
70 communications of the acm | february 2012 | vol. 55 | no. 2

contributed articles

V
i

s
u

a
l

i
z

a
t

i
o

n
 b

y
 R

o
i

c
e

 N
e

l
s

o
n

 a
n

d
 c

h
a

r
l

i
e

 n
e

v
i

l
l

When creating software, developers usually explore
different ways of achieving certain tasks. These
alternatives are often eliminated or abandoned early
in the process, based on the idea that the flexibility
they afford would be difficult or impossible to exploit
later. This article challenges this view, advocating an
approach that encourages developers to not only
avoid premature commitment to certain design
choices but to actively develop promising alternatives
for parts of the design. In this approach, dubbed
Programming by Optimization, or PbO, developers
specify a potentially large design space of programs
that accomplish a given task, from which versions
of the program optimized for various use contexts
are generated automatically, including parallel
versions derived from the same sequential sources.
We outline a simple, generic programming language
extension that supports the specification of such
design spaces and discuss ways specific programs

that perform well in a given use context
can be obtained from these specifica-
tions through relatively simple source-
code transformations and powerful de-
sign-optimization methods. Using PbO,
human experts can focus on the creative
task of devising possible mechanisms
for solving given problems or subprob-
lems, while the tedious task of deter-
mining what works best in a given use
context is performed automatically, sub-
stituting human labor by computation.

The potential of PbO is evident from
recent empirical results (see the table
here). In the first two use cases—mixed
integer programming and planning—
existing software exposing many de-
sign choices in the form of parameters
was automatically optimized for speed.
This resulted in, for example, up to 52-
fold speedups for the widely used com-
mercial IBM ILOG CPLEX Optimizer
software for solving mixed-integer pro-
gramming problems.21 In the third use
case—verification problems encoded
into propositional satisfiability—the
proactive development of alternatives
for important components of the pro-
gram were an important part of the
design process, enabling even greater
performance gains.

Performance Matters
Computer programs and the algo-

 key insights

 � �Premature commitment to design
choices during software development
often leads to loss of performance and
limited flexibility.

 � �PbO aims to avoid premature design
choices and actively develop design
alternatives, leading to large and
rich design spaces of programs
that can be specified through simple
generic extensions of existing
programming languages.

 � �Advanced optimization and machine-
learning techniques make it possible
to perform automated performance
optimization over the large spaces of
programs arising in PbO-based software
development; per-instance algorithm
selectors and parallel algorithm
portfolios can be obtained from the same
sequential source.

Programming
by
Optimization

doi:10.1145/2076450.2076469

Avoid premature commitment, seek design
alternatives, and automatically generate
performance-optimized software.

by Holger H. Hoos

february 2012 | vol. 55 | no. 2 | communications of the acm 71

rithms on which they are based fre-
quently involve different ways of get-
ting something done. Sometimes,
certain choices are clearly preferable,
but it is often unclear a priori which of
several design decisions will ultimate-
ly give the best results. Such design
choices can, and, routinely, do, occur
at many levels, from high-level archi-
tectural aspects of a software system
to low-level implementation details.
They are often made based on consid-

erations of maintainability, extensi-
bility, and performance of the system
or program under development. This
article focuses on this latter aspect
of a system’s performance, consider-
ing only sets of semantically equiva-
lent design choices and situations in
which the performance of a program
depends on the decisions made for
each part of the program for which one
or more candidate designs are avail-
able, even though these choices do not

affect the program’s correctness and
functionality. Note this premise differs
fundamentally from that of program
synthesis, in which the primary goal is
to come up with a design that satisfies
a given functional specification.

It may appear that (partly due to the
sustained, exponential improvement
in computer hardware over more than
five decades) software performance is
a relatively minor concern. However,
upon closer inspection this is far from

MagicCube5D, a fully functional five-dimensional analogue of Rubik’s Cube.

72 communications of the acm | february 2012 | vol. 55 | no. 2

contributed articles

true. Problems that are NP-hard and
considered computationally intracta-
ble are at the heart of a range of chal-
lenging tasks encountered in practical
applications of considerable impor-
tance for the worldwide economy, in-
cluding scheduling, time-tabling,
resource allocation, production plan-
ning and optimization, computer-aid-
ed design, and software verification.

We expect that, as economic con-
straints tighten, finding good solu-
tions to these problems will, in many
cases, become more difficult. For ex-
ample, resource-allocation problems
are typically easy to solve if there is an
abundance of resources relative to the
demands in a given situation. Con-
versely, as demands substantially ex-
ceed available resources, no allocation
will satisfy all of them, and, slightly
less obvious, this fact is typically easy
to demonstrate. It is between these
extremes that the difficult cases arise,
where the demands and available re-
sources are balanced enough that find-
ing a satisfactory allocation or dem-
onstrating that none exists becomes
computationally difficult.a

A natural tendency toward this
critically constrained, computation-
ally difficult case can be expected in
many real-world contexts. The under-
constrained case is typically economi-
cally wasteful, providing an incentive
for increasing demand on resources
by, say, enlarging the customer base,
taking on more projects, or reduc-
ing availability of resources (such as
by scaling back personnel or equip-
ment allotment). On the other hand,

a	 This argument is closely related to the notion
of “critical constrainedness,” as described by
Cheeseman et al.6

the overconstrained case typically
corresponds to lost market opportu-
nity and can cause substantial strain
within an organization, providing an
incentive to increase resource avail-
ability. Furthermore, growing aware-
ness and concern about the limita-
tions of natural resources (such as oil
and natural gas), along with increased
competition in larger markets and
just-in-time delivery of goods and ser-
vices, provide further incentives to
find solutions to computationally dif-
ficult problems as quickly as possible.
That is why the performance of algo-
rithms, and of the software based on
them, matters.

Premature Design Choices
In most (if not all) cases, the key to solv-
ing computationally challenging prob-
lems lies in a combination of design
choices, with effects on performance
often interacting in complex, unex-
pected ways. These choices are typi-
cally heuristic in the sense that their
efficacy can be demonstrated empiri-
cally yet remains inaccessible to the
analytical techniques used for proving
theoretical complexity results. In some
cases, choosing among design alterna-
tives is made at development stages
preceding the generation of actual
code; in others, design decisions have
far-reaching effects on other choices,
when, say, deciding on higher-level
architectural aspects of a system or on
specific data structures widely used
within a larger piece of software. How-
ever, one of several design alternatives
is often chosen at or after the imple-
mentation stage, and such a choice,
while not constraining other parts of
the system, may have a substantial ef-
fect on overall performance.

Sometimes, decisions of the latter
type are deferred to a post-implementa-
tion stage and left to the user by expos-
ing them as parameters.b More often,
however, they are hard-coded, either by
means of constants within a program
or module or by retaining some pieces
of code while abandoning alternatives.
Especially when implementing heu-
ristic mechanisms, programmers usu-
ally make these design choices based
on intuition, experience, and perhaps
some ad hoc experimentation.

What PbO Means
Experience in designing high-perfor-
mance heuristic solvers for NP-hard
problems shows that building software
this way leads to suboptimal results in
terms of performance and adaptability
to different use contexts. Furthermore,
considering preliminary evidence
from application areas ranging from
numerical computation to sorting al-
gorithms, similar concerns arise when
tackling polynomial-time computa-
tional problems. We therefore advo-
cate an approach in which many design
choices are deliberately left open by
means of retaining alternative realiza-
tions of components or mechanisms
and by exposing a large number of pa-
rameters.15,18,24 These choices are then
made by means of running a meta-
algorithmic optimization procedure,
optimizing the empirical performance
obtained in a given use context. Such a
use context is characterised by a set (or
distribution) of inputs representative
of those encountered in a situation in
which a given program is used.

The PbO approach is based on the
idea of avoiding premature commit-
ment to certain design choices and
actively developing promising alter-
natives for parts of the design. Rath-
er than build a single program for a
given purpose, software developers
specify a rich and potentially large
design space of programs. From this
specification, programs that perform
well in a given use context are gener-
ated automatically through powerful
optimization techniques.

PbO allows human experts to focus

b	 Many users, especially those lacking deep in-
sight into the program or system under con-
sideration, tend to keep these parameters at
their default values.

Speedups achieved through PbO in conjunction with an automated configurator19,20
for performance optimization of solvers for three prominent NP-hard problems in
various application contexts; these speedups are with respect to default configurations
determined by human experts based on substantial manual effort, and both ends of
the ranges shown refer to averages over large sets of benchmark instances.

Problem Solver # Parameters # Configurations Speedup Reference

Mixed integer programming CPLEX 76 1.9 × 1047 2–52 × Hutter et al.21

Planning LPG 62 6.5 × 1017 3–118 × Vallati et al.35

Propositional satistisfiability
hardware and software
verification

SPEAR 26 8.3 × 1017 3–525 × Hutter et al.18

contributed articles

february 2012 | vol. 55 | no. 2 | communications of the acm 73

on the creative task of imagining pos-
sible mechanisms for solving given
problems or subproblems, while the
tedious job of determining what works
best in a given use context is performed
automatically, substituting human la-
bor with computation. More complex
designs (such as per-instance selec-
tors11,25,40 and parallel portfolios10,17)
can be generated automatically from
the same design-space specification
(and sources; see Figure 1). Such de-
signs are increasingly relevant, since
they achieve high performance across
a range of use contexts.

Influence on Software
Development and Deployment
In 2007, our group at the University of
British Columbia first employed, un-
wittingly, the key idea behind PbO in
the context of collaborative work on
SAT-based software verification.18 Us-
ing off-the-shelf solvers for the propo-
sitional satisfiability problem (SAT)
has become a standard approach for
formally verifying hardware and soft-
ware. In the project, the idea was to
produce a SAT solver that would be es-
pecially well suited for dealing with SAT
instances produced by a specific static
checker, CALYSTO.2 In initial stages
of the work (carried out by Domagoj
Babić and Alan Hu of the ISD Labora-
tory in the computer science depart-
ment), a new SAT solver dubbed SPEAR
was developed, including a range of
techniques from the SAT literature.
Because it was unclear which combi-
nation of techniques would be most
effective for solving the SAT instances
produced by CALYSTO, the initial ver-
sion of SPEAR could be configured flex-
ibly through parameters exposed to the
user. On the other hand, finding set-
tings for these parameters that would
result in good solver performance on
the instances of interest proved chal-
lenging, even for its primary designer,
Babić . Therefore, the team decided to
use the automated algorithm configu-
ration procedure ParamILS (described
later)20 to accomplish the task.

What happened next can be seen as
the genesis of the PbO paradigm: After
seeing how much better the configura-
tions found by ParamILS performed
than his manually tuned default set-
tings, Babić decided to expose addi-
tional design choices. Some of them

had been previously hardwired into the
program; others had been implement-
ed, tested, and then abandoned; yet
others were newly implemented alter-
natives to existing mechanisms within
SPEAR. This ultimately led to a version
of SPEAR that could be configured via
26 parameters, jointly giving rise to
8:34 · 1017 configurations of the solver.c

ParamILS turned out to be able to
achieve speedups of a factor of more
than 500 for the software-verification
instances produced by CALYSTO com-
pared to the default configuration of
SPEAR that had been manually deter-
mined with considerable effort by its
designer.18 This automatically opti-
mized configuration of SPEAR won the
QF BV category of the 2007 Satisfiability
Modulo Theories Competition (http://
www.smtcomp.org/2007/), using sev-
eral components, including clause and
variable elimination mechanisms, that
appeared to be ineffective during ear-
lier, manual-configuration attempts.
Moreover, the same highly paramet-
ric version of SPEAR, when automati-
cally optimized for solving SAT-encod-
ed hardware verification instances,
achieved substantial speedups over the
(then) state-of-the-art solver MiniSAT

c	 These parameters control all fundamental
mechanisms behind modern SAT solvers, in-
cluding variable selection, clause learning, re-
starts, and simplification strategies.

2.0.18 Comparing the configurations
specifically optimized for SAT-encod-
ed hardware and software verification
produced a number of interesting ob-
servations; for example, the configura-
tion optimized for software verification
was found to use a more aggressive re-
start mechanism and a simpler phase-
selection heuristic than the one opti-
mized for hardware verification.

The example of SPEAR reflects the
two key elements of the PbO approach:

˲˲ Specification of large, rich com-
binatorial design spaces of programs
that solve a given problem by avoid-
ing premature commitment to certain
design choices and development of
promising alternatives for parts of the
design; and

˲˲ Automated generation of programs
that perform well in a given use context
from this specification by means of op-
timization techniques that realize the
performance potential inherent in a
given design space.

These concepts can be realized to
various degrees and are present to
some extent in practices already used
within computing science and beyond.
Our goal is to formulate and establish
an approach to software development
and, indeed, to the solution of compu-
tational problems that explicitly recog-
nizes these elements, as well as provide
conceptual support and tools that fa-
cilitate advanced forms of PbO.

Figure 1. Developers specify a potentially large design space of programs that accomplish
a given task; from it, versions of the program optimized for different application contexts
are generated automatically; per-instance selectors and parallel portfolios of programs
can be derived from the same specification.

optimized
program

parallel
portfolio

per-
instance
selector

use context

design space of
programs

74 communications of the acm | february 2012 | vol. 55 | no. 2

contributed articles

Based on observations from SPEAR
(and elsewhere), we distinguish four
levels of PbO:

Level 0. Settings of the parameters
exposed by an existing piece of soft-
ware are optimized for a given use
context (characterized by, say, a set
of typical input data), also known as
parameter tuning or algorithm con-
figuration;

Level 1. The design space represent-
ed by an existing piece of software is
extended by exposing design choices
hardwired into code. Such choices in-
clude certain magic constants, or liter-
als that, when modified, could affect
performance but not the program’s
correct function, as well as hidden pa-
rameters and named constants that
could take different values without
compromising the program’s correct-
ness. Further examples of hardwired
choices are variables set to constant
values but not exposed as externally
accessible parameters and abandoned
design alternatives, or pieces of code
that could be used in addition to or
instead of active code without compro-
mising correctness but that are no lon-
ger reachable during execution of the
current version of the program;

Level 2. Design choices considered
during the normal course of the soft-
ware-development process are actively
kept and exposed to the user;

Level 3. The software-development
process is structured and carried out
in a way that seeks to provide design
choices and alternatives in many per-
formance-relevant components of a
project; and

Level 4. The software-development
process is centered on the idea of pro-
viding design choices and alternatives
in all parts of a project that might bene-
fit from them; design choices that can-
not be justified convincingly are not
made prematurely.

While levels 0 and 1 deal with exist-
ing software and essentially involve
adding one or more phases to the
development process based on PbO
principles, levels 2–4 integrate PbO
tightly into software creation. These
higher levels of PbO typically involve
assessing the cost of developing alter-
natives against the value ascribed to
the possible gains in performance (a
topic discussed later). Note that lev-
els 3 and 4 lend themselves to a team
approach, where various team mem-
bers contribute alternative designs for
functionally equivalent components.
The first example in the table can be
classified as level 0 and the second
as level 1, while the late-development
stages of the SPEAR SAT solver fall be-
tween levels 2 and 3.

It is possible to apply the PbO para-
digm with existing methods and tools,

particularly since research on automat-
ed algorithm configuration has yielded
several powerful techniques (discussed
later). Nevertheless, especially at the
highest levels of PbO-based software
development, substantial benefit can
be gained from using dedicated tools.
Software development using dedicated
PbO support involves three key stages
(see Figure 2):

˲˲ Developers write the source code
for a program in a language generi-
cally extended with constructs that
explicitly declare alternative blocks
of code and parameters that are to be
exposed on the command line; for a
programming language <L>, we call
the thus extended language PbO-<L>.
This enriched source specifies a de-
sign space of programs rather than a
single program;

˲˲ A tool we call the “PbO weaver”
transforms this PbO-<L> specifica-
tion into a program written entirely
in language <L> that exposes the de-
sign choices specified in the original
source as parameters; it also produces
a description of the respective design
space; and

˲˲ A second tool called the “PbO de-
sign optimizer” produces from the
parametric <L>-source a fully instan-
tiated <L>-source, that is, a version of
the program in which all design choic-
es are made in a way that results in de-
sirable performance characteristics on
benchmark inputs characteristic of a
given use context. This version of the
program can then be deployed, in the
case of compiled languages <L> (such
as C and C++) after compilation.

The PbO-based approach to soft-
ware development can provide sub-
stantially increased flexibility to soft-
ware developers, providers, and users
alike. In particular, it makes it possible
to automatically customize software
for optimized performance in differ-
ent use contexts. This optimization
can be carried out automatically by the
software developer, provider, and even
user; furthermore, it can, in principle,
be performed at the level of a paramet-
ric executable and does not require
sources to be made available to the
provider or user. PbO also provides a
generic way for creating software that
periodically and automatically adapts
itself for optimized performance as the
use context changes over time. This

Figure 2. Developers produce a PbO-enhanced source code in their language of choice,
<L>, from which the PbO weaver generates parametric source code in pure <L>, as well
as a description of the design space; the PbO design optimizer uses this parametric source,
along with benchmark input data, to produce a fully instantiated version of the source code,
optimized specifically for deployment in the given use context.

Figure 1. Globus Online architecture.

PbO-<L>
source(s)

PbO-<L>
weaver

PbO
design

optimizer

benchmark
inputs

deployed
executable

design
space

description

parametric
<L>

source(s)

use
context

instantiated
<L>

source(s)

contributed articles

february 2012 | vol. 55 | no. 2 | communications of the acm 75

process could be set up to take place
entirely client-side or be delivered as
an Internet service. In the latter case,
input data from the actual application
is collected client-side and transmitted
to the service provider, where the PbO
design optimizer is run to produce a
new software configuration that is then
transmitted back to the client and de-
ployed there.

Another attractive feature of PbO
involves the ability to generate multi-
ple programs for a given purpose that
are automatically combined into a
per-instance selector; that is, a mecha-
nism that selects one of them to be run
on given input data based on charac-
teristics of that data or into a parallel
portfolio that runs them concurrently
on the same input, optimized for a giv-
en use context. These complex designs
are generated from the same design-
space specification (in the form of a
PbO-<L> source) that gives rise to a
single, optimized program. PbO thus
offers generic and automated ways
of taking advantage of the fact that
large design spaces typically contain
programs that work well on differ-
ent kinds of input data; it also offers
a generic, automated way of generat-
ing parallel programs from inherently
sequential sources. To construct port-
folios and per-instance selectors, the
PbO weaver must produce a suitably
modified parametric source for the
component programs, as well as for
an execution controller that launches,
monitors, and terminates the compo-
nent programs as needed. Moreover,
the PbO design optimizer must also
produce fully instantiated sources
(or parameter settings) for all compo-
nent programs; when building a per-
instance selector, it also makes use
of a “feature extractor” that computes
from given input data the features that
serve as the basis for determining the
component program to be run.

Design-Space Specification
To facilitate specification of design
spaces, we introduce three basic mech-
anisms; the first two provide dedicated
support for exposing parameters and
specifying alternative blocks of code,
respectively. Level 1 of PbO (explored
earlier) reflects the need for both
mechanisms—one required to expose
magic constants and hidden param-

sets of interchangeable blocks of code
representing design alternatives (pos-
sibly nested and distributed across
the source code), and one for logging
the current value of arbitrary (typed)
expressions at runtime. Depending
on PbO weaver settings, information
logged this way could be written to
one or more files (particularly to stan-
dard output) or to a database; it could
also be sent directly to an execution
controller, using other mechanisms
(such as remote procedure calls and
network sockets). Details on these
constructs are provided in the online
Appendix.

Meta-Algorithmic Optimization
Following specification of a design
space, meta-algorithmic optimization
procedures are used to automatically
find a program with desirable perfor-
mance characteristics within it. In the
simplest case, these procedures deter-
mine a single, fully instantiated pro-
gram with performance (measured ac-
cording to a user-defined metric, such
as average runtime) optimized for a
given set of inputs. Since choices can
be exposed as parameters (handled by
the PbO weaver described in the Appen-
dix), the problem solved by these meta-
algorithmic optimization procedures
corresponds to the well-known algo-
rithm-configuration problem (some-
times called the “parameter tuning
problem”), which can be described as
follows: Given a target algorithm A that
can be configured via a set of exposed
parameters, a set of input data I and a
performance metric m, find a param-
eter configuration of A that yields opti-
mized performance on I, as measured
by m (see, for example, Hoos,13 Hutter
et al.,19 and Hutter et al.20).

In principle, algorithm configu-
ration can be viewed as a stochastic
optimization problem (where the
stochasticity stems from the perfor-
mance variation observed over a set
of input data or from randomization
of the computation performed on
the data and solved using standard
stochastic-optimization procedures
(see, for example, Spall34). However,
such procedures lack mechanisms
for dealing with sets of inputs and
capped runs. The issue of perfor-
mance variation over input sets is
important, because evaluating many

eters, the other to capture design al-
ternatives that might otherwise have
been abandoned. The same require-
ments are encountered at higher levels
of PbO. The third mechanism provides
lightweight support for exposing in-
formation available while a program is
running; this information can be used
to adaptively control design choices at
runtime (by automatically generated
execution controllers), as well as for
debugging and empirical analysis.

All three mechanisms can, in prin-
ciple, be realized within the target
language used for implementing the
program under development; however,
this approach to design-space speci-
fication suffers from several weak-
nesses: First, it does not allow for easy,
automatic extraction of design-space
descriptions required as input for the
design-optimization process. Second,
it does not easily support instantiation;
the process in which certain design
choices made during design optimiza-
tion are hardwired into the source code
to produce leaner, more-efficient ex-
ecutables. Finally, it does not facilitate
dedicated PbO support by widely used
software-development environments
and tools, as in, say, PbO-aware syntax
highlighting, folding, and manage-
ment of design alternatives. The use
of conditional compilation (provided
by, say, the C pre-processor) addresses
lack of support for instantiation but
adds substantial overhead to the me-
ta-algorithmic optimization process
(discussed later), which often involves
running thousands of distinct configu-
rations of a program.

These issues are best addressed by a
generic programming-language exten-
sion providing dedicated support for
exposing parameters, design alterna-
tives, and runtime information. Such
an extension would facilitate clear,
explicit specification of the parts of a
program representing design choices
deliberately left open in a manner that
is independent of the programming
language used. It also provides a bet-
ter basis for extending and enhancing
widely used development platforms to
support use of PbO.

The programming-language exten-
sion proposed here consists of four
simple constructs, including two for
declaring and accessing (typed) pa-
rameters, one for declaring choices, or

76 communications of the acm | february 2012 | vol. 55 | no. 2

contributed articles

program configurations on all inputs
from a given set can incur a substan-
tial (sometimes prohibitive) compu-
tational burden that can and typically
should be avoided, given that poor
performance often manifests across
a range of inputs. Furthermore, there
are situations in which candidate
configurations can be discarded with-
out completing runs that exceed a
certain time bound, considering the
performance measured for other con-
figurations; such runs can be capped,
or terminated when that time bound
is reached or exceeded.19

Note, too, the specification of al-
ternative blocks of code that are cen-
tral to the way a design space is con-
structed in PbO, necessarily leads to
categorical parameters, or parameters
with a discrete set of unordered val-
ues, and nested alternatives give rise
to conditional parameters. Therefore,
general methods for algorithm con-
figuration used in the context of PbO
must support categorical and condi-
tional parameters, ruling out stan-
dard procedures for stochastic and
numerical optimization.

Three classes of methods are spe-
cifically designed for carrying out al-
gorithm-configuration tasks (see also
Hoos13): Racing procedures iteratively
evaluate target algorithm configura-
tions on inputs from a given set, using
statistical hypothesis tests to elimi-
nate candidate configurations signifi-
cantly outperformed by other configu-
rations; model-free search procedures
use suitably adapted search tech-
niques, particularly stochastic local
search methods (such as iterated lo-
cal search) to explore potentially vast
configuration spaces; and sequential
model-based optimization (SMBO)
methods build a response surface
model that relates parameter settings
to performance, using the model to
iteratively identify promising param-
eter settings.

Racing procedures were originally
introduced to solve model-selection
problems in machine learning.27 When
adapted to the problem of selecting a
program for a given task from a set of
interchangeable candidates, where
each candidate may correspond to a
configuration of a parameterized al-
gorithm, the key idea is to sequentially
evaluate the candidates on a series

of benchmark inputs and eliminate
programs as soon as they fall too far
behind the current incumbent, or the
candidate with overall best perfor-
mance at a given stage of the race. A
line of work initiated by Birattari et
al. in 2002 has more recently led to a
procedure dubbed “Iterated F-Race”
that is demonstrated effective at solv-
ing difficult algorithm-configuration
tasks with up to 12 parameters4; there
is some indication that Iterated F-Race
may also be able to handle substantial-
ly more complex situations.

As of this writing, model-free search
techniques, most notably the Fo-
cusedILS procedure of Hutter et al.,19
represent the state of the art in solving
algorithm-configuration problems of
the kind that arise in the PbO context.
Along with BasicILS, another member
of the ParamILS family of algorithm-
configuration procedures,19,20 it is
today the only method that supports
categorical and conditional param-
eters, as well as capping. At the core
of the ParamILS framework is Iterated
Local Search, or ILS, a versatile, well-
known stochastic local-search method
that has been applied with great suc-
cess to a range of difficult combinato-
rial problems (see, for example, Hoos
and Stützle16). ILS iteratively performs
phases of simple local search, de-
signed to quickly reach or approach
a locally optimal solution of a given
problem instance, interspersed with
so-called perturbation phases, to es-
cape from local optima. Starting from
a local optimum x, ILS performs one
perturbation phase in each iteration,
followed by a local search phase, with
the aim of reaching (or approaching) a
new local optimum x́ . It then uses a so-
called “acceptance criterion” to decide
whether to continue the search pro-
cess from x́ or revert to the previous
local optimum, x. Applying this mech-
anism, ILS aims to solve a given prob-
lem instance by exploring the space of
its locally optimal solutions. ParamILS
performs iterated local search in the
configuration space of a given para-
metric algorithm.

While BasicILS, the simplest vari-
ant of ParamILS, evaluates candidate
configurations based on a fixed num-
ber of target algorithm runs, the more
sophisticated FocusedILS procedure
uses a heuristic mechanism to per-

PbO lets human
experts focus
on the creative
task of imagining
possible
mechanisms for
solving given
problems or
subproblems,
while the tedious
job of determining
what works best
in a given
use context
is performed
automatically.

contributed articles

february 2012 | vol. 55 | no. 2 | communications of the acm 77

form runs on a candidate configura-
tion only as long as that configuration
appears promising compared to the
current incumbent; it therefore avoids
wasting computational effort on con-
figurations easily recognized as per-
forming poorly. The use of FocusedILS
for configuring highly parametric soft-
ware has led to substantial improve-
ment in the state of the art in solving
prominent classes of SAT,18,24 mixed-
integer programming,21 and planning
problems.35 In the case of mixed-inte-
ger programming, our group used Fo-
cusedILS to configure 76 parameters
of the widely used commercial CPLEX
software (searching within a design
space of 1.9 · 1047 configurations of
the solver), resulting in up to 50-fold
speedups over the extensively opti-
mized default configuration.21

SMBO procedures for algorithm
configuration are based on the idea of
using the information gained from pa-
rameter configurations evaluated so
far to build and maintain a response
surface model that directly captures
the dependence of target-algorithm
performance on parameter settings;
this model is used to determine prom-
ising configurations at any stage of
an iterative model-based search pro-
cedure. Almost all existing work on
sequential model-based optimization
focuses on a setting known as “black-
box function optimization,” with re-
sulting procedures suffering from
the same shortcomings as standard
numerical optimization procedures,
in that they do not support categori-
cal and conditional parameters nor
provide mechanisms for effectively
dealing with sets of inputs and cap-
ping of runs. However, two of these
limitations were overcome in 2011
by a procedure dubbed “Sequential
Model-based Algorithm Configura-
tion,” or SMAC, handling categori-
cal parameters while exploiting the
fact that performance is evaluated on
a set of inputs.22 Evidence suggests
that SMAC can, at least on some chal-
lenging configuration benchmarks,
reach and sometimes exceed the per-
formance of FocusedILS. We expect
further work will lead to SMBO-based
procedures that turn out to be use-
ful for solving design-optimization
tasks in the context of PbO, particu-
larly when the parameter response of

a given target algorithm is reasonably
regular and performance evaluations
are very costly.

The idea of automatically con-
structing a per-instance algorithm se-
lector from a single parametric design
was recently explored by Xu et al.39
and, independently, by Kadioglu et
al.23 In each, a given feature extractor
was used to compute a vector of fea-
tures from the given input to be pro-
cessed. The method by Kadioglu et al.,
dubbed ISAC, uses a combination of
clustering based on the feature values
and automatic algorithm configura-
tion to produce an algorithm selector.
The Hydra procedure by Xu et al. itera-
tively adds configurations of a given
program to the set available to the per-
instance selector; in each iteration,
Hydra automatically determines an
additional configuration to maximally
improve the performance obtained
when building a selector using the
thus extended set of configurations.
In principle, both Hydra and ISAC
can make use of arbitrary feature ex-
tractors and algorithm configuration
procedures. Whereas ISAC produces
a single selector based on a number
of components automatically deter-
mined by the G-means algorithm,12
Hydra builds a series of selectors; the
longer it runs, the more configura-
tions are available for selection, and
the better the expected performance
of the resulting selector. Furthermore,
Hydra makes use of arbitrary selector
builders; Xu et al.39 used a procedure
based on the regression-based perfor-
mance predictor underlying the well-
known SATzilla approach,30,40 though
many alternatives are possible.

Procedures for building per-in-
stance algorithm selectors fit natu-
rally into the context of PbO. To con-
struct per-instance selectors from a
given design-space specification, the
PbO design optimizer uses a proce-
dure (such as Hydra or ISAC) to obtain
a suitable set of optimized programs.
The design optimizer would also pro-
duce an execution manager that first
calls the feature extractor provided
by the user (specific to the given com-
putational tasks but not dependent
on the design of the program used to
achieve it), then selects the compo-
nent algorithm to be run based on the
resulting input features.

Although algorithm portfolios have
been investigated (see, for example,
Gomes and Selman10 or Huberman
et al.17), to the best of our knowledge
effective methods for automatically
constructing portfolios from a single
parametric design have not yet been
developed, though we expect such
methods to be available soon. The
PbO design optimizer can then use a
portfolio-construction procedure to
obtain a set of programs from a given
design-space specification and pro-
duce an execution manager to coordi-
nate their execution. In the simplest
case, where the component solvers
run independently in parallel on the
same input data, the execution man-
ager starts each component program
and processes the results from these
runs when the component programs
terminate. When applied to a task in
which candidate programs differ only
in the time they require for processing
a given input (as in sorting or solving
SAT), as soon as the first component
program terminates successfully, the
execution manager aborts all remain-
ing component programs and returns
the result from the one successful run.
In the case of programs designed to
solve optimization tasks, the execu-
tion manager monitors the best solu-
tions produced by each component
solver, providing the best of them at
any given time.

Cost and Concerns
Readers might raise several concerns
regarding PbO-based software devel-
opment. The first pertains to the cost
incurred by the approach in terms of
computational resources and human
development effort. It might seem
that, due to its use of compute-inten-
sive meta-algorithmic optimization
procedures, PbO always requires large
amounts of computational resources.
However, while meta-algorithmic op-
timization in a large design space can
be computationally expensive, it has
been shown to yield good results at
relatively modest computational cost
in many cases.18,21,35 Furthermore, the
meta-algorithmic optimization tech-
niques mentioned earlier tend to pro-
duce increasingly better results as they
are run for longer and longer times;
moreover, they can all be adapted to
make use of parallel computation to

78 communications of the acm | february 2012 | vol. 55 | no. 2

contributed articles

more effectively search potentially very
large design spaces.14

Since PbO aims to replace human
development effort with computation,
additional human effort incurred by
the approach is of special concern.
Level 0, the most basic form of PbO,
causes no such overhead, and the add-
ed effort at level 1 can be minimized
through effective, lightweight mecha-
nisms for exposing design choices.d
Starting at level 2, conceiving, imple-
menting, and testing design alterna-
tives requires additional human effort.
This development cost must be out-
weighed by the gains in performance
a software developer might reasonably
hope to achieve by optimizing perfor-
mance-critical parts of a design. Us-
ing this criterion, even at levels 3 and
4, the development of design choices
and alternatives may well focus on a
relatively small number of key compo-
nents of a complex software system. At
the same time, in cases where perfor-
mance matters sufficiently, the over-
head associated with higher levels of
PbO is at least partially offset by the
substantial human effort otherwise
expended for manual exploration of
design choices.

Rather disturbingly, it might seem
that when dealing with the large, com-
binatorial spaces of programs key to
the PbO paradigm, the occurrence of
bugs would be amplified to the point
where testing and debugging becomes
a major burden, if not completely in-
feasible. However, because design
alternatives for individual mecha-
nisms and components can be tested
separately, the combinatorial set of
programs to be checked is effectively
reduced to a set that grows linearly
with the number of choices and design
alternatives available at each choice
point. While there is potential for error
conditions arising only in particular in-
stantiations of multiple design choic-
es, such conditions are mostly avoided
by following sound practices regarding
encapsulation of program code and

d	 Experience shows that even the rather modest
effort required to expose an additional param-
eter when using languages like C and C++ can
discourage developers, just like the overhead
of frequent recompilation severely limits
their exploration of design choices accessed
through conditional compilation or source-
level modifications.

data structures, along with appropri-
ate use of unit testing. Furthermore, as
observed in 2010 by Hutter et al.,21 de-
sign-optimization tools (such as “auto-
mated algorithm configurators”) make
it possible to find previously unknown
bugs in widely used software devel-
oped through traditional methods; we
expect the same to hold for PbO-based
software development.

A final concern follows from the ob-
servation that software optimization
for a narrowly defined use context can
lead to brittle performance. It is promi-
nent in machine learning, which offers
various techniques for addressing it.
A combination of judicious practices
for constructing input datasets in the
optimization process, appropriately
defined optimization objectives, and
suitable methods for assessing the
performance of candidate designs ap-
pears to be effective in avoiding brittle
performance and poor generalization
beyond narrowly defined classes of in-
put data.

Robust performance is tradition-
ally important in situations where im-
portant features of the input data to be
processed might change over time. The
PbO paradigm offers an attractive way
to deal with such situations based on
the idea of automatically adapting the
program design, so, at any given time,
a program is well suited for the current
input data, an idea closely related to the
concept of lifelong learning. This ad-
aptation can be achieved by using the
PbO design optimizer to automatically
generate new programs optimized for
input data representative of the current
use context. This process takes place
after the initial design phase, in the ac-
tual application context, and does not
involve human designers. Moreover, it
can be carried out by a deployed system
involving a highly parametric program,
a meta-algorithmic optimization pro-
cedure, and a mechanism for deciding
which input data encountered over the
system’s lifetime is to be used when as-
sessing the performance of candidate
program designs.

Related Work
Efforts conceptually related to the
ideas behind PbO can be traced back
more than 30 years to the work of Rice32
in the mid-1970s, but the powerful op-
timization and machine-learning tech-

niques, as well as the computational
environments required to carry out the
automated design optimization at the
heart of PbO, have only recently been
readily available.

PbO is a logical extension of exist-
ing work on parameter tuning (see, for
example, Adenso-Diaz and Laguna1 or
Birattari et al.4) automated algorithm
configuration (see, for example, Hut-
ter et al.18 or KhudaBukhsh et al.24)
and automated algorithm selection
(see, for example, Guerri and Milano,11
Leyton-Brown et al.,25 or Xu et al.40), as
well as of the more general approach of
computer-aided algorithm design15; it
is also complementary to work on algo-
rithm portfolios (see, for example, Ga-
gliolo,9 Gomes and Selman,10 or Huber-
man et al.17) and self-adaptation (see,
for example, Battiti et al.,3 Carchrae
and Beck,5 or Da Cost et al.7), which
can benefit from PbO and be leveraged
in PbO-based software development.
We also see connections with work in
algorithm synthesis (see, for exam-
ple, Monette et al.28 or Westfold and
Smith37), algorithm engineering (see,
for example, Sanders and Schultes33),
and meta-learning (see, for example,
Vilalta and Drissi36).

Furthermore, many studies clearly
exhibit key elements of the PbO ap-
proach and bear witness to its benefits,
including our own work on algorithm
configuration for complete and in-
complete SAT solvers,18,24 for several
well-known solvers for mixed-integer
programming problems,21 and for two
well-known general-purpose planning
systems.35 While these studies focused
on optimizing the performance of soft-
ware for solving NP-hard problems, a
broad range of similar work involves
software running in polynomial time.e
For example, Whaley et al.38 automati-
cally performed mostly low-level op-
timizations of performance-critical,
basic linear algebra routines used in
numerous applications; Pan and Ei-
genmann31 automatically determined
performance-maximizing combina-
tions of compiler optimizations for
a given program or program section;
Diao et al.8 automatically configured a
database server for minimal response

e	 Optimization of this software, on the other
hand, is a combinatorial problem with high
computational complexity.

contributed articles

february 2012 | vol. 55 | no. 2 | communications of the acm 79

time in an e-commerce application;
and Li et al.26 automatically created
hybrid sorting algorithms that outper-
form those provided by several widely
used libraries, including the C++ Stan-
dard Template Library.

Where the Road Goes…
The PbO paradigm offers numerous
benefits to software developers and us-
ers alike, including better performance
of programs created this way and eas-
ier, more effective adaptation to dif-
ferent (and changing) use contexts, as
well as better use of human capabili-
ties and skills throughout the develop-
ment process.

To be effective, PbO needs to be
used in combination with other tech-
niques and established practices. In
particular, careful consideration of
design patterns, memory-access and
communication patterns, data orga-
nization, and threading will still be
crucially important for achieving high
performance in many cases, as will
performance-profiling approaches.
PbO should be seen as complement-
ing, rather than superseding, these
considerations, which conversely in-
form and constrain the design choices
realized in the context of a PbO-based
development process. The cost of PbO
induces additional constraints and
may in certain cases limit the degree
to which the approach can be applied.
Still, many areas of computing sci-
ence and its applications have much
to gain from PbO, particularly for soft-
ware using techniques from artificial
intelligence, machine learning, and
data mining, as well as simulation
software, performance-critical pro-
cedures from standard libraries, and
even data transmissions protocols,
basically any situation involving heu-
ristic design choices.

While lower levels of PbO, in com-
bination with existing tools, are al-
ready able to achieve substantial
benefits, we believe the full potential
of PbO is realized through higher lev-
els of PbO-based software develop-
ment and dedicated support in the
form of the language extensions and
tools outlined here. A first version of
a weaver for PbO-C was implemented
by the author and now available at
http://www.prog-by-opt.net. PbO de-
sign optimization can be achieved

through readily available automated
algorithm-configuration procedures
(such as ParamILS19,20), and we expect
even better performing procedures to
be available within the next two years.
Similarly, meta-algorithmic proce-
dures that effectively produce per-
instance algorithm selectors from
a single, highly parametric design
are available today (see, for example,
Xu et al.39) and will likely be further
improved in the near future. We are
currently working on automated
procedures for generating parallel
portfolios from a given design-space
specification and expect to obtain
useful results soon. We plan to inte-
grate these (and possibly other) meta-
algorithmic optimization procedures
into a single PbO design optimizer
that facilitates their use in the context
of PbO-based software development.

The High Performance Algorithm
Laboratory (HAL) environment29 is
designed to support computer-aided
design and empirical analysis of high-
performance algorithms through
ready-to-use, state-of-the-art analysis
and design procedures. HAL provides
an ideal platform for realizing and op-
erating an integrated PbO design op-
timizer and could thus provide strong
support for PbO-based software de-
velopment. Furthermore, extensions
and enhancements of widely used
development platforms, particularly
the Eclipse integrated development
environment (http://www.eclipse.
org), will provide useful support for
PbO-based software development. Be-
sides syntax highlighting and folding
for PbO constructs, we envision tools
that support developers tracking and
navigating parameters and choices
(especially distributed choices) de-
clared in PbO sources, and in using
PbO weavers and optimizers in their
various modes.

We expect PbO to also facilitate
scientific insight into the efficacy of
algorithms and their components, as
well as into the empirical complex-
ity of computational problems. For
example, to measure the extent to
which a particular instance of a de-
sign choice contributes to overall per-
formance, one would simply remove
that instance (or instruct the weaver
to ignore it) and compare the perfor-
mance obtained in one or more use

Because it
enables empirical
investigation into
the interaction
between
problem-instance
characteristics
and the efficacy
of certain solver
components,
PbO promises to
facilitate insight
into what renders
certain problems
so difficult to solve.

80 communications of the acm | february 2012 | vol. 55 | no. 2

contributed articles

contexts when optimizing within this
reduced design space with the per-
formance obtained from the original
design space. Further analysis of the
differences between the two designs
could then produce insight into the
degree to which other design choices
might compensate for the effects of
eliminating that choice instance from
the design space. Comparing designs
optimized for different use contexts
can reveal interactions between char-
acteristics of a program’s inputs and
the mechanisms that should be used
to achieve good performance on those
inputs. Finally, because it enables em-
pirical investigation into the interac-
tion between problem instance char-
acteristics and the efficacy of certain
solver components, PbO promises to
facilitate insight into what renders
certain problems so difficult to solve.

While much work remains to realize
the full potential of the approach, PbO
will change the way developers and
users create, use, and study software.
While PbO will be especially effective
in the context of solving NP-hard prob-
lems, where general insight into prac-
tically effective solution methods is
limited, we are convinced it will prove
useful on a much broader scale.

Acknowledgments
Some of the ideas discussed here have
their roots in joint work and discus-
sions with Frank Hutter, Chris Fawcett,
Kevin Leyton-Brown, and Catherine
Yelick. Much of the work on automated
algorithm selection and configuration
and parameter tuning was carried out
by my research group at the University
of British Columbia, primarily involv-
ing Frank Hutter, Lin Xu, Kevin Leyton-
Brown, and Kevin Murphy, as well as
Thomas Stützle at the Université Libre
de Bruxelles, to whom I am grateful
for fruitful and ongoing collaboration.
I also gratefully acknowledge help-
ful comments by Sam Bayless and the
anonymous reviewers on earlier drafts
of this work. 	

References
1.	A denso-Diaz, B. and Laguna, M. Fine-tuning of

algorithms using fractional experimental design and
local search. Operations Research 54, 1 (Jan.–Feb.
2006), 99–114.

2.	B abić, D. and Hu, A.J. Structural abstraction of
software verification conditions. In Proceedings of
the 19th International Computer Aided Verification
Conference, Vol. 4590 LNCS. Springer-Verlag, Berlin/

Artificial Intelligence. IOS Press, Amsterdam, 2010,
751–756.

24.	K hudaBukhsh, A., Xu, L., Hoos, H., and Leyton-Brown,
K. SATenstein: Automatically building local search
SAT solvers from components. In Proceedings of
the 21st International Joint Conference on Artificial
Intelligence. AAAI Press, Palo Alto, CA, 2009,
517–524.

25.	L eyton-Brown, K., Nudelman, E., Andrew, G.,
McFadden, J., and Shoham, Y. A portfolio approach
to algorithm selection. In Proceedings of the
18th International Joint Conference on Artificial
Intelligence. Morgan Kaufmann Publishers, San
Francisco, 1542–1543.

26.	L i, X., Garzarn, M.J., and Padua, D. Optimizing
sorting with genetic algorithms. In Proceedings of
the International Symposium on Code Generation
and Optimization. IEEE Computer Society Press,
Washington, D.C., 2005, 99–110.

27.	M aron, O. and Moore, A.W. Hoeffding races:
Accelerating model selection search for classification
and function approximation. In Proceedings of
the Seventh Conference on Advances in Neural
Information Processing Systems. Morgan Kaufmann
Publishers, San Francisco, 1994, 59–66.

28.	M onette, J.N., Deville, Y., and Hentenryck, P.V.
Aeon: Synthesizing scheduling algorithms from
high-level models. Operations Research and
Cyber-Infrastructure Series, Vol. 47. Springer
Science+Business, New York, 2009, 43–59.

29.	N ell, C.W., Fawcett, C., Hoos, H.H., and Leyton-Brown,
K. HAL: A framework for the automated design
and analysis of high-performance algorithms. In
Proceedings of the Fifth International Conference on
Learning and Intelligent Optimization, Vol. 6683 LNCS.
Springer-Verlag, Berlin/Heidelberg, 2011, 600–615.

30.	N udelman, E., Leyton-Brown, K., Devkar, A., Shoham,
Y., and Hoos, H.H. Understanding random SAT: Beyond
the clauses-to-variables ratio. In Principles and
Practice of Constraint Programming, Vol. 3258 LNCS.
Springer-Verlag, Berlin/Heidelberg, 2004, 438–452.

31.	 Pan, Z. and Eigenmann, R. Fast and effective
orchestration of compiler optimizations for
automatic performance tuning. In Proceedings of
the International Symposium on Code Generation
and Optimization. IEEE Computer Society Press,
Washington, D.C., 2006, 319–332.

32.	R ice, J.R. The algorithm selection problem. Advances
in Computers 15 (1976), 65–118.

33.	S anders, P. and Schultes, D. Engineering fast route
planning algorithms. In Proceedings of the Sixth
International Workshop on Experimental Algorithms,
Vol. 4525 LNCS. Springer-Verlag, Berlin/Heidelberg,
2007, 23–36.

34.	S pall, J. Introduction to Stochastic Search and
Optimization. John Wiley & Sons, Inc., New York, 2003.

35.	 Vallati, M., Fawcett, C., Gerevini, A., Hoos, H.H., and
Saetti, A. Automatic generation of efficient domain-
optimized planners from generic parametrized
planners. In Proceedings of the Eighth RCRA
International Workshop on Experimental Evaluation of
Algorithms for Solving Problems with Combinatorial
Explosion, 2011; http://ijcai-11.iiia.csic.es/files/
proceedings/RCRA2011-proceedings.pdf

36.	 Vilalta, R. and Drissi, Y. A perspective view and survey
of meta-learning. Artificial Intelligence Review 18, 2
(Oct. 2002), 77–95.

37.	W estfold, S.J. and Smith, D.R. Synthesis of efficient
constraint-satisfaction programs. Knowledge
Engineering Review 16, 1 (Mar. 2001), 69–84.

38.	W haley, R.C., Petitet, A., and Dongarra, J.J. Automated
empirical optimizations of software and the ATLAS
project. Parallel Computing 27, 1–2 (Jan. 2001), 3–35.

39.	 Xu, L., Hoos, H., and Leyton-Brown, K. Hydra:
Automatically configuring algorithms for portfolio-
based selection. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence. AAAI Press,
Palo Alto, CA, 2010, 210–216.

40.	Xu, L., Hutter, F., Hoos, H.H., and Leyton-Brown, K.
SATzilla: Portfolio-based algorithm selection for SAT.
Journal of Artificial Intelligence Research 32 (May-
Aug. 2008), 565–606.

Holger H. Hoos (hoos@cs.ubc.ca) is a professor in the
computer science department of the University of British
Columbia, Vancouver, B.C., and a faculty associate in
the Peter Wall Institute for Advanced Studies of the
University of British Columbia, Vancouver, B.C.

© 2012 ACM 0001-0782/12/02 $10.00

Heidelberg, 2007, 366–378.
3.	B attiti, R., Brunato, M., and Mascia, F. Reactive Search

and Intelligent Optimization. Operations Research/
Computer Science Interfaces Series, Vol. 45. Springer,
2008.

4.	B irattari, M., Yuan, Z., Balaprakash, P., and Stützle,
T. F-Race and Iterated F-Race: An overview. In
Experimental Methods for the Analysis of Optimization
Algorithms. Springer-Verlag, Berlin/Heidelberg, 2010,
311–336.

5.	C archrae, T. and Beck, J. Applying machine learning
to low knowledge control of optimization algorithms.
Computational Intelligence 21, 4 (Nov. 2005),
373–387.

6.	C heeseman, P., Kanefsky, B., and Taylor, W.M. Where
the really hard problems are. In Proceedings of
the 12th International Joint Conference on Artificial
Intelligence. Morgan Kaufmann, San Mateo, CA, 1991,
331–337.

7.	D a Costa, L., Fialho, Á., Schoenauer, M., and Sebag, M.
Adaptive operator selection with dynamic multi-armed
bandits. In Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation. ACM Press,
New York, 2008, 913–920.

8.	D iao, Y., Eskesen, F., Froehlich, S., Hellerstein, J.L.,
Spainhower, L., and Surendra, M. Generic online
optimization of multiple configuration parameters with
application to a database server. In Proceedings of the
14th IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management, Vol. 2867
LNCS. Springer-Verlag, Berlin/Heidelberg, 2003, 3–15.

9.	G agliolo, M. and Schmidhuber, J. Dynamic algorithm
portfolios. In Proceedings of the Ninth International
Symposium on Artificial Intelligence and Mathematics;
http://anytime.cs.umass.edu/aimath06/

10.	G omes, C.P. and Selman, B. Algorithm portfolios.
Artificial Intelligence 126, 1–2 (Feb. 2001), 43–62.

11.	G uerri, A. and Milano, M. Learning techniques for
automatic algorithm portfolio selection. In Proceedings
of the 16th European Conference on Artificial
Intelligence. IOS Press, Amsterdam, 2004, 475–479.

12.	H amerly, G. and Elkan, C. Learning the k in k-means.
In Proceedings of the Conference on Advances in
Neural Information Processing Systems. MIT Press,
Cambridge, MA, 2004, 281–288.

13.	H oos, H.H. Automated algorithm configuration and
parameter tuning. In Autonomous Search, Y. Hamadi
and F. Saubion, Eds. Springer-Verlag, 2011.

14.	H oos, H. Programming by Optimisation. Technical
Report TR-2010-14. Department of Computer Science,
University of British Columbia, Vancouver, 2010.

15.	H oos, H. Computer-Aided Design of High-Performance
Algorithms. Technical Report TR 2008-16. Department
of Computer Science, University of British Columbia,
Vancouver, 2008.

16.	H oos, H.H. and Stützle, T. Stochastic Local Search:
Foundations and Applications. Morgan Kaufmann
Publishers, San Francisco, 2004.

17.	H uberman, B., Lukose, R., and Hogg, T. An economics
approach to hard computational problems. Science
275, 5296 (Jan. 1997), 51–54.

18.	H utter, F., Babić, D., Hoos, H.H., and Hu, A.J.
Boosting verification by automatic tuning of decision
procedures. In Proceedings of Formal Methods in
Computer-Aided Design. IEEE Computer Society
Press, Los Alamitos, CA, 2007, 27-34.

19.	H utter, F., Hoos, H., Leyton-Brown, K., and Stützle,
T. ParamILS: An automatic algorithm configuration
framework. Journal of Artificial Intelligence Research
36 (Sept.-Dec. 2009), 267–306.

20.	H utter, F., Hoos, H., and Stützle, T. Automatic
algorithm configuration based on local search. In
Proceedings of the 22nd National Conference on
Artificial Intelligence. AAAI Press, Palo Alto, CA,
2007, 1152–1157.

21.	H utter, F., Hoos, H.H., and Leyton-Brown, K.
Automated configuration of mixed integer
programming solvers. In Proceedings of the Seventh
International Conference on the Integration of AI
and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, Vol. 6140 LNCS.
Springer-Verlag, Berlin/Heidelberg, 2010, 186–202.

22.	H utter, F., Hoos, H.H., and Leyton-Brown, K.
Sequential model-based optimization for general
algorithm configuration. In Proceedings of the Fifth
International Conference on Learning and Intelligent
Optimization, Vol. 6683 LNCS. Springer-Verlag, Berlin/
Heidelberg, 2011, 507–523.

23.	K adioglu, S., Malitsky, Y., Sellmann, M., and Tierney, K.
ISAC: An instance-specific algorithm configuration.
In Proceedings of the 19th European Conference on

