candidates for flipping; the variable to be flipped is chosen using a heuristic. WalkSAT/SKC [66], one 
of the earliest and most prominent algorithms from this family, uses a scoring function that only depends on BreakCount
(see Section 2.1) for variable selection.

As previously described in the context of B1, component SelectClause() is used to select an unsatisfiable clause c. The 
SelectHeuristic() component selects a variable from c for flipping. Depending on a categorical parameter, SelectHeuristic() can 
instantiate any of the thirteen well-known WalkSAT-based heuristics, notably including Novelty variants, VW1 and VW2. 
Table 3 lists these heuristics and related continuous parameters. We also extended the Novelty variants with an optional 
“flat move” mechanism, as found in the selection strategy in gNovelty+ [71,62].

WalkSAT/Tabu [55] is an extension of WalkSAT/SKC that forbids variables that have been flipped within the last t
steps from being flipped again, where t is a parameter called the tabu tenure. If all variables in all unsatisfied clauses are 
tabu, then the tabu list is ignored. Tabu variants of WalkSAT algorithms can be configured in SATenstein-LS by setting 
the categorical parameter performTabuSearch.

Novelty [55] and its variants are also very prominent WalkSAT algorithms. Novelty scores the variables in the se-
lected clause using the same scoring function as GSAT. If the variable with the highest score is not the most-recently-flipped 
variable within the clause, then it is deterministically selected for flipping. Otherwise, it is selected with probability (1 − p), 
where p is a parameter called the noise setting (with probability p, the second-best variable is selected). To prevent search 
stagnation, Novelty has been augmented with a probabilistic conflict-directed random walk mechanism, leading to the
Novelty+ algorithm [32]. Later Novelty variants (e.g., adaptNovelty+; [33]) also use a dynamic mechanism for 
changing the noise parameter during the search process; this mechanism has since been extended to many other SLS-
based SAT solvers (e.g., [53]) and can be instantiated in SATenstein-LS by setting the parameter useAdaptiveMechanism
to 1 (for further details, see, Table 12).

3.1.3. Block B3 (dynamic local search algorithms)
Block B3 instantiates dynamic local search algorithms. The most prominent feature of dynamic local search (DLS) algo-

rithms is the use of penalties (or weights) associated with the clauses of the given CNF formula. DLS algorithms typically use 
a GSAT-like variable selection mechanism, but calculate scores taking clause penalties into account, reflecting the perceived 
importance of satisfying each clause. At each step, penalties associated with unsatisfied clauses are increased (additively [71]
or multiplicatively [42]); this enables the local search process to escape from local minima of the objective function defined 
by the sum of the penalties of unsatisfied clauses. In order to ensure that the penalty values do not increase unboundedly 
and to appropriately emphasize recent search history, occasional smoothing steps are performed to reduce penalties.

In SATenstein-LS, the task of pruning the set of variables based on clause weights is accomplished by the selectSet()
component. selectSet() first considers the set of variables that occur in any unsatisfied clause and associates with each such 
variable v a score, which depends on the clause weights of each clause that changes satisfiability status when v is flipped. 
After scoring the variables, selectSet() returns all variables with maximal score. Our implementation of this component 
incorporates three different scoring functions, including those due to McAllester et al. [55], Selman et al. [66], and a novel, 
greedier variant that only considers the number of previously unsatisfied clauses that are satisfied by a variable flip. The 
tieBreaking() component selects a variable from the maximum-scoring set according to the same strategies used by the 
diversificationStrategy() component.

3.1.4. Block B4 (G2WSAT variants)
Block B4 instantiates G2WSAT-based algorithms that combine key features of the GSAT and WalkSAT architectures and 

use a data structure promising list containing promising decreasing variables. (The definition of a promising decreasing variable
is somewhat technical; interested readers should refer to Appendix A.) Like GSAT, G2WSAT has a deterministic greedy 
component that looks at the promising list first. If this list contains at least one variable (promising decreasing variable), 
G2WSAT deterministically selects the variable with the best score for flipping, breaking ties in favor of the least recently 
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Table 1
Design choices for selectFromPromisingList().

Param value Design choice Based on

1 If freebie exists, use tieBreaking(); [66]
else, select uniformly at random

2 Variable with best score [50]
3 Least-recently-flipped variable [53]
4 Variable with best VW1 score [64]
5 Variable with best VW2 score [64]
6 Variable selected uniformly at random [32]
7 Variable selection from Novelty [55]
8 Variable selection from Novelty++ [50]
9 Variable selection from Novelty+ [32]

10 Variable selection from Novelty++′ [52]
11 Variable selection from Novelty+p [52]

Table 2
SATenstein-LS components.

Component Block Parameters Instantiations Detailed Info

diversificationStrategy() 1 searchDiversificationStrategy 4 Table 12
SelectClause() 1, 2, 4 selectClause 2 Table 12
diversificationProbability() 1 rdp, rfp, rwp 216 Table 13
selectFromPromisingList() 4 selectPromVariable 4312 Table 1, 12

promDp, promWp, promNovNoise Table 13
selectHeuristic() 2, 4 heuristic Table 3, 12

performAlternateNovelty 1.83 × 106 Table 12
wp, dp, wpWalk, novNoise, s, c Table 13

selectSet() 3 scoringMeasure, smoothingScheme Table 12
maxinc 24 576 Table 11
alpha, rho, sapsthresh, pflat Table 13

tiebreaking() 3 tieBreaking 4 Table 12
update() 5 useAdaptiveMechanism, adaptivenoisescheme, Table 12

adaptWalkProb, performTabuSearch, Table 12
useClausePenalty, adaptiveProm, Table 12
adaptpromwalkprob, updateSchemePromList, 1.76 × 108 Table 12
tabuLength, phi, theta, promPhi, promTheta, Table 11
ps Table 13

flipped variable. If the promising list is empty, the stochastic component of G2WSAT is employed, a Novelty variant that 
belongs to the WalkSAT architecture.

In SATenstein-LS, selection of promising variable is performed by the selectFromPromisingList() component. For this 
component, in addition to two existing strategies found in the G2WSAT literature (see, e.g., [50,53]), we added nine novel 
strategies based on variable selection heuristics from other solvers. These, to the best of our knowledge, have never been 
used before in the context of promising variable selection for G2WSAT-based algorithms. For example, in previous work, 
variable selection mechanisms used in Novelty variants were only applied to variables of unsatisfiable clauses, not to 
promising lists. Table 1 lists the eleven possible strategies for selectFromPromisingList. If promising list is empty, B4 behaves 
exactly as B2, which instantiates WalkSAT-based algorithms.

Except for G2WSAT [50], all G2WSAT variants use the reactive mechanism found in adaptNovelty+ [32]. gNovelty+
[62], the winner of the 2007 SAT Competition in the random satisfiable category, also uses clause penalties and a smoothing 
mechanism found in dynamic local search algorithms [71] which can be activated in SATenstein-LS by setting the 
categorical parameter useClausePenalty to 1. As already mentioned in the context of B2, the reactive mechanism for is 
activated by setting the categorical parameter useAdaptiveMechanism to 1.

3.1.5. Block B5
Block B5 updates data structures required by the previously mentioned mechanisms, (e.g., dynamic local search) after a 

variable has been flipped. Performing these updates in an efficient manner is of crucial importance for the performance of 
many SLS algorithms. As the SATenstein-LS framework supports the combination of mechanisms from many different 
SLS algorithms, each depending on different data structures, the implementation of the update() function was technically 
quite challenging.

3.2. Implementation and validation

As already mentioned, SATenstein-LS is built on top of UBCSAT [74]. UBCSAT makes use of a trigger-based architec-
ture that facilitates the reuse of existing mechanisms. While designing and implementing SATenstein-LS, we not only 
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Table 3
List of heuristics chosen by the parameter heuristic and dependent parameters.

Param. value Selected heuristic Dependent parameters

1 Novelty [55] novnoise
2 Novelty+ [33] novnoise, wp
3 Novelty++ [50] novnoise, dp
4 Novelty++′ [52] novnoise, dp
5 R-Novelty [55] novnoise
6 R-Novelty+ [33] novnoise, wp
7 VW1 [64] wpwalk
8 VW2 [64] s, c, wpwalk
9 WalkSAT-SKC [66] wpwalk

10 Noveltyp [52] novnoise
11 Novelty+p [52] novnoise, wp
12 Novelty++p [52] novnoise, dp
13 Novelty++′p [52] novnoise, dp

studied existing SLS algorithms, as presented in the literature, but we also analyzed the SAT competition submissions of 
such algorithms. We found that the published pseudocode of VW2 [64] differed from its 2005 SAT Competition version, 
which includes a reactive mechanism; we included both versions in SATenstein-LS’s implementation. We also found 
that in the SAT competition implementation of gNovelty+ , Novelty used a PAWS-like [71] “flat move” mechanism. We 
implemented this alternate version of Novelty in SATenstein-LS and exposed a categorical parameter to choose be-
tween the two implementations. While examining the implementations of various SLS solvers, we noticed that certain key 
data structures were implemented in different ways. In particular, different G2WSAT variants use different realizations of 
the update scheme of promising list. We included all these update schemes in SATenstein-LS and declared parameter 
updateSchemePromList to select between them.

Since SATenstein-LS is quite complex, we took great care in validating its implementations of existing SLS-based 
SAT solvers. We compared our SATenstein-LS implementation with ten well-known algorithms’ reference implementa-
tions (specifically, every algorithm listed in Table 5 except for Ranov), measuring running times as the number of variable 
flips.3 These ten algorithms span G2WSAT-based, WalkSAT-based, and dynamic local search procedures, and also make use 
of all the prominent SLS solver mechanisms discussed earlier. Our validation results showed that in every case, reference 
solvers and their SATenstein-LS implementations have the same run-length distributions on a small set of 10 valida-
tion instances chosen from block world and software verification, based on a Kolmogorov–Smirnov test (5000 runs per 
solver–instance pair with significance threshold 0.05).

4. Experimental setup

In order to study the effectiveness of our proposed approach for algorithm design, we configured SATenstein-LS on 
training sets from various distributions of SAT instances and compared the performance of the SATenstein-LS solvers 
thus obtained against that of several existing high-performance SAT solvers on disjoint test sets.

4.1. Instance distributions

We considered six sets of well-known benchmark instances for SAT (see Table 4). These six distributions can be grouped 
into three broad categories: industrial (CBMC(SE), FAC), handmade (QCP, SW-GCP), and random (R3SAT, HGEN). Because 
SLS algorithms are unable to prove unsatisfiability, we constructed our benchmark sets to include only satisfiable instances.

The instance generators for HGEN and FAC only produce satisfiable instances. For each of these two distributions, we 
generated 2000 instances with the generator settings shown in Table 4. For the remaining distributions, we filtered out 
unsatisfiable instances using complete solvers. For QCP, we generated 23 000 instances around the solubility phase tran-
sition, using the parameters suggested by Gomes and Selman [23]. We first filtered out unsatisfiable instances and then 
chose 2000 satisfiable instances uniformly at random. For SW-GCP, we generated 20 000 instances following [22] and then 
drew a sample of 2000 satisfiable instances uniformly at random from this set. For R3SAT, we generated a set of 1000 
instances with 600 variables and a clauses-to-variables ratio of 4.26. We identified 521 satisfiable instances using complete 
solvers, then chose 500 of these uniformly at random. Finally, we used the CBMC generator to create 611 SAT-encoded 
software verification instances based on a binary search algorithm with different array sizes and loop-unwinding values. We 
preprocessed these instances using SatELite [17], identifying 604 of them as satisfiable and the remaining 7 as unsatisfiable.

Finally, we randomly split each of the six instances sets thus obtained into training and test sets of equal size.

3 SATenstein-LS does not support preprocessing, as a consequence of being built on top of UBCSAT. We thus manually disabled the preprocessing 
steps of G2, AG2p, AG2+, and AG20 when performing this validation.
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Table 4
Our six benchmark distributions.

Distribution Description Generator parameters Train/test size

QCP SAT-encoded quasi-group order O ∈ [10,30]; 1000/1000
completion problems [23] holes H = h ∗ O 1.55,

h ∈ [1.2,2.2]
SW-GCP SAT-encoded small-world 

graph-colouring problems [22]
ring lattice size S ∈ [100,400]; 1000/1000

nearest neighbors connected: 10;
rewiring probability: 2−7;
chromatic numbers: 6

R3SAT uniform-random 3-SAT variable: 600; 250/250
instances [68] clauses-to-variables ratio: 4.26

HGEN random instances generated variable n ∈ [200,400] 1000/1000
by HGEN2 [31]

FAC SAT-encoded factoring problems prime number ∈ [3000,4000] 1000/1000
[75]

CBMC(SE) SAT-encoded bounded model array size s ∈ [1,2000]; 302/302
checking [14], loop unwinding n ∈ 4,5,6
preprocessed by SatELite [17]

4.2. Configuration protocol

In order to perform automatic algorithm configuration, we first had to quantify performance using an objective function. 
Consistent with most previous work on SLS algorithms for SAT, we chose to focus on mean runtime. In order to deal with 
runs that had to be terminated at a given cutoff time, following Hutter et al., [39], we used a variant of mean runtime 
known as PAR-10, defined as the average runtime over a given set of runs, where timed-out runs are counted as 10 times 
the given cutoff time. Unless explicitly stated otherwise, all runtimes reported in this article were measured using PAR-10 
over the respective set of instances.

To perform automated configuration, we used the FocusedILS procedure from the ParamILS framework, version 2.3 [41]. 
We chose this method because it has been demonstrated to operate effectively on many extremely large, discrete parameter 
spaces (see, e.g., [40,38,72,63]), and because it supports conditional parameters (discussed below). FocusedILS takes as input 
a parameterized algorithm (the so-called target algorithm), a specification of domains and (optionally) conditions for all 
parameters, a set of training instances, and an evaluation metric. It outputs a parameter configuration of the target algorithm 
that approximately minimizes the given evaluation metric.

As just mentioned, FocusedILS supports conditional parameters, which are important to SATenstein-LS. For example, 
condition A|B = b means that A is activated if B take the value b. When more than one such condition is given for the 
same parameter A, these are interpreted as being connected by logical ‘and’. For example, the two conditions, A|B = b and 
A|C = c, are interpreted as A|(B = b) ∧ (C = c). Some parameters in SATenstein-LS can be activated in more than one 
way. While this cannot be directly specified in the input to FocusedILS, we can express such disjunctive conditions using 
dummy parameters, as illustrated in the following example. Consider an algorithm S with four parameters, {A, B, C, D}, 
and where A is activated if B = b or C = c, while D is activated if A = a. As it is impossible to express the condition 
A|(B = b) ∨ (C = c) directly in the input to FocusedILS, we introduce two dummy parameters, A∗ and D∗ . Using these 
additional parameters, the given conditions can be expressed as A|B = b; A∗|C = c; A∗|B �= b; D|A = a; D∗|A∗ = a. Since 
only one of (A, A∗)/(D, D∗) is activated, we can simply map A∗ to A and D∗ to D when instantiating S with a parameter 
configuration found by FocusedILS.

We used a cutoff time of 5 CPU seconds for each target algorithm run, and allotted 7 days to each run of FocusedILS; we 
note that, while 5 CPU seconds is unrealistically short for assessing the performance of SAT solvers, using short cutoff times 
during configuration is important for the efficiency of the configuration process and typically works well, as demonstrated by 
our SATenstein-LS results. Since ParamILS cannot operate directly on continuous parameters, each continuous parameter 
was discretized into sets containing between 3 and 16 values that we considered reasonable (see Table 11). Except for 
a small number of cases (e.g., the parameters s,c) for which we used the same discrete domains as mentioned in the 
publication first describing it [64]), we selected these values using a regular grid over a range of values that appeared 
reasonable. For each integer parameter, we specified 4 to 10 values, always including the known defaults (see Table 13). 
In all cases, these choices included the parameter values required to cover the default configurations of the solvers whose 
components were integrated into SATenstein-LS’s design space. Categorical parameters and their respective domains 
are listed in Table 12. As mentioned before, based on this discretization, SATenstein-LS’s parameter configuration space 
consists of 2.01 × 1014 distinct configurations.

Since the performance of FocusedILS can vary significantly depending on the order in which instances appear in the 
training set, we ran FocusedILS 20 times on the training set, using different, randomly determined instance orderings for 
each run. From the 20 parameter configurations obtained from FocusedILS for each instance distribution D, we selected the 
parameter configuration with the best penalized average runtime on the training set. We then evaluated this configuration 
on the test set. For a given distribution D, we refer to the corresponding instantiation of a solver S as S[D].



A.R. KhudaBukhsh et al. / Artificial Intelligence 232 (2016) 20–42 29
Table 5
Our eleven challenger algorithms.

Algorithm Abbrev Reason for inclusion Parameters
Ranov
[61] Ranov gold 2005 SAT Competition (random) wp

G2WSAT [50] G2 silver 2005 SAT Competition (random) novNoise, dp
VW
[64] VW bronze 2005 SAT Competition (random) c, s, wpWalk

gNovelty+
[62]

GNOV gold 2007 SAT Competition (random) novNoise, wpWalk, ps

adaptG2WSAT0

[52]
AG20 silver 2007 SAT Competition (random) NA

adaptG2WSAT+
[53]

AG2+ bronze 2007 SAT Competition (random) NA

adaptNovelty+
[33]

ANOV gold 2004 SAT Competition (random) wp

textttadaptG2WSATp

[53]
AG2p performance comparable to G2WSAT [50],

Ranov, and adaptG2WSAT+; see [52]
NA

SAPS
[42] SAPS prominent DLS algorithm alpha, ps, rho, sapsthresh, wp

RSAPS
[42] RSAPS prominent DLS algorithm alpha, ps, rho, sapsthresh, wp

PAWS
[71] PAWS prominent DLS algorithm maxinc, pflat

4.3. Solvers used for performance comparison

For each instance distribution D , we compared the performance of SATenstein-LS[D] against that of 11 high-
performance SLS-based SAT solvers on the respective test set. We included every SLS algorithm that won a medal in any 
category of a SAT competitions between 2002 and 2007, because those algorithms are all part of the SATenstein-LS
design space.

Although dynamic local search (DLS) algorithms have not won medals in recent SAT competitions, we also included 
three prominent, high-performing DLS algorithms for two reasons. First, some of them represented the state of the art 
when introduced (e.g., SAPS [42]) and still offer competitive performance on many instances. Second, techniques used 
in these algorithms have been incorporated into other recent high-performance SLS algorithms. For example, the additive 
clause weighting scheme used in PAWS is also used in the 2007 SAT Competition winner gNovelty+ [62]. We call these 
algorithms challengers and list them in Table 5. In order to demonstrate the full performance potential of these solvers, we 
also tuned the parameters for all parameterized challengers using the same configuration procedure and protocol as for
SATenstein-LS, including the same choices of discrete values for continuous and integer parameters.

SATenstein-LS can be instantiated such that it emulates all 11 challenger algorithms (except for preprocessing com-
ponents used in Ranov, AG2p, AG2plus, and AG20). However, in some cases, the original implementations of these 
algorithms are more efficient—on our data, by at most a factor of two on average per instance set—mostly, because
SATenstein-LS’s generality rules out some data structure optimizations.

Thus, we based all of our experimental comparisons on the original algorithm implementations, as submitted to the 
respective SAT Competitions. The exceptions are PAWS, whose implementation within UBCSAT is almost identical to the 
original in terms of runtime, as well as SAPS, RSAPS, and ANOV, whose UBCSAT implementations are those used in the 
competitions. All of our comparisons on the test set are based on running each solver 25 times per instance, with a per-run 
cutoff of 600 CPU seconds.

Our goal was to improve the state of the art in SAT solving. Thus, although the design space of SATenstein-LS
consists solely of SLS solvers, we have also compared its performance to that of high-performance complete solvers (listed 
in Table 6). Unlike SLS solvers, these complete solvers are deterministic. Thus, for every instance in each distribution, we 
ran each complete solver once with a per-run cutoff of 600 CPU seconds.

4.4. Execution environment

We carried out our experiments on a cluster of 55 machines each equipped with dual 3.2 GHz Intel Xeon CPUs with 
2 MB cache and 2 GB RAM, running OpenSuSE Linux 11.1. Our computer cluster was managed by a distributed resource 
manager, Sun Grid Engine (version 6.0). Runtimes for all algorithms (including FocusedILS) were measured as CPU time on 
these reference machines. Each run of any solver only used one CPU.

5. Results

We now present the results of performance comparisons between SATenstein-LS and the 11 challenger SLS solvers 
(listed in Table 5), configured versions of these challengers, and two complete solvers for each of our benchmark distribu-
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Table 6
Complete solvers we compared against.

Category Solver Reason for inclusion

Industrial Picosat gold, silver
(CBMC(SE) and FAC) [7,6] 2007 SAT Competition (industrial)

Minisat2.0 bronze, silver
[69] 2007 SAT Competition (industrial)

Handmade Minisat2.0 bronze, silver
(QCP and SW-GCP) [69] 2007 SAT Competition (handmade)

March_pl Improved, bug-free version of
[28] March_ks [29],

gold in 2007 SAT Competition (handmade)
Random Kcnfs_04 silver
(HGEN and R3SAT) [16] 2007 SAT Competition (random)

March_pl Improved, bug-free version of
[28] March_ks [29], silver

in 2007 SAT Competition (random)

Fig. 1. Performance comparison of SATenstein-LS and the best challenger. Left: R3SAT; Right: FAC. Medians were taken over 25 runs on each instance 
with a cutoff time of 600 CPU seconds per run.

tions (listed in Table 6). Although in our configuration experiments, we optimized SATenstein-LS for penalized average 
runtime (PAR-10), we also examine its performance in terms of other performance metrics, such as median runtime and 
percentage of instances solved within the given cutoff time.

5.1. Comparison with challengers

For every one of our six benchmark distributions, we were able to find a SATenstein-LS configuration that outper-
formed all 11 challengers. Our results are summarized in Table 7.

In terms of penalized average runtime, the performance metric we explicitly optimized using ParamILS (with a cut-
off time of 5 CPU seconds rather than the 600 CPU seconds used here for testing, as explained in Section 5.2), our
SATenstein-LS solvers achieved better performance than every challenger on every distribution. For QCP, HGEN, and
CBMC(SE), SATenstein-LS achieved a PAR-10 that was orders of magnitude better than the respective best challengers. 
For SW-GCP, R3SAT, and FAC, there was substantial, but less dramatic improvement. The modest improvement in R3SAT
was not very surprising (Fig. 1: Left); R3SAT is a well-known SAT distribution on which SLS solvers have been evaluated 
and optimized for decades. Conversely, on a new benchmark distribution, CBMC(SE), where DPLL solvers represent the 
state of the art, SATenstein-LS solvers performed markedly better than every SLS-based challenger. We were surprised 
to see the amount of improvement we obtained for HGEN, a hard random SAT distribution very similar to R3SAT, and QCP, 
a widely-known SAT distribution. We noticed that on HGEN, some older solvers such as SAPS and PAWS performed much 
better than more recent medal winners such as GNOV and AG20. Also, for QCP, a somewhat older algorithm, ANOV, turned 
out to be the best challenger. These observations led us to believe that the strong performance of SATenstein-LS was 
partly due to the fact that the past seven years of SLS SAT solver development have not taken these types of distributions 
into account and have not yielded across-the-board improvements in SLS solver performance.

We also evaluated the performance of SATenstein-LS solvers using two other performance metrics: median-of-
median runtime and percentage of solved instances. If a solver finishes most of the runs on most instances, the capped 
runs will not affect its median-of-median performance, and hence the metric does not need a way of accounting for the 
cost of capped runs. (When the median of medians is a capped run, we say that the metric is undefined.) Table 7 shows that, 
although the SATenstein-LS solvers were obtained by optimizing for PAR-10, they still outperformed every challenger in 
every distribution except for R3SAT, in which the challengers achieved slightly better performance than SATenstein-LS. 
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Table 7
Performance of SATenstein-LS and the 11 challengers. Every algorithm was run 25 times on each instance with a cutoff of 600 CPU seconds per run. 
Each cell 〈i, j〉 summarizes the test-set performance of algorithm i on distribution j as a/b/c, where a (top) is the penalized average runtime; b (middle) 
is the median of the median runtime over all instances (where the outer median is taken over the instances in the given test set and the inner median 
over the runs on each instance; this is undefined if fewer than half of the median runs failed to find a solution within the cutoff time); c (bottom) is 
the percentage of instances solved (i.e., those with median runtime < cutoff). The best-scoring algorithm(s) in each column are indicated in bold, and the 
best-scoring challenger(s) are underlined.

SATenstein-LS[D] 
[45]

0.08 0.03 1.11 0.02 10.89 4.75
0.01 0.02 0.14 0.01 7.90 0.02
100% 100% 100% 100% 100% 100%

Solvers QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

1054.99 0.64 2.14 137.02 3594.40 2169.77
AG20 0.03 0.11 0.13 0.57 N/A 0.56
[52] 81.2% 100% 100% 98.1% 35.9% 61.1%

1119.96 0.43 2.35 105.30 1954.83 2294.24
AG2p 0.02 0.06 0.14 0.48 330.26 2.57
[53] 80.1% 100% 100% 98.4% 80.6% 61.1%

1091.37 0.67 3.04 148.28 1450.89 2181.92
AG2+ 0.03 0.08 0.16 0.59 238.31 0.64
[53] 80.3% 100% 100% 98.0% 91.0% 61.1%

25.42 4.86 11.17 109.94 2897.52 2021.22
ANOV 0.02 0.04 0.15 0.50 588.23 3.10
[33] 99.6% 100% 100% 98.6% 51.4% 61.1%

2942.13 4092.29 3.69 104.55 5947.80 2139.12
G2 341.60 N/A 0.13 0.60 N/A 0.57
[50] 50.9% 31.0% 100% 98.7% 0% 65.4%

414.69 1.20 11.14 52.58 5935.39 2236.85
GNOV 0.03 0.09 0.15 0.71 N/A 0.67
[62] 93.3% 100% 100% 99.4% 0% 61.5%

1127.84 4495.50 1.77 62.18 22.05 1693.82
PAWS 0.03 N/A 0.08 0.82 10.41 0.18
[71] 81.0% 24.3% 100% 99.4% 100% 70.8%

73.38 0.15 18.29 151.11 887.33 1227.07
RANOV 0.1 0.12 0.36 0.90 152.16 0.58
[61] 99.1% 100% 100% 98.2% 96.8% 79.7%

1255.94 5635.54 18.42 33.28 17.86 827.81
RSAPS 0.05 N/A 1.86 2.33 11.53 0.02
[42] 79.2% 5.4% 100% 99.7% 100% 85.0%

1248.34 3864.74 22.93 40.17 16.41 646.89
SAPS 0.04 N/A 1.77 2.65 10.56 0.02
[42] 79.4% 34.2% 100% 99.5% 100% 89.7%

1022.69 161.74 12.45 176.18 3382.02 385.12
VW 0.25 40.26 0.82 3.13 N/A 0.23
[64] 81.9% 99.4% 100% 97.8% 35.3% 93.4%

Finally, we measured the percentage of instances on which the median runtime was below the cutoff used for capping runs. 
According to this measure, SATenstein-LS either equaled or beat every challenger, since it solved 100% of the instances 
in every benchmark set. In contrast, only 4 challengers managed to solve more than 50% of instances in every test set. Over-
all, SATenstein-LS solvers scored well on these measures for which its performance had not been explicitly optimized.

The relative performance of the challengers varied significantly across different distributions. For example, the three 
dynamic local search solvers (SAPS, PAWS, and RSAPS) performed substantially better than the other challengers on factor-
ing instances (FAC). However, on SW-GCP, their relative performance was weak. Similarly, GNOV (the 2007 SAT Competition 
winner in the random satisfiable category) performed very poorly on our two industrial benchmark distributions, CBMC(SE)
and FAC, but solved SW-GCP and HGEN instances quite efficiently.4 This suggests that different distributions are most ef-
ficiently solved by rather different solvers. We are thus encouraged that our automatic algorithm construction process was 
able to find good configurations for each distribution.

4 Interestingly, on both types of random instances we considered, GNOV failed to outperform some of the older solvers, in particular, PAWS and RSAPS.
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Table 8
Performance of SATenstein-LS solvers, the best challengers with default configurations and the best automatically configured challengers. Every algo-
rithm was run 25 times on each instance with a cutoff of 600 CPU seconds per run. Each table entry 〈i, j〉 indicates the test-set performance of algorithm i
on distribution j as a/b/c, where a (top) is the penalized average runtime; b (middle) is the median of the median runtimes over all instances; c (bottom) 
is the percentage of instances solved (i.e., those with median runtime < cutoff).

Distribution QCP SW-GCP R3SAT HGEN FAC CBMC(SE)
Best Challenger (default) ANOV RANOV PAWS RSAPS SAPS VW

25.42 0.15 1.77 33.28 16.41 385.12
Performance 0.02 0.12 0.08 2.33 10.56 0.23

99.6% 100% 100% 99.7% 100% 93.4%

Best Challenger (tuned) VW[D] G2[D] VW[D] SAPS[D] SAPS[D] VW[D]
0.33 0.05 1.26 31.77 10.68 16.45

Performance 0.02 0.05 0.15 0.75 7.00 0.02
100% 100% 100% 99.6% 100% 100%

0.08 0.03 1.11 0.02 10.89 4.75
SATenstein-LS[D] 0.01 0.02 0.14 0.01 7.90 0.02
Performance 100% 100% 100% 100% 100% 100%

Table 9
Performance summary of SATenstein-LS and the complete solvers. Every complete solver was run once (SATenstein-LS was run 25 times) on each 
instance with a per-run cutoff of 600 CPU seconds. Each cell 〈i, j〉 summarizes the test-set performance of algorithm i on distribution j as a/b/c, where a
(top) is the penalized average runtime; b (middle) is the median of the median runtimes over all instances (for SATenstein-LS, it is the median of the 
median runtimes over all instances. the median runtimes are not defined if fewer than half of the median runs failed to find a solution within the cutoff 
time); c (bottom) is the percentage of instances solved (i.e., having median runtime < cutoff). The best-scoring algorithm(s) in each column are indicated 
in bold.

Distribution QCP SW-GCP R3SAT HGEN FAC CBMC(SE)
Complete Solver Minisat2.0 Minisat2.0 Kcnf_04 Kcnf_04 Minisat2.0 Minisat2.0

35.05 2.17 4905.6 3108.77 0.03 0.23
Performance 0.02 0.9 N/A N/A 0.02 0.03

99.5% 100% 18.8% 49.5% 100% 100%

Complete Solver March_ pl March_ pl March_ pl March_ pl Picosat Picosat
120.29 253.99 3543.01 2763.41 0.02 0.03

Performance 0.2 1.12 N/A 400.78 0.02 0.01
98.1% 95.8% 42.0% 55.2% 100% 100%

0.08 0.03 1.11 0.02 10.89 4.75
SATenstein-LS[D] 0.01 0.02 0.14 0.01 7.90 0.02
Performance 100% 100% 100% 100% 100% 100%

So far, we have discussed performance metrics that describe aggregate performance over the entire test set. One might 
wonder if SATenstein-LS’s strong performance is due its ability to solve relatively few instances very efficiently, while 
performing poorly on others. We found that this is typically not the case and barring one distribution, R3SAT (detailed 
analysis can be found in Appendix C), although even in R3SAT SATenstein-LS[R3SAT] solved the harder instance 
more efficiently than PAWS, the best challenger.

5.2. Comparison with automatically configured versions of challengers

The fact that SATenstein-LS solvers achieved significantly better performance than all 11 challengers with default 
parameter configurations (i.e., those selected by their designers) admits two possible explanations. First, it could be due to 
the fact that SATenstein-LS’s (vast) design space includes useful new configurations that combine solver components in 
novel ways. Second, the performance gains may have been achieved simply by better configuring existing SLS algorithms 
within their existing, and quite small, design spaces. To determine which of these two hypotheses holds, we compared
SATenstein-LS solvers against challengers configured for optimized performance on our benchmark sets, using the same 
automated configuration procedure and protocol.

Table 8 summarizes the performance of our SATenstein-LS solvers, the best default challengers, and the best auto-
matically configured challengers (for further details on individual challenger’s performance, see, Table 15), and shows that 
our first hypothesis, the performance gain of SATenstein-LS is indeed a result of its significantly richer design space 
than that of the challengers, is true. For QCP, HGEN and CBMC(SE), the SATenstein-LS solvers still significantly outper-
formed the best configured challengers. For R3SAT and SWGCP, the performance difference was small, but still above 10%. 
The only benchmark where the best configured challenger outperformed SATenstein-LS was FAC. On closely examining 
the SATenstein-LS[FAC] configuration, we found that SATenstein-LS[FAC] was very similar to the best configured 
challenger, SAPS[FAC].

Overall, these experimental results provide evidence in favor of our first hypothesis: the good performance of
SATenstein-LS solvers is due to combining components gleaned from existing high-performance algorithms in novel 
ways.
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Table 10
Performance summary of SATenstein-LS2.0 and new set of challengers. Every solver was run 25 times on each instance with a per-run cutoff of 
600 CPU seconds. Each cell 〈i, j〉 summarizes the test-set performance of algorithm i on distribution j as a/b/c, where a (top) is the penalized average 
runtime; b (middle) is the median of the median runtimes over all instances (the median runtimes are not defined if fewer than half of the median runs 
failed to find a solution within the cutoff time); c (bottom) is the percentage of instances solved (i.e., having median runtime < cutoff). The best-scoring 
algorithm(s) in each column are indicated in bold.

Distribution QCP SW-GCP R3SAT HGEN FAC CBMC(SE)
Captain Jack CJ[3Sat1k] CJ[CBMC] CJ[3Sat1k] CJ[SWV] CJ[7Sat90] CJ[SWV]

7.39 5929.3 7.30 15.01 4540.40 4.36
Performance 0.02 N/A 0.33 0.02 N/A 0.09

99.9% 0.3% 100% 99.9% 17.7% 100%

Sattime 178.55 20.81 2.97 136.87 650.48 2101.1
Performance 0.02 2.59 0.17 0.70 95.84 3.93

96.8% 100% 100% 98.3% 100% 65.23%

Sparrow 2.31 5936.8 11.32 67.79 4313.50 1544.20
Performance 0.01 N/A 0.21 1.46 N/A 3.51

100% 0.80% 100% 99.4% 11.60% 79.80%

0.10 0.03 1.42 0.03 15.22 15.94
SATenstein-LS2.0[D] 0.01 0.02 0.13 0.01 9.87 0.04
Performance 100% 100% 100% 100% 100% 100%

5.3. Comparison with complete solvers

Table 9 compares the performance of SATenstein-LS solvers and four prominent complete SAT solvers (two for each 
distribution). For four out of our six benchmark distributions, SATenstein-LS solvers comprehensively outperformed 
the complete solvers. For the other two industrial distributions (FAC and CBMC(SE)), the performance of the selected 
complete solvers was much better than that of either the SATenstein-LS solvers and any of our other local search 
solvers. The success of DPLL-based complete solvers on industrial instances is not surprising; it is widely believed to be due 
their ability to take advantage of instance structure (by means of unit propagation and clause learning). Our results confirm 
that state-of-the-art local search solvers cannot compete with state-of-the-art DPLL solvers on industrial instances. However,
SATenstein-LS solvers have made significant progress in closing the gap. For example, for CBMC(SE), state-of-the-art 
complete solvers were five orders of magnitude better than the next-best SLS challenger, VW. SATenstein-LS reduced 
the performance gap to three orders of magnitude. We also obtained some modest improvements (a factor of 1.51) for FAC.

5.4. Configurations found

To better understand the automatically-constructed SATenstein-LS solvers, we compared their automatically se-
lected design choices to the design of the existing SLS solvers for SAT (the full active parameter configurations of the 
six SATenstein-LS solvers can be found in Table 16). SATenstein-LS[QCP] uses building blocks 1, 2, and 5. Recall 
that block 1 is used for performing search diversification, and block 5 is used to update data structures, tabu attributes 
and clause penalties. In block 2, which is used to instantiate a solver belonging to the WalkSAT architecture, the heuristic
is based on Novelty++′

, and in block 1, diversification flips the least-frequently-flipped variable from an UNSAT clause.
SATenstein-LS[SW-GCP] is similar to SATenstein-LS[QCP] but does not use block 1. In block 2, the heuristic is 
based on Novelty++ as used within G2. SATenstein-LS[R3SAT] uses blocks 1, 3 and 5; it is closest to SAPS, but 
performs search diversification. A tabu list with length 3 is used to exclude some variables from the search neighbor-
hood. Recall that block 3 is used to instantiate dynamic local search algorithms. SATenstein-LS[HGEN] uses blocks 1, 
2, and 5. It is similar to SATenstein-LS[QCP] but uses a heuristic based on VW1 as well as a tabu list of length 3.
SATenstein-LS[FAC] uses blocks 3 and 5; its instantiation closely resembles that of SAPS, but differs in the way in 
which variable scores are computed. SATenstein-LS[CBMC(SE)] uses blocks 1, 3, and 5; it computes variable scores 
using -BreakCount and employs a search diversification strategy similar to that of VW.

Interestingly, none of the six SATenstein-LS configurations we found uses a promising list (block 4), a technique 
integrated into many recent SAT Competition winners. This indicates that many interesting designs that could com-
pete with existing high-performance solvers still remain unexplored in SLS design space. In addition, we found that all
SATenstein-LS configurations differ from existing SLS algorithms (except for SATenstein[FAC], whose configuration 
and performance is similar to SAPS). This underscores the importance of an automated approach, since manually finding 
such good configurations from a huge design space is very difficult.

5.5. Augmenting SATenstein-LS

We now demonstrate that SATenstein-LS can be extended with strategies found in newer SLS-based SAT solvers 
and present results for an augmented version of SATenstein-LS (dubbed SATenstein-LS2.0), in which we inte-
grated a Novelty variant found in the recent high-performance SAT algorithm, Sattime [51]. In addition to Sattime, 
we considered two additional solvers, Sparrow [5] and Captain Jack [72], for performance comparisons. We chose
Sparrow, because we were curious to explore how SATenstein-LS compares with a more recent high-performance 
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Table 11
Integer parameters of SATenstein-LS and the values considered during ParamILS tuning. Multiple “active when” parameters are combined together 
using AND. Existing defaults are highlighted in bold. For parameters first introduced in SATenstein-LS, default values are underlined.

Parameter Active when Description Values considered

tabuLength performTabuSearch = 1 Specifies tabu step-length 1, 3, 5, 7, 10, 15, 20
phi useAdaptiveMechanism = 1 Parameter for adaptively setting noise 3, 4, 5, 6, 7, 8, 9, 10

singleClauseAsNeighbor = 1
theta useAdaptiveMechanism = 1 Parameter for adaptively setting noise 3, 4, 5, 6, 7, 8, 9, 10

singleClauseAsNeighbor = 1
promPhi usePromisingList = 1 Parameter for adaptively setting noise 3, 4, 5, 6, 7, 8, 9, 10

adaptiveProm = 1
selectPromVariable ∈ {7,8,9,10,11}

promTheta usePromisingList = 1 Parameter for adaptively setting noise 3, 4, 5, 6, 7, 8, 9, 10
adaptiveProm = {1}
selectPromVariable ∈ {7,8,9,10,11}

maxinc singleClauseAsNeighbor = 0 PAWS [71] parameter for 5, 10, 15, 20
useClausePenalty = 1 additive clause weighting
smoothingScheme = 2

SLS-based SAT solver some of whose components are not present in SATenstein-LS’s design space. Captain Jack is 
another high-performance SLS-based SAT solver with several components not included in SATenstein-LS. Furthermore, 
like SATenstein-LS, Captain Jack was conceived as a highly parameterized SAT solver that draws inspiration from 
multiple algorithms; however, its design space is smaller and more limited conceptually than that of SATenstein-LS, 
which unifies a broader range of local search techniques and mechanisms.

Tompkins et al. [72] described nine configurations of Captain Jack, optimized for different sets of SAT instances. In 
light of limited computational resources, since it was unclear which of these would perform best on any of our instance 
distributions, we first performed a single run of each of these configurations for all instances in each of our benchmark 
sets. Next, we performed 24 additional runs per instance using the configuration with the best PAR-10 score (ties were 
broken randomly), resulting in 25 independent runs per instance for that configuration. The implementations of Sparrow
and Sattime used in our experiments were those submitted to the 2011 SAT Competition 2011.

Table 10 compares the performance of SATenstein-LS2.0 on our six benchmark distributions. Detailed descrip-
tions of the six SATenstein-LS2.0 solvers can be found in Appendix E. We use the same notation as Tompkins 
et al. [72] for the Captain Jack configuration optimized for each distribution. On all distributions, in terms of PAR-10 
score, SATenstein-LS2.0 outperformed both Sparrow and Sattime. However, although slightly inferior in terms of 
median-of-median runtime, Captain Jack outperformed SATenstein-LS2.0 on CBMC(SE) in terms of PAR-10 score. 
This result is not too surprising, since Captain Jack draws components from VE-Sampler [73], which, at the time it 
was introduced, represented a substantial improvement in the state of the art for local search techniques on these kinds of 
instances. In future work, SATenstein-LS2.0 could be further augmented with these components, and thus very likely 
achieve even better performance.

Overall, our results clearly indicate that SATenstein-LS can be augmented with components from more recent SLS-
based SAT solvers, and doing so achieves performance comparing favorably even with newer high-performance algorithms.

6. Conclusions and future work

We have proposed a new approach for designing heuristic algorithms based on (1) a framework that can flexibly com-
bine components drawn from existing high-performance solvers, and (2) a powerful algorithm configuration procedure for 
finding instantiations that perform well on given sets of instances. We have demonstrated the effectiveness of our approach 
by automatically constructing high-performance stochastic local search solvers for SAT. We have shown that these auto-
matically constructed SAT solvers outperform existing state-of-the-art solvers with manually and automatically optimized 
configurations on a range of widely studied distributions of SAT instances.

Our original inspiration comes from Mary Shelley’s classic novel, Frankenstein. One important methodological differ-
ence is that we use automated methods for selecting components for our monster instead of picking them by hand. The 
outcomes are quite different. Unlike the tragic figure of Dr. Frankenstein, whose monstrous creature haunted him enough 
to quench forever his ambitions to create a ‘perfect’ human, we feel encouraged to unleash not only our new solvers, 
but also the full power of our automated solver-building process onto other classes of SAT benchmarks. Like Dr. Franken-
stein, we find our creations somewhat monstrous, recognizing that the SATenstein solvers do not always represent the 
most elegant designs. Thus, desirable lines of future work include techniques for understanding the importance of different 
parameters to achieving strong performance on a given benchmark; the extension of our solver framework with prepro-
cessors; and the investigation of algorithm configuration procedures other than ParamILS in the context of our approach. 
Encouraged by the results achieved on SLS algorithms for SAT, we believe that the general approach behind SATenstein-
LS is equally applicable to non-SLS-based solvers and to other combinatorial problems. Finally, we encourage members 
of the SAT community to apply SATenstein-LS to their own instance distributions, and to extend SATenstein-LS
with their own heuristics. Source code and documentation for our SATenstein-LS framework are freely available at 
http :/ /www.cs .ubc .ca /labs /beta /Projects /SATenstein.

http://www.cs.ubc.ca/labs/beta/Projects/SATenstein
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Table 12
Categorical parameters of SATenstein-LS. Unless otherwise mentioned, multiple “active when” parameters are combined together using AND.

Parameter Active when Domain Description

performSearchDiversification Base level parameter {0,1} If true, block B1 is performed
usePromisingList Base level parameter {0,1} If true, block B2 is performed
singleClauseAsNeighbor Base level parameter {0,1} If true, block B3 is performed

else, block B4 is performed
selectPromVariable usePromisingList = 1 {1, 11} See Table 1
heuristic singleClauseAsNeighbor = 1 {1, 13} See Table 3
performAlternateNovelty singleClauseAsNeighbor = 1 {0,1} If true, performs Novelty

variant with “flat move”.
useAdaptiveMechanism Base level parameter {0,1} If true, uses adaptive mechanisms.
adaptivenoisescheme useAdaptiveMechanism = 1 {1,2} Specifies adaptive noise mechanisms.

usePromisingList = 1
adaptWalkProb useAdaptiveMechanism = 1 {0,1} If true, walk probability or diversification

probability of a heuristic is adaptively
tuned.

performTabuSearch Base level parameter {0,1} If true, tabu variables are
not considered for flipping.

useClausePenalty Base level parameter {0,1} If true, clause penalties are computed.
selectClause singleClauseAsNeighbor = 1 {1,2} 1 selects an UNSAT clause uniformly

at random.
2 selects an UNSAT clause with a
probability proportional to its
clause penalty.

searchDiversificationStrategy performSearchDiversification = 1 {1,2,3,4} 1 randomly selects a variable from an
UNSAT clause.
2 selects the least-recently-flipped
-variable from an UNSAT clause.
3 selects the least-frequently-flipped
variable from an UNSAT clause.
4 selects the variable with least
VW2 weight from an UNSAT clause.

adaptiveProm usePromisingList = 1 {0,1} If true, performs adaptive versions of
Novelty variants to select variable
from promising list.

adaptpromwalkprob usePromisingList = 1 {0,1} If true, walk probability or diversification
adaptiveProm = 1 probability of Novelty variants used

on promising list is adaptively tuned.
scoringMeasure usePromisingList = 0 {1,2,3} Specifies the scoring measure.

singleClauseAsNeighbor = 0 1 uses MakeCount - BreakCount
2 uses MakeCount
3 uses -BreakCount

tieBreaking usePromisingList = 1 {1,2,3,4} 1 breaks ties randomly.
selectPromVariable ∈ { 1,4,5 } 2 breaks ties in favor of the
or singleClauseAsNeighbor = 0 least-recently-flipped variable.

3 breaks tie in favor of the
least-frequently-flipped variable.
4 breaks tie in favor of the
variable with least VW2 score.

updateSchemePromList usePromisingList = 1 {1,2,3} 1 and 2 follow G2WSAT.
3 follows gNovelty+.

smoothingScheme useClausePenalty = 1 {1,2} When singleClauseAsNeighbor = 1 :
1 performs smoothing for only random
3-SAT instances with 0.4 fixed
smoothing probability.
2 performs smoothing for all instances.
When singleClauseAsNeighbor = 0 :
1 performs SAPS-like smoothing.
2 performs PAWS-like smoothing.

Appendix A. Definitions

Definition 1. Promising Decreasing Variable: A variable x is said to be decreasing with respect to an assignment A if its 
GSAT-score is positive, i.e., if flipping it causes a net decrease in the number of unsatisfied clauses. A promising decreasing 
variable is defined as follows:

1. For the initial random assignment A, all decreasing variables with respect to A are promising.
2. Let x and y be two different variables where x is not decreasing with respect to A. If, after y is flipped, x becomes 

decreasing with respect to the new assignment A’, then x is a promising decreasing variable with respect to A’.
3. As long as a promising decreasing variable is decreasing, it remains promising with respect to subsequent assignments in 

local search.
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Table 13
Continuous parameters of SATenstein-LS and values considered during ParamILS tuning. Unless otherwise mentioned, multiple “active when” param-
eters are combined together using AND. Existing defaults are highlighted in bold. For parameters first introduced in SATenstein-LS, default values are 
underlined.

Parameter Active when Description Discrete values considered

wp singleClauseAsNeighbor = 1 Randomwalk probability for Novelty+ 0, 0.01, 0.03, 0.04, 0.05, 0.06, 0.07,
heuristic ∈ {2,6,11} 0.1, 0.15, 0.20
useAdaptiveMechanism = 0
or smoothingScheme = 1
singleClauseAsNeighbor = 0
useClausePenalty = 0

dp singleClauseAsNeighbor = 1 Diversification probability for Novelty++ 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.20
heuristic ∈ {3,4,12,13} and Novelty++′
useAdaptiveMechanism = 0

promDp usePromisingList = 1 Diversification probability for Novelty 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.20
selectPromVariable ∈ {8,10} variants used to select variable from
adaptiveProm = 0 promising list

novNoise singleClauseAsNeighbor = 1 Noise parameter for all Novelty variants 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.20
heuristic ∈ {1,2,3,4,5,6,10,11,12,13}
useAdaptiveMechanism = 0

wpWalk singleClauseAsNeighbor = 1 Noise parameter for WalkSAT and VW1 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
heuristic ∈ {7,8,9}
useAdaptiveMechanism = 0

promWp usePromisingList = 1 Randomwalk probability for Novelty 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.20
selectPromVariable ∈ {9,11} variants used to select variable

from promising list
promNovNoise usePromisingList = 1 Noise parameter for all Novelty 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

selectPromVariable ∈ 7,8,9,10,11 variants used to select variable
from promising list

alpha singleClauseAsNeighbor = 0 Parameter for SAPS 1.01, 1.066, 1.126, 1.189, 1.3, 1.256,
useClausePenalty = 1 1.326, 1.4
smoothingScheme = 1

rho singleClauseAsNeighbor = 0 Parameter for SAPS 0, 0.17, 0.333, 0.5, 0.666, 0.8, 0.83, 1
useClausePenalty = 1
smoothingScheme = 1

sapsthresh singleClauseAsNeighbor = 0 Parameter for SAPS −0.1, -0.2, -0.3, -0.4
useClausePenalty = 1
smoothingScheme = 1

ps useClausePenalty = 1 Smoothing parameter for SAPS, RSAPS, 0, 0.033, 0.05, 0.066, 0.1, 0.133, 0.166,
singleClauseAsNeighbor = 1 and gNovelty+ 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
or singleClauseAsNeighbor = 0
useClausePenalty = 1
useAdaptiveMechanism = 0
smoothingScheme = 1

s singleClauseAsNeighbor = 1 VW parameter for smoothing 0.1, 0.01, 0.001
useAdaptiveMechanism = 0
or singleClauseAsNeighbor = 0
tieBreaking = 4
useAdaptiveMechanism = 0

c singleClauseAsNeighbor = 1 VW parameter for smoothing 0.1, 0.01, 0.001, 0.0001, 0.00001,
useAdaptiveMechanism = 0 0.000001
or singleClauseAsNeighbor = 0
tieBreaking = 4
useAdaptiveMechanism = 0

rdp performSearchDiversification = 1 Parameter for search diversification 0.01, 0.03, 0.05, 0.07, 0.1, 0.15
searchDiversificationStrategy ∈ {2,3}

rfp performSearchDiversification = 1 Parameter for search diversification 0.01, 0.03, 0.05, 0.07, 0.1, 0.15
searchDiversificationStrategy = 4

rwp performSearchDiversification = 1 Parameter for search diversification 0.01, 0.03, 0.05, 0.07, 0.1, 0.15
searchDiversificationStrategy = 1

pflat singleClauseAsNeighbor = 0 Parameter for PAWS that controls 0.05, 0.10, 0.15, 0.20
useClausePenalty = 1 “flat-moves”
smoothingScheme = 2

Appendix B. SATenstein-LS parameters

This section lists all SATenstein-LS parameters along with a short description on each parameter’s function, when 
it is active, and the values we considered for our tuning experiments. Tables 11, 12, 13 list the integer, categorical and 
continuous parameters of SATenstein-LS, respectively.

Appendix C. Per-instance performance comparison with challengers

Table 14 summarizes the performance of each SATenstein-LS solver compared to each challenger on a per-instance 
basis and shows that SATenstein-LS’s superior aggregate performance over challengers is not a result of better perfor-
mance on few harder instances and worse or equal performance on the rest. Except for R3SAT, SATenstein-LS solvers 
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Table 14
Percentage of instances on which SATenstein-LS achieved better (equal) median runtime than each of the 11 challengers. Medians were taken over 25 
runs on each instance with a cutoff time of 600 CPU seconds per run.

Challengers QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

AG20 76.1 (23.3) 95.8 (4.2) 45.6 (17.6) 98.0 (1.5) 100.0 (0.0) 100.0 (0.0)
AG2p 70.6 (28.6) 88.9 (10.7) 47.6 (15.2) 98.2 (1.1) 100.0 (0.0) 100.0 (0.0)
AG2+ 75.4 (24.1) 94.3 (5.7) 61.6(12.4) 98.5 (1.1) 100.0 (0.0) 100.0 (0.0)
ANOV 57.7 (40.4) 68.5 (27.2) 57.2 (8.0) 97.6 (1.3) 99.9 (0.0) 100.0 (0.0)
G2 81.4 (18.6) 100.0 (0.0) 34.0 (15.2) 98.0 (1.4) 100.0 (0.0) 100.0 (0.0)
GNOV 97.5 (2.4) 99.6 (0.4) 48.8 (16.4) 99.4 (0.4) 100.0 (0.0) 100.0 (0.0)
PAWS 69.0 (30.1) 100.0 (0.0) 19.6 (3.2) 100.0 (0.0) 68.8 (0.0) 100.0 (0.0)
RANOV 100.0 (0.0) 100.0 (0.0) 99.2 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
RSAPS 71.5 (28.0) 99.8 (0.2) 96.8 (3.2) 100.0 (0.0) 81.1 (0.0) 42.2 (54.5)
SAPS 70.9 (28.5) 100.0 (0.0) 96.8 (2.4) 100.0 (0.0) 73.7 (0.2) 48.8 (48.5)
VW 85.3 (14.7) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)

Table 15
Performance summary of the automatically configured versions of 8 challengers (three challengers have no parameters). Every algorithm was run 25 times 
on each problem instance with a cutoff of 600 CPU seconds per run. Each cell 〈i, j〉 summarizes the test-set performance of algorithm i on distribution j
as a/b/c, where a (top) is the penalized average runtime; b (middle) is the median of the median runtimes over all instances (not defined if fewer than 
half of the median runs failed to find a solution within the cutoff time); c (bottom) is the percentage of instances solved (i.e., having median runtime <
cutoff). The best-scoring algorithm(s) in each column are indicated in bold.

Solvers QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

26.13 0.06 2.68 119.75 1731.16 994.94
ANOV[D] 0.02 0.04 0.12 0.54 296.84 0.50
[33] 99.6% 100% 100% 98.2% 90.1% 83.4%

514.29 0.05 3.64 98.70 617.83 1084.60
G2[D] 0.03 0.05 0.15 0.75 110.42 0.58
[50] 91.4% 100% 100% 99.1% 97.8% 81.4%

417.33 0.22 8.87 68.24 5478.75 2195.76
GNOV[D] 0.03 0.09 0.17 0.62 N/A 0.19
[62] 92.9% 100% 100% 99.4% 0.3% 61.8%

68.06 0.70 1.91 64.48 22.01 1925.56
PAWS[D] 0.02 0.35 0.09 0.83 10.39 0.50
[71] 99.2% 100% 100% 99.4% 100% 67.7%

75.06 0.15 13.85 141.61 336.27 1223.83
RANOV[D] 0.1 0.12 0.24 0.77 95.53 0.47
[61] 98.9% 100% 100% 98.1% 100% 80.4%

868.37 0.19 1.32 42.99 12.17 67.59
RSAPS[D] 0.04 0.15 0.11 0.64 7.86 0.02
[42] 85.2% 100% 100% 99.5% 100% 99.0%

27.69 0.31 1.54 31.77 10.68 62.63
SAPS[D] 0.06 0.21 0.16 0.75 7.00 0.02
[42] 99.8% 100% 100% 99.6% 100% 99.0%

0.33 417.71 1.26 57.44 32.38 16.45
VW[D] 0.02 8.43 0.15 1.00 17.60 0.02
[64] 100% 94.8% 100% 99.6% 100% 100%

outperformed the respective best challengers for each distribution on a per-instance basis. R3SAT was an exception: PAWS
outperformed SATenstein-LS[R3SAT] most frequently (77.2%), but still achieved a lower PAR-10 score, indicating that
SATenstein-LS[R3SAT] achieved dramatically better performance than PAWS on a relatively small number of hard 
instances.

Appendix D. Performance comparison with configured challengers

Table 15 summarizes the performance of configured challengers, and Fig. 2 shows the PAR-10 ratios of SATenstein-LS
solvers over the default and configured challengers. Compared to challengers with default configurations (see Table 7), 
the specifically optimized versions of the challenger solvers often achieved significantly better performance, reducing their 
performance gaps to SATenstein-LS solvers. For example, automatic configuration of G2 led to a speedup of 5 orders 
of magnitude in terms of PAR-10 on SWGCP and solved 100% of the instances in that benchmark set within a 600 second 
cutoff (vs. 31% for G2 default). However, it is worth noting that the configured challengers sometimes also exhibited worse 
performance than the default configurations (in the worst case, VW[SWGCP] was 2.58 times slower than VW default in 
terms of PAR-10 with a cutoff of 600 CPU seconds). This was caused by the short cutoff time used during the configuration 
process, as motivated in Section 5.2; had we used the same 5 CPU second cutoff time for computing PAR-10 (recall that 



38 A.R. KhudaBukhsh et al. / Artificial Intelligence 232 (2016) 20–42
Fig. 2. Performance of SATenstein-LS solvers vs challengers with default and optimized configurations. For every benchmark distribution D, the base-10 
logarithm of the ratio between SATenstein[D] and one challenger (default and optimized) is shown on the y-axis, based on data from Tables 7 and 15. 
Top-left: QCP; Top-right: SWGCP; Middle-left: R3SAT; Middle-right: HGEN; Bottom-left: FAC; Bottom-right: CBMC(SE).

we used a cutoff time of 5 CPU seconds for every ParamILS tuning experiment, and we always computed the PAR-10 of the 
test performance based on a cutoff of 600 CPU seconds), the configured challengers would have always outperformed the 
default versions.

Examining benchmark distributions individually and ranging over our 8 challengers, we observed average and median 
speedups over default configurations of 396 and 3.58 (for QCP), 15 900 and 3240 (for SWGCP), 5.84 and 2.74 (for R3SAT), 
1.23 and 1.01 (HGEN), 15.4 and 1.61 (FAC), 6.61 and 2.00 (CBMC(SE)). We were surprised to observe only small speedups 
for all challengers on HGEN. Considering challengers individually and ranging over our 6 benchmark distributions, average 
and median PAR-10 improvement was 15.0 and 1.85 (for ANOV), 13 200 and 3.84 (for G2), 1.74 and 1.05 (for GNOV), 1070 
and 0.98 (for PAWS), 1.33 and 1.03 (for RANOV), 4870 and 6.85 (for RSAPS), 2080 and 12.3 (for SAPS), 539 and 16.6 (for
VW). RANOV showed the smallest performance improvement as a result of automated configuration across all benchmarks; 
this is likely due to RANOV’s small parameter space (it has only one parameter).

Appendix E. SATenstein-LS parameter configurations found

Tables 16 and 17 present the SATenstein-LS and SATenstein-LS2.0 parameter configurations found for each dis-
tribution considered in this paper; we omit inactive parameters. In what follows, we describe these parameter configurations 
in detail.
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Table 16
SATenstein-LS parameter configuration found for each distribution.

Distribution Parameter configuration

-useAdaptiveMechanism 0 -performSearchDiversification 1 -usePromisingList 0
QCP -singleClauseAsNeighbor 1 -adaptWalkProb 0 -selectClause 1 -useClausePenalty 0

-performTabuSearch 0 -heuristic 4 -performAlternateNovelty 0 -searchDiversificationStrategy 3
-dp 0.07 -c 0.0001 -novNoise 0.5 -rfp 0.1 -s 0.1

-useAdaptiveMechanism 0 -performSearchDiversification 0 -usePromisingList 0
-singleClauseAsNeighbor 1 -adaptWalkProb 0 -selectClause 1 -useClausePenalty 0

SW-GCP -performTabuSearch 0 -heuristic 3 -performAlternateNovelty 0
-dp 0.01 -c 0.01 -novNoise 0.1 -s 0.1

-useAdaptiveMechanism 0 -performSearchDiversification 1 -singleClauseAsNeighbor 0
R3SAT -scoringMeasure 3 -tieBreaking 2 -useClausePenalty 1 -searchDiversificationStrategy 1

-smoothingScheme 1 -tabuLength 3 -performTabuSearch 1
-alpha 1.189 -ps 0.1 -rho 0.8 -sapsthresh -0.1 -rwp 0.05 -wp 0.01

-useAdaptiveMechanism 0 -performSearchDiversification 1 -usePromisingList 0
-singleClauseAsNeighbor 1 -tabuLength 3 -performTabuSearch 1

HGEN -useClausePenalty 0 -searchDiversificationStrategy 4
-adaptWalkProb 0 -selectClause 1 -heuristic 7
-c 0.001 -rfp 0.15 -s 0.1 -wpWalk 0.1

-useAdaptiveMechanism 0 -performSearchDiversification 0 -singleClauseAsNeighbor 0
FAC -scoringMeasure 3 -tieBreaking 1 -useClausePenalty 1 -smoothingScheme 1 -tabuSearch 0

-alpha 1.189 -ps 0.066 -rho 0.83 -sapsthresh -0.3 -wp 0.03

-useAdaptiveMechanism 0 -performSearchDiversification 1 -singleClauseAsNeighbor 0
-useClausePenalty 1 -smoothingScheme 1 -performTabuSearch 0 -searchDiversificationStrategy 4

CBMC(SE) -scoringMeasure 3 -tieBreaking 2 -alpha 1.066 -ps 0 -rho 0.83 -sapsthresh -0.3 -wp 0.01 -rfp 0.1

Table 17
SATenstein-LS2.0 parameter configuration found for each distribution.

Distribution Parameter configuration

-useAdaptiveMechanism 0 -performSearchDiversification 1 -singleClauseAsNeighbor 1 -usePromisingList 0
QCP -selectClause 1 -useClausePenalty 0 -searchDiversificationStrategy 3 -performTabuSearch 0

-heuristic 5 -novNoise 0.3 -rfp 0.07

-useAdaptiveMechanism 0 -performSearchDiversification 1 -singleClauseAsNeighbor 1 -usePromisingList 0
SW-GCP -searchDiversificationStrategy 2 -selectClause 1 -useClausePenalty 0 -performTabuSearch 0

-heuristic 1 -performAlternateNovelty 0 -rdp 0.01 -novNoise 0.1

-useAdaptiveMechanism 1 -performSearchDiversification 0 -singleClauseAsNeighbor 0 usePromisingList 0
R3SAT -scoringMeasure 3 -tieBreaking 1 -useClausePenalty 1 -smoothingScheme 1 -performTabuSearch 0

-alpha 1.126 -rho 0.17 -sapsthresh -0.1 -wp 0.03

-useAdaptiveMechanism 0 -performSearchDiversification 1 -singleClauseAsNeighbor 1 -usePromisingList 0
HGEN -performTabuSearch 1 -tabuLength 3 -useClausePenalty 0 -searchDiversificationStrategy 2

-selectClause 1 -heuristic 7 -rdp 0.07 -wpWalk 0.1

-useAdaptiveMechanism 0 -performSearchDiversification 0 -singleClauseAsNeighbor 0 -usePromisingList 0
FAC -scoringMeasure 3 -tieBreaking 3 -useClausePenalty 1 -smoothingScheme 1 performTabuSearch 0

-alpha 1.126 -ps 0.033 -rho 0.8 -sapsthresh -0.1 -wp 0.04

-useAdaptiveMechanism 0 -performSearchDiversification 0 -singleClauseAsNeighbor 1 usePromisingList 0
CBMC(SE) -useClausePenalty 0 -performTabuSearch 0 -selectClause 1

-heuristic 8 -c 0.0001 s -0.001 -wpwalk 0.1

SATenstein-LS2.0[QCP] uses building blocks 1, 2, and 5. Recall that block 1 is used for performing search diversi-
fication, and block 5 is used to update data structures, tabu attributes and clause penalties. In block 2, which is used to in-
stantiate a solver belonging to the WalkSAT architecture, the heuristic is based on R-Novelty, and in block 1, diversification
flips the least-frequently-flipped variable from an UNSAT clause. This configuration is the same as SATenstein-LS[QCP]
at the block level but differs in the employed heuristic and search diversification strategy. SATenstein-LS2.0[SW-
GCP] is similar to SATenstein-LS2.0[QCP], but flips the least-recently-flipped variable in block 1 and uses a different 
heuristic (Novelty). Among the challengers, SATenstein-LS2.0[SW-GCP] is closest to RANOV. The main difference to
SATenstein-LS[SW-GCP] is that SATenstein-LS[SW-GCP] did not use block 1. Unlike SATenstein-LS[R3SAT],
SATenstein-LS2.0[R3SAT] does not use any search diversification and only uses blocks 3 (used to instantiate dynamic 
local search algorithms) and 5, but both configurations are closest to SAPS. SATenstein-LS2.0[HGEN] uses blocks 1, 
2, and 5. It is similar to SATenstein-LS2.0[QCP] but uses a heuristic based on VW1 as well as a tabu list of length 
3 and mainly differs from SATenstein-LS[HGEN] in the search diversification strategy. SATenstein-LS2.0[FAC]
is also very similar to SATenstein-LS[FAC] with a different tie-breaking scheme. SATenstein-LS2.0[CBMC(SE)]
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uses blocks 2, and 5 and is closest to VW, a WalkSAT algorithm. This configuration is very different from what we found in
SATenstein-LS[CBMC(SE)], which is a dynamic local search algorithm.

To summarize, we found that in most cases, the augmented solver found configurations that were similar but not identi-
cal to their SATenstein-LS counterparts. This indicates that the distributions we studied give rise to local search design 
spaces having “good regions” in which multiple, related configurations can perform well. The key exception was the case 
of CBMC(SE): here, we observed a substantial difference between the augmented solver configuration and SATenstein-
LS[CBMC(SE)], underscoring the richness of the design space.
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