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ABSTRACT
We benchmark a sequential model-based optimization procedure,
SMAC-BBOB, on the BBOB set of blackbox functions. We demon-
strate that with a small budget of 10×D evaluations ofD-dimensional
functions, SMAC-BBOB in most cases outperforms the state-of-
the-art blackbox optimizer CMA-ES. However, CMA-ES benefits
more from growing the budget to 100×D, and for larger number of
function evaluations SMAC-BBOB also requires increasingly large
computational resources for building and using its models.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—global optimization,
unconstrained optimization; F.2.1 [Analysis of Algorithms and
Problem Complexity]: Numerical Algorithms and Problems

General Terms
Algorithms

Keywords
Benchmarking, Black-box optimization

1. INTRODUCTION
This paper discusses results obtained by applying the sequential

model-based algorithm configuration procedure SMAC [7] to stan-
dard blackbox function optimization problems. We first describe the
general SMAC procedure and the particular variant, SMAC-BBOB,
used here. Then, we evaluate SMAC-BBOB empirically.

2. SMAC AND SMAC-BBOB
SMAC has been designed to target blackbox functions that arise

in the optimization of algorithm parameters. Formally, the algorithm
configuration (AC) problem solved by SMAC can be stated as fol-
lows. We are given a parameterized algorithm A with configuration
space Θ, a distribution D of problem instances, and a performance
metric m(θ, π) capturing A’s performance with parameter settings
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θ ∈ Θ on instances π ∼ D. Let f(θ) = Eπ∼D[m(θ, π)] de-
note the expected performance of A given parameter setting θ ∈ Θ
(where the expectation is over instances π drawn fromD; in the case
of randomized algorithms, it would also be over random seeds). The
problem is then to find a parameter setting θ of A that minimizes
f(θ).

SMAC is rooted in the statistics literature on sequential model-
based optimization (SMBO) of expensive functions [13, 12]. To
minimize functions f : Θ 7→ R that do not have closed-form repre-
sentations, are costly to evaluate, and do not allow the computation
of gradients, SMBO first gathers initial data and then iterates over
the following steps:

1. based on the data collected thus far, construct a model that
predicts a probability distribution for f ’s value at arbitrary
points θ ∈ Θ;

2. use the model to quantify the desirability d(θ) of learning
f(θ) for each θ ∈ Θ and to select θ ∈ arg maxθ∈Θ d(θ);
and

3. evaluate f(θ), resulting in a new data point 〈θ, f(θ)〉.

The desirability function d serves to address the exploration/exploitation
tradeoff between learning about new, unknown parts of the parame-
ter space and intensifying the search locally in the best known re-
gion. SMAC uses a classic desirability function that evaluates each
configuration θ by its expected positive improvement E[I(θ)] =
E[max{0, fmin − f(θ)}] over the lowest function value fmin seen
so far, where the expectation is taken with respect to model pre-
dictions and can be computed in closed form given a model with
Gaussian predictive distributionN (µθ, σ

2
θ) (see, e.g., [12] for the

exact formula).
In developing SMAC, we have extended existing SMBO ap-

proaches in various ways in order to obtain a procedure that is appli-
cable to the practical problem of algorithm configuration. Specifi-
cally, we developed mechanisms for handling
• discrete and conditional parameter spaces [7] (allowing for

the optimization of categorical algorithm parameters and pa-
rameters among which dependencies exist);

• substantial, non-Gaussian noise [8] (due to variance in the
distribution of algorithm runtime over problem instances and
multiple independent runs on the same instance);

• partially censored function evaluations [6] (due to prematurely
terminated algorithm runs);

• a budget on the total time available for algorithm configura-
tion, rather than on the number of function evaluations [9];
and
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• distributed optimization on computer clusters [5].

While crucial for effectively tackling algorithm configuration
problems, none of these features is relevant to the task of optimiz-
ing deterministic, continuous, sequential blackbox functions that
is the subject of this study. We therefore modified SMAC in two
ways, resulting in a version we call SMAC-BBOB. Firstly, by de-
fault, SMAC uses random forest (RF) models instead of the more
commonly-used Gaussian process (GP) models, because RF models
improve performance in discrete optimization and can be relatively
easily adapted to accommodate censored data and conditional param-
eters. SMAC-BBOB uses GP models instead, since these have been
found to perform better for continuous optimization problems [9].
Secondly, in its default variant, SMAC uses a relatively inexpensive
multi-start local search procedure in order to optimize E[I(θ)] over
θ ∈ Θ. The blackbox functions tackled here are assumed to be
expensive compared to the time required by the subsidiary optimiza-
tion procedure. Therefore, in addition to SMAC’s local search, for
each EI optimization, SMAC-BBOB also executes one run of DI-
RECT [11] (with a budget of 10×D evaluations ofE[I(θ)]) and 10
runs of CMA-ES [4] (each using 100×D evaluations of E[I(θ));
we note that these subsidiary EI optimization runs only use (cheap)
model evaluations rather than evaluations of the (expensive) black-
box function to be optimized. After performing these subsidiary EI
optimization runs, SMAC-BBOB queries the expensive function at
the resulting configuration θ with highest E[I(θ)].1

We note that the resulting SMAC-BBOB variant resembles the
classic SMBO method EGO (“efficient global optimization” [12]).
This is not surprising, since EGO was the original starting point
for SMAC’s development, and for the SMAC-BBOB variant we
removed several of SMAC’s new components. Nevertheless, some
differences remain; we discuss and evaluate these in Section 3.2.

3. EXPERIMENTAL ANALYSIS
We now turn to our empirical assessment of SMAC-BBOB. Our

software and the data underlying the experiments reported here is
available online at http://www.cs.ubc.ca/labs/beta/Projects/SMAC/.

3.1 Experimental Setup
We carried out experiments following [2] on the BBOB bench-

mark functions given in [1, 3]. Our experiments use a budget be-
tween 10×D and 100×D function evaluations, where D is the
dimensionality of the given function. The functions are assumed
to be expensive enough to impose such a limit and to completely
dominate the running time of the procedures studied here. The ex-
pected running time (ERT), used in the figures and table, depends
on a given target function value, ft = fopt + ∆f . It is computed
across all runs of an optimizer on a function, as the total number
of function evaluations before reaching ft divided by the number
of trials that actually reached ft [2, 14]. We use a rank-sum test to
assess statistical significance of differences in performance for a
given target ∆ft; here, the performance for each trial is computed
as either the number of function evaluations needed to reach ∆ft
(inverted and multiplied by −1), or, if the target was not reached,
the best ∆f -value achieved, measured only up to the smallest num-
ber of overall function evaluations for any unsuccessful trial under
consideration.

1We regularly observed cases in which the best EI result was found
by any of the subsidiary optimizers: SMAC’s local search, DIRECT
or CMA-ES. We used only 10×D evaluations for DIRECT, since
its internal computations were a bottleneck for high dimensions.

3.2 Assessing Different SMAC Versions
We first performed preliminary experiments with several variants

of SMAC, using a budget of 10×D function evaluations to assess
the impact of an initial design and the type of response surface model
used. We assessed the impact of four different design decisions:

• Choice of model: random forest (RF) vs. Gaussian pro-
cess (GP). We found that for the all-continuous inputs to be
optimized here, RF models were suboptimal, due to their poor
extrapolation and uncertainty estimates. They performed par-
ticularly poorly for the (simple) case of optimizing the linear
function f5: SMAC based on RFs only reached an error of
10−8 in 1/15 runs for D = 5 (as compared to 15/15 runs
when based on GPs).

• Noise-free vs. noisy kernel. In our experiments, it was quite
detrimental to allow additive observation noise in the GP
kernel; using this noise, the GP often produced response
surfaces much smoother than the real function. This could
potentially be remedied by using a kernel that better captures
the typical characteristics of the BBOB functions. As one
step in this direction, we used a Matern kernel, which is
less smooth than the standard squared exponential kernel and
yielded somewhat better results.

• Isotropic vs. Automatic Relevance Detection (ARD) ker-
nel. Kernels with different length scales for each dimension
(so-called automatic relevance detection (ARD) kernels [15])
consistently scaled worse with increasing dimensionality D
than isotropic kernels. We attribute this to over-fitting in the
hyperparameter optimization of the O(D) kernel parameters
based on very sparse data.

• Initial design. In our experiments, using an initial design did
not improve SMAC’s final result but (of course) decreased
initial performance.

Based on these results, we defined SMAC-BBOB as using a GP
with a noise-free isotropic Matern kernel and no initial design. In
contrast, the classic EGO algorithm [12] uses different length scales
for each dimension and optimizes them via maximum likelihood;
our experiments indicate that SMAC-BBOB’s isotropic Matern ker-
nel performs substantially better in high dimensions. The second
difference to EGO lies in the initial design, for which EGO uses
10×D function evaluations. As our experiments in the following
sections will show, compared to other methods, SMAC-BBOB per-
formed particularly well for small function evaluation budgets up to
10×D, precisely the range in which EGO still evaluates its initial
design.

3.3 Comparison against CMA-ES
We now compare SMAC-BBOB to the state-of-the-art blackbox

optimization method CMA-ES [4]. Following the advice of Niko-
laus Hansen, we used the publicly available Matlab implementation
3.61 and enabled the option active CMA [10].

At a high level, Figures 1–3 demonstrate that, for a small bud-
get of 10×D function evaluations, SMAC-BBOB performed better
than CMA-ES in many cases, but that CMA-ES caught up for a
larger budget of 100×D function evaluations. Note that Figures 1
and 2 show data for a budget of only 10×D function evaluations,
since SMAC-BBOB targets the case of very expensive function
evaluations.2

2Equivalent plots for 100×D function evaluations can be generated
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Figure 1 shows the ERTs of SMAC-BBOB and CMA-ES for a
given target function value in six different dimensions. With the
small budget of 10×D function evaluations, for 13/24 functions
SMAC performed significantly better than CMA-ES for at least
one of the six dimensions tested; improvements were particularly
significant for functions 5 (linear slope), 6 (attractive sector), 7
(step-ellipsoid), 11 (discuss), and 13 (sharp ridge). The figure also
shows that SMAC-BBOB’s and CMA-ES’s ERTs tended to scale
quite similarly with dimensionality: often roughly constant with
the best GECCO 2009 data point. The same experiment based on
100×D function evaluations (results not shown here, for lack of
space) showed CMA-ES to catch up: it performed better on 8/24
functions, SMAC performed better on 7/24.

Figure 2 compares the ERTs of SMAC-BBOB and CMA-ES for
many different target function values in six different dimensions. As
the figure shows, for the small budget of 10×D function evaluations,
SMAC-BBOB often outperformed CMA-ES, and in some cases (f1,
f5–f11, f13, f16, f20, and f21) also scaled better to finding excellent
target function values. In contrast, when considering a larger budget
of 100×D function evaluations (results not shown here, for lack
of space), CMA-ES typically was more competitive for finding
excellent target function values.

Figure 3 shows run-length distributions for SMAC-BBOB and
CMA-ES forD = 5 andD = 20, aggregating over various families
of functions. It also gives distributions of speedups, which show
that, compared to CMA-ES, SMAC-BBOB performed particularly
well for the separable, multimodal, and weakly-structured functions.
Our method performed better for 10×D function evaluations, but
CMA-ES in many cases caught up and overtook SMAC-BBOB
when allowed 100×D function evaluations. The initial speedups
of SMAC-BBOB also tended to be more pronounced for higher
dimensions (compare D = 20 to D = 5).

Overall, from this comparison we conclude that for small bud-
gets of 10×D function evaluations, SMAC-BBOB in many cases
performs better than CMA-ES (particularly for separable, multi-
modal, and weakly-structured functions) and that CMA-ES typi-
cally catches up somewhere between 10×D and 100×D function
evaluations.

3.4 Comparison Against Best BBOB-09 Re-
sults

Table 1 compares SMAC-BBOB’s performance to the best results
from the Blackbox Optimization Benchmarking Workshop 2009
(BBOB-09). The table demonstrates that for small function evalu-
ation budgets, SMAC-BBOB was competitive with, and in some
cases significantly better than, the best results from BBOB-09 (for
2 functions and a combined 3 target values in D = 5; and for 7
functions and a combined 11 target values in D = 20). In several
cases, SMAC-BBOB was very competitive for finding target func-
tion values of moderate quality, but not for finding the very best
ones. One interesting exception is for the multimodal function f22
in D = 20 dimensions, for which SMAC-BBOB’s performance
relative to the best results from BBOB-09 improves as better target
function values are required.

Finally, Figure 4 provides some additional standard plots for
SMAC-BBOB to facilitate comparisons with other blackbox opti-
mizers. As the figure shows, SMAC-BBOB’s performance, mea-
sured as ERT/D to achieve comparable target function values, is
quite similar for D = 5 and D = 20 dimensions.

based on the data we submitted to the BBOB Workshop, but those
plots lack data points for D = 40 for SMAC-BBOB due to limited
computational resources.

3.5 Computational Requirements
While the standard version of SMAC strives to limit the complex-

ity of learning models and using them to select the next query point,
SMAC-BBOB’s design has not been led by such considerations.
It simply targets expensive blackbox functions, whose evaluation
cost dominates the time spent inside SMAC-BBOB. For example,
it does not use approximations of GPs (as we did use in [9]).3 The
complexity of fitting a GP is cubic in the number of data points, and
thus SMAC-BBOB’s per-step complexity grows over time.

Empirically, for small budgets of 10 ×D function evaluations,
SMAC-BBOB required between tens of seconds for d = 2 and about
20 minutes for D = 20. For larger budgets of 100 ×D function
evaluations, SMAC-BBOB required between five minutes for d = 2
and 15–120 hours for D = 20. While, in principle, SMAC-BBOB
can be made more effective using the techniques discussed in [9],
we see its prime use case in the optimization of expensive functions
with very tight budgets on the number of function evaluations.

4. CONCLUSIONS
We introduced and evaluated SMAC-BBOB, a variant of the se-

quential model-based algorithm configuration procedure SMAC
for the standard BBOB set of continuous blackbox optimization
benchmarks. Despite the fact that these deterministic continuous
optimization problems do not benefit from many of the features de-
veloped for SMAC’s primary use in algorithm configuration, SMAC-
BBOB showed very competitive performance for the optimization
of expensive blackbox functions when using up to 10 × D func-
tion evaluations. In particular, in this low-budget setting, it often
outperformed the state-of-the-art blackbox optimization procedure
CMA-ES, and in several cases performed competitively with the best
results from the Blackbox Optimization Benchmarking Workshop
2009 (BBOB-09). It performed particularly well for multi-modal
and weakly structured functions. As the number of function eval-
uations was increased to 100 × D, SMAC-BBOB became more
computationally expensive and also less effective, such that CMA-
ES caught up in performance and overtook SMAC-BBOB in several
cases. We thus see SMAC-BBOB as a competitive method (only)
for the optimization of rather expensive functions.

Finally, we emphasize that SMAC-BBOB’s performance hinges
on the effective and computationally cheap subsidiary optimization
procedures it uses in each search step to decide which function value
to query next. As such, part of its success is due to its subsidiary
optimizers, CMA-ES [4] and DIRECT [11].
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Figure 3: Empirical cumulative distributions (ECDF) of run lengths and speedup ratios in 5-D (left) and 20-D (right). Left sub-
columns: ECDF of the number of function evaluations divided by dimension D (FEvals/D) to reach a target value fopt + ∆f with
∆f = 10k, where k ∈ {1,−1,−4,−8} is given by the first value in the legend, for SMAC-BBOB (◦) and CMAES (O). Light beige
lines show the ECDF of FEvals for target value ∆f = 10−8 of all algorithms benchmarked during BBOB-2009. Right sub-columns:
ECDF of FEval ratios of SMAC-BBOB divided by CMAES, all trial pairs for each function. Pairs where both trials failed are
disregarded, pairs where one trial failed are visible in the limits being > 0 or < 1. The legends indicate the number of functions that
were solved in at least one trial (SMAC-BBOB first).
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Figure 4: Empirical cumulative distribution functions (ECDF), plotting the fraction of trials with an outcome not larger than the
respective value on the x-axis. Left subplots: ECDF of number of function evaluations (FEvals) divided by search space dimension
D, to fall below fopt + ∆f where ∆f is the target just not reached by the GECCO-BBOB-2009 best algorithm within a budget
of k × DIM evaluations, where k is the first value in the legend. Legends indicate for each target the number of functions that
were solved in at least one trial within the displayed budget. Right subplots: ECDF of the best achieved ∆f for running times of
0.5D, 1.2D, 3D, 10D, 100D, 1000D, . . . function evaluations (from right to left cycling cyan-magenta-black. . . ) and final ∆f -value
(red), where ∆f and Df denote the difference to the optimal function value. Light brown lines in the background show ECDFs for
the most difficult target of all algorithms benchmarked during BBOB-2009.
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5-D
#FEs/D 0.5 1.2 3 10 50 #succ
f1 2.5e+1:4.8 1.6e+1:7.6 1.0e-8:12 1.0e-8:12 1.0e-8:12 15/15

0.79(0.7) 0.84(0.5) ∞ ∞ ∞500 0/15
f2 1.6e+6:2.9 4.0e+5:11 4.0e+4:15 6.3e+2:58 1.0e-8:95 15/15

1.0(0.9) 0.74(0.7) 1.7(2) 8.0(7) ∞500 0/15
f3 1.6e+2:4.1 1.0e+2:15 6.3e+1:23 2.5e+1:73 1.0e+1:716 15/15

0.73(0.6) 0.74(1.0) 2.6(4) 4.4(5) 5.1(5) 2/15
f4 2.5e+2:2.6 1.6e+2:10 1.0e+2:19 4.0e+1:65 1.6e+1:434 15/15

0.56(0.4) 0.54(0.6) 1.8(3) 14(13) ∞500 0/15
f5 6.3e+1:4.0 4.0e+1:10 1.0e-8:10 1.0e-8:10 1.0e-8:10 15/15

1.3(0.2) 0.63(0.2) 0.95(0.1) 0.95(0.1) 0.95(0.1)15/15
f6 1.0e+5:3.0 2.5e+4:8.4 1.0e+2:16 2.5e+1:54 2.5e-1:254 15/15

1.4(1) 1.1(1) 1.5(2) 1.9(2) ∞500 0/15
f7 1.6e+2:4.2 1.0e+2:6.2 2.5e+1:20 4.0e+0:54 1.0e+0:324 15/15

1.3(1) 1.1(0.9) 1.5(1) 1.6(0.8) 0.88(0.9)13/15
f8 1.0e+4:4.6 6.3e+3:6.8 1.0e+3:18 6.3e+1:54 1.6e+0:258 15/15

0.99(1.0) 0.91(1) 1.2(1) 3.3(2) ∞500 0/15
f9 2.5e+1:20 1.6e+1:26 1.0e+1:35 4.0e+0:62 1.6e-2:256 15/15

14(6) 12(4) 12(8) 120(122) ∞500 0/15
f10 2.5e+6:2.9 6.3e+5:7.0 2.5e+5:17 6.3e+3:54 2.5e+1:297 15/15

1.3(0.9) 0.80(0.6) 0.58(0.6) 2.5(2) ∞500 0/15
f11 1.0e+6:3.0 6.3e+4:6.2 6.3e+2:16 6.3e+1:74 6.3e-1:298 15/15

0.73(0.5) 0.94(0.9) 1.9(2) 0.94(0.8) ∞500 0/15
f12 4.0e+7:3.6 1.6e+7:7.6 4.0e+6:19 1.6e+4:52 1.0e+0:268 15/15

0.57(0.4) 1.3(2) 3.6(5) 34(34) ∞500 0/15
f13 1.0e+3:2.8 6.3e+2:8.4 4.0e+2:17 6.3e+1:52 6.3e-2:264 15/15

1(1) 1.1(1) 0.96(0.5) 1.1(0.5) ∞500 0/15
f14 1.6e+1:3.0 1.0e+1:10 6.3e+0:15 2.5e-1:53 1.0e-5:251 15/15

1.2(2) 0.62(0.6) 0.76(1) 4.9(2) ∞500 0/15
f15 1.6e+2:3.0 1.0e+2:13 6.3e+1:24 4.0e+1:55 1.6e+1:289 5/5

1.1(2) 0.83(0.6) 1.6(1) 2.2(2) 8.1(9) 3/15
f16 4.0e+1:4.8 2.5e+1:16 1.6e+1:46 1.0e+1:120 4.0e+0:334 15/15

1.7(2) 0.77(0.5) 0.53(0.5)↓2 0.42(0.3)↓2 0.45(0.6)15/15
f17 1.0e+1:5.2 6.3e+0:26 4.0e+0:57 2.5e+0:110 6.3e-1:412 15/15

2.5(4) 1.6(2) 1.9(2) 2.1(2) 2.5(3) 6/15
f18 6.3e+1:3.4 4.0e+1:7.2 2.5e+1:20 1.6e+1:58 1.6e+0:318 15/15

1.1(1) 0.85(0.6) 0.97(1.0) 1.1(1) 11(12) 2/15
f19 1.6e-1:172 1.0e-1:242 6.3e-2:675 4.0e-2:3078 2.5e-2:4946 15/15

∞ ∞ ∞ ∞ ∞500 0/15
f20 6.3e+3:5.1 4.0e+3:8.4 4.0e+1:15 2.5e+0:69 1.0e+0:851 15/15

0.57(0.2) 0.44(0.2)↓ 0.73(0.3) 4.3(3) ∞500 0/15
f21 4.0e+1:3.9 2.5e+1:11 1.6e+1:31 6.3e+0:73 1.6e+0:347 5/5

1.8(2) 1.8(2) 1.0(0.9) 1.0(0.9) 1.0(1) 11/15
f22 6.3e+1:3.6 4.0e+1:15 2.5e+1:32 1.0e+1:71 1.6e+0:341 5/5

1.8(3) 1.5(1) 1.0(0.8) 0.90(0.8) 1.0(1) 11/15
f23 1.0e+1:3.0 6.3e+0:9.0 4.0e+0:33 2.5e+0:84 1.0e+0:518 15/15

1.6(2) 2.9(3) 2.6(3) 3.3(3) ∞500 0/15
f24 6.3e+1:15 4.0e+1:37 2.5e+1:118 1.6e+1:692 1.6e+1:692 15/15

0.51(0.5) 2.6(3) 7.4(8) ∞ ∞500 0/15

20-D
#FEs/D 0.5 1.2 3 10 50 #succ
f1 6.3e+1:24 4.0e+1:42 1.0e-8:43 1.0e-8:43 1.0e-8:43 15/15

0.80(0.4) 0.67(0.2)↓4 ∞ ∞ ∞2000 0/15
f2 4.0e+6:29 2.5e+6:42 1.0e+5:65 1.0e+4:207 1.0e-8:412 15/15

0.54(0.4) 0.70(0.6) 23(25) 143(160) ∞2000 0/15
f3 6.3e+2:33 4.0e+2:44 1.6e+2:109 1.0e+2:255 2.5e+1:3277 15/15

0.49(0.5)↓2 2.1(3) 124(144) 114(122) ∞2000 0/15
f4 6.3e+2:22 4.0e+2:91 2.5e+2:250 1.6e+2:332 6.3e+1:1927 15/15

6.9(10) 102(110) ∞ ∞ ∞2000 0/15
f5 2.5e+2:19 1.6e+2:34 1.0e-8:41 1.0e-8:41 1.0e-8:41 15/15

0.46(0.2)↓2 0.33(0.1)↓4 0.66(0.2) 0.66(0.2) 0.66(0.2) 15/15
f6 2.5e+5:16 6.3e+4:43 1.6e+4:62 1.6e+2:353 1.6e+1:1078 15/15

1.6(1) 1.2(0.9) 1.6(1.0) 2.8(3) ∞2000 0/15
f7 1.0e+3:11 4.0e+2:39 2.5e+2:74 6.3e+1:319 1.0e+1:1351 15/15

0.58(0.6) 0.61(0.6) 0.49(0.3)↓2 0.39(0.3)↓4 0.57(0.3) 15/15
f8 4.0e+4:19 2.5e+4:35 4.0e+3:67 2.5e+2:231 1.6e+1:1470 15/15

1.4(2) 1.5(1) 2.5(0.8) 4.1(3) ∞2000 0/15
f9 1.0e+2:357 6.3e+1:560 4.0e+1:684 2.5e+1:756 1.0e+1:1716 15/15

5.0(3) 26(27) ∞ ∞ ∞2000 0/15
f10 1.6e+6:15 1.0e+6:27 4.0e+5:70 6.3e+4:231 4.0e+3:1015 15/15

3.7(3) 5.5(5) 6.2(5) 18(17) ∞2000 0/15
f11 4.0e+4:11 2.5e+3:27 1.6e+2:313 1.0e+2:481 1.0e+1:1002 15/15

0.59(0.5) 0.68(0.6) 2.5(3) 7.3(9) ∞2000 0/15
f12 1.0e+8:23 6.3e+7:39 2.5e+7:76 4.0e+6:209 1.0e+1:1042 15/15

2.8(4) 38(52) ∞ ∞ ∞2000 0/15
f13 1.6e+3:28 1.0e+3:64 6.3e+2:79 4.0e+1:211 2.5e+0:1724 15/15

0.81(0.5) 0.66(0.2)↓4 0.84(0.1)↓2 1.4(0.4) ∞2000 0/15
f14 2.5e+1:15 1.6e+1:42 1.0e+1:75 1.6e+0:219 6.3e-4:1106 15/15

2.0(2) 3.3(7) 19(19) ∞ ∞2000 0/15
f15 6.3e+2:15 4.0e+2:67 2.5e+2:292 1.6e+2:846 1.0e+2:1671 15/15

1.1(0.8) 2.9(1) 2.8(4) ∞ ∞2000 0/15
f16 4.0e+1:26 2.5e+1:127 1.6e+1:540 1.6e+1:540 1.0e+1:1384 15/15

2.4(3) 1.5(1) 0.78(0.4) 0.78(0.4) 0.76(0.5) 14/15
f17 1.6e+1:11 1.0e+1:63 6.3e+0:305 4.0e+0:468 1.0e+0:1030 15/15

0.52(1) 0.92(1) 15(16) 61(72) ∞2000 0/15
f18 4.0e+1:116 2.5e+1:252 1.6e+1:430 1.0e+1:621 4.0e+0:1090 15/15

0.31(0.2)↓2 8.3(11) 20(21) 22(26) ∞2000 0/15
f19 1.6e-1:2.5e5 1.0e-1:3.4e5 6.3e-2:3.4e5 4.0e-2:3.4e5 2.5e-2:3.4e5 3/15

∞ ∞ ∞ ∞ ∞2000 0/15
f20 1.6e+4:38 1.0e+4:42 2.5e+2:62 2.5e+0:250 1.6e+0:2536 15/15

0.25(0.1)↓ 0.46(0.2)↓4 0.90(0.2) ∞ ∞2000 0/15
f21 6.3e+1:36 4.0e+1:77 2.5e+1:93 1.6e+1:456 4.0e+0:1094 15/15

7.5(6) 4.2(3) 5.5(11) 2.7(4) 5.2(6) 4/15
f22 6.3e+1:45 4.0e+1:68 2.5e+1:155 1.6e+1:231 6.3e+0:1219 15/15

10(22) 7.3(15) 3.3(6) 4.2(5) 2.0(2) 7/15
f23 6.3e+0:29 4.0e+0:118 2.5e+0:306 1.6e+0:534 1.0e+0:1614 15/15

1.6(2) 5.0(8) 46(52) ∞ ∞2000 0/15
f24 2.5e+2:208 1.6e+2:918 1.0e+2:6628 6.3e+1:9885 4.0e+1:3162915/15

0.65(0.6) 10(10) ∞ ∞ ∞2000 0/15

Table 1: Expected running time (ERT in number of function evaluations) divided by the best ERT measured during BBOB-2009.
The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear in
the second row of each cell, the best ERT (preceded by the target ∆f -value in italics) in the first. #succ is the number of trials that
reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics,
if the target in the last column was never reached. Bold entries are statistically significantly better (according to the rank-sum test)
compared to the best algorithm in BBOB-2009, with p = 0.05 or p = 10−k when the number k > 1 is following the ↓ symbol, with
Bonferroni correction by the number of functions.
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