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When creating software, developers usually explore 
different ways of achieving certain tasks. These 
alternatives are often eliminated or abandoned early  
in the process, based on the idea that the flexibility  
they afford would be difficult or impossible to exploit 
later. This article challenges this view, advocating an 
approach that encourages developers to not only 
avoid premature commitment to certain design 
choices but to actively develop promising alternatives 
for parts of the design. In this approach, dubbed 
Programming by Optimization, or PbO, developers 
specify a potentially large design space of programs 
that accomplish a given task, from which versions 
of the program optimized for various use contexts 
are generated automatically, including parallel 
versions derived from the same sequential sources. 
We outline a simple, generic programming language 
extension that supports the specification of such 
design spaces and discuss ways specific programs 

that perform well in a given use context 
can be obtained from these specifica-
tions through relatively simple source-
code transformations and powerful de-
sign-optimization methods. Using PbO, 
human experts can focus on the creative 
task of devising possible mechanisms 
for solving given problems or subprob-
lems, while the tedious task of deter-
mining what works best in a given use 
context is performed automatically, sub-
stituting human labor by computation. 

The potential of PbO is evident from 
recent empirical results (see the table 
here). In the first two use cases—mixed 
integer programming and planning—
existing software exposing many de-
sign choices in the form of parameters 
was automatically optimized for speed. 
This resulted in, for example, up to 52-
fold speedups for the widely used com-
mercial IBM ILOG CPLEX Optimizer 
software for solving mixed-integer pro-
gramming problems.21 In the third use 
case—verification problems encoded 
into propositional satisfiability—the 
proactive development of alternatives 
for important components of the pro-
gram were an important part of the 
design process, enabling even greater 
performance gains. 

Performance Matters 
Computer programs and the algo-

 key insights

 � �Premature commitment to design 
choices during software development 
often leads to loss of performance and 
limited flexibility. 

 � �PbO aims to avoid premature design 
choices and actively develop design 
alternatives, leading to large and  
rich design spaces of programs  
that can be specified through simple  
generic extensions of existing 
programming languages. 

 � �Advanced optimization and machine-
learning techniques make it possible 
to perform automated performance 
optimization over the large spaces of 
programs arising in PbO-based software 
development; per-instance algorithm 
selectors and parallel algorithm 
portfolios can be obtained from the same 
sequential source. 
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rithms on which they are based fre-
quently involve different ways of get-
ting something done. Sometimes, 
certain choices are clearly preferable, 
but it is often unclear a priori which of 
several design decisions will ultimate-
ly give the best results. Such design 
choices can, and, routinely, do, occur 
at many levels, from high-level archi-
tectural aspects of a software system 
to low-level implementation details. 
They are often made based on consid-

erations of maintainability, extensi-
bility, and performance of the system 
or program under development. This 
article focuses on this latter aspect 
of a system’s performance, consider-
ing only sets of semantically equiva-
lent design choices and situations in 
which the performance of a program 
depends on the decisions made for 
each part of the program for which one 
or more candidate designs are avail-
able, even though these choices do not 

affect the program’s correctness and 
functionality. Note this premise differs 
fundamentally from that of program 
synthesis, in which the primary goal is 
to come up with a design that satisfies 
a given functional specification. 

It may appear that (partly due to the 
sustained, exponential improvement 
in computer hardware over more than 
five decades) software performance is 
a relatively minor concern. However, 
upon closer inspection this is far from 

MagicCube5D, a fully functional five-dimensional analogue of Rubik’s Cube.
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true. Problems that are NP-hard and 
considered computationally intracta-
ble are at the heart of a range of chal-
lenging tasks encountered in practical 
applications of considerable impor-
tance for the worldwide economy, in-
cluding scheduling, time-tabling, 
resource allocation, production plan-
ning and optimization, computer-aid-
ed design, and software verification. 

We expect that, as economic con-
straints tighten, finding good solu-
tions to these problems will, in many 
cases, become more difficult. For ex-
ample, resource-allocation problems 
are typically easy to solve if there is an 
abundance of resources relative to the 
demands in a given situation. Con-
versely, as demands substantially ex-
ceed available resources, no allocation 
will satisfy all of them, and, slightly 
less obvious, this fact is typically easy 
to demonstrate. It is between these 
extremes that the difficult cases arise, 
where the demands and available re-
sources are balanced enough that find-
ing a satisfactory allocation or dem-
onstrating that none exists becomes 
computationally difficult.a 

A natural tendency toward this 
critically constrained, computation-
ally difficult case can be expected in 
many real-world contexts. The under-
constrained case is typically economi-
cally wasteful, providing an incentive 
for increasing demand on resources 
by, say, enlarging the customer base, 
taking on more projects, or reduc-
ing availability of resources (such as 
by scaling back personnel or equip-
ment allotment). On the other hand, 

a	 This argument is closely related to the notion 
of “critical constrainedness,” as described by 
Cheeseman et al.6

the overconstrained case typically 
corresponds to lost market opportu-
nity and can cause substantial strain 
within an organization, providing an 
incentive to increase resource avail-
ability. Furthermore, growing aware-
ness and concern about the limita-
tions of natural resources (such as oil 
and natural gas), along with increased 
competition in larger markets and 
just-in-time delivery of goods and ser-
vices, provide further incentives to 
find solutions to computationally dif-
ficult problems as quickly as possible. 
That is why the performance of algo-
rithms, and of the software based on 
them, matters. 

Premature Design Choices 
In most (if not all) cases, the key to solv-
ing computationally challenging prob-
lems lies in a combination of design 
choices, with effects on performance 
often interacting in complex, unex-
pected ways. These choices are typi-
cally heuristic in the sense that their 
efficacy can be demonstrated empiri-
cally yet remains inaccessible to the 
analytical techniques used for proving 
theoretical complexity results. In some 
cases, choosing among design alterna-
tives is made at development stages 
preceding the generation of actual 
code; in others, design decisions have 
far-reaching effects on other choices, 
when, say, deciding on higher-level 
architectural aspects of a system or on 
specific data structures widely used 
within a larger piece of software. How-
ever, one of several design alternatives 
is often chosen at or after the imple-
mentation stage, and such a choice, 
while not constraining other parts of 
the system, may have a substantial ef-
fect on overall performance. 

Sometimes, decisions of the latter 
type are deferred to a post-implementa-
tion stage and left to the user by expos-
ing them as parameters.b More often, 
however, they are hard-coded, either by 
means of constants within a program 
or module or by retaining some pieces 
of code while abandoning alternatives. 
Especially when implementing heu-
ristic mechanisms, programmers usu-
ally make these design choices based 
on intuition, experience, and perhaps 
some ad hoc experimentation.

What PbO Means 
Experience in designing high-perfor-
mance heuristic solvers for NP-hard 
problems shows that building software 
this way leads to suboptimal results in 
terms of performance and adaptability 
to different use contexts. Furthermore, 
considering preliminary evidence 
from application areas ranging from 
numerical computation to sorting al-
gorithms, similar concerns arise when 
tackling polynomial-time computa-
tional problems. We therefore advo-
cate an approach in which many design 
choices are deliberately left open by 
means of retaining alternative realiza-
tions of components or mechanisms 
and by exposing a large number of pa-
rameters.15,18,24 These choices are then 
made by means of running a meta-
algorithmic optimization procedure, 
optimizing the empirical performance 
obtained in a given use context. Such a 
use context is characterised by a set (or 
distribution) of inputs representative 
of those encountered in a situation in 
which a given program is used. 

The PbO approach is based on the 
idea of avoiding premature commit-
ment to certain design choices and 
actively developing promising alter-
natives for parts of the design. Rath-
er than build a single program for a 
given purpose, software developers 
specify a rich and potentially large 
design space of programs. From this 
specification, programs that perform 
well in a given use context are gener-
ated automatically through powerful 
optimization techniques. 

PbO allows human experts to focus 

b	 Many users, especially those lacking deep in-
sight into the program or system under con-
sideration, tend to keep these parameters at 
their default values.

Speedups achieved through PbO in conjunction with an automated configurator19,20 
for performance optimization of solvers for three prominent NP-hard problems in  
various application contexts; these speedups are with respect to default configurations  
determined by human experts based on substantial manual effort, and both ends of  
the ranges shown refer to averages over large sets of benchmark instances. 

Problem Solver # Parameters # Configurations Speedup Reference

Mixed integer programming CPLEX 76 1.9 × 1047 2–52 × Hutter et al.21

Planning LPG 62 6.5 × 1017 3–118 × Vallati et al.35

Propositional satistisfiability  
hardware and software  
verification

SPEAR 26 8.3 × 1017 3–525 × Hutter et al.18
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on the creative task of imagining pos-
sible mechanisms for solving given 
problems or subproblems, while the 
tedious job of determining what works 
best in a given use context is performed 
automatically, substituting human la-
bor with computation. More complex 
designs (such as per-instance selec-
tors11,25,40 and parallel portfolios10,17) 
can be generated automatically from 
the same design-space specification 
(and sources; see Figure 1). Such de-
signs are increasingly relevant, since 
they achieve high performance across 
a range of use contexts. 

Influence on Software 
Development and Deployment 
In 2007, our group at the University of 
British Columbia first employed, un-
wittingly, the key idea behind PbO in 
the context of collaborative work on 
SAT-based software verification.18 Us-
ing off-the-shelf solvers for the propo-
sitional satisfiability problem (SAT) 
has become a standard approach for 
formally verifying hardware and soft-
ware. In the project, the idea was to 
produce a SAT solver that would be es-
pecially well suited for dealing with SAT 
instances produced by a specific static 
checker, CALYSTO.2 In initial stages 
of the work (carried out by Domagoj 
Babić  and Alan Hu of the ISD Labora-
tory in the computer science depart-
ment), a new SAT solver dubbed SPEAR 
was developed, including a range of 
techniques from the SAT literature. 
Because it was unclear which combi-
nation of techniques would be most 
effective for solving the SAT instances 
produced by CALYSTO, the initial ver-
sion of SPEAR could be configured flex-
ibly through parameters exposed to the 
user. On the other hand, finding set-
tings for these parameters that would 
result in good solver performance on 
the instances of interest proved chal-
lenging, even for its primary designer, 
Babić . Therefore, the team decided to 
use the automated algorithm configu-
ration procedure ParamILS (described 
later)20 to accomplish the task. 

What happened next can be seen as 
the genesis of the PbO paradigm: After 
seeing how much better the configura-
tions found by ParamILS performed 
than his manually tuned default set-
tings, Babić  decided to expose addi-
tional design choices. Some of them 

had been previously hardwired into the 
program; others had been implement-
ed, tested, and then abandoned; yet 
others were newly implemented alter-
natives to existing mechanisms within 
SPEAR. This ultimately led to a version 
of SPEAR that could be configured via 
26 parameters, jointly giving rise to 
8:34 · 1017 configurations of the solver.c

ParamILS turned out to be able to 
achieve speedups of a factor of more 
than 500 for the software-verification 
instances produced by CALYSTO com-
pared to the default configuration of 
SPEAR that had been manually deter-
mined with considerable effort by its 
designer.18 This automatically opti-
mized configuration of SPEAR won the 
QF BV category of the 2007 Satisfiability 
Modulo Theories Competition (http://
www.smtcomp.org/2007/), using sev-
eral components, including clause and 
variable elimination mechanisms, that 
appeared to be ineffective during ear-
lier, manual-configuration attempts. 
Moreover, the same highly paramet-
ric version of SPEAR, when automati-
cally optimized for solving SAT-encod-
ed hardware verification instances, 
achieved substantial speedups over the 
(then) state-of-the-art solver MiniSAT 

c	 These parameters control all fundamental 
mechanisms behind modern SAT solvers, in-
cluding variable selection, clause learning, re-
starts, and simplification strategies.

2.0.18 Comparing the configurations 
specifically optimized for SAT-encod-
ed hardware and software verification 
produced a number of interesting ob-
servations; for example, the configura-
tion optimized for software verification 
was found to use a more aggressive re-
start mechanism and a simpler phase-
selection heuristic than the one opti-
mized for hardware verification. 

The example of SPEAR reflects the 
two key elements of the PbO approach: 

˲˲ Specification of large, rich com-
binatorial design spaces of programs 
that solve a given problem by avoid-
ing premature commitment to certain 
design choices and development of 
promising alternatives for parts of the 
design; and 

˲˲ Automated generation of programs 
that perform well in a given use context 
from this specification by means of op-
timization techniques that realize the 
performance potential inherent in a 
given design space. 

These concepts can be realized to 
various degrees and are present to 
some extent in practices already used 
within computing science and beyond. 
Our goal is to formulate and establish 
an approach to software development 
and, indeed, to the solution of compu-
tational problems that explicitly recog-
nizes these elements, as well as provide 
conceptual support and tools that fa-
cilitate advanced forms of PbO. 

Figure 1. Developers specify a potentially large design space of programs that accomplish  
a given task; from it, versions of the program optimized for different application contexts 
are generated automatically; per-instance selectors and parallel portfolios of programs  
can be derived from the same specification. 

optimized 
program

parallel
portfolio

per-
instance
selector

use context

design space of 
programs
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Based on observations from SPEAR 
(and elsewhere), we distinguish four 
levels of PbO: 

Level 0. Settings of the parameters 
exposed by an existing piece of soft-
ware are optimized for a given use 
context (characterized by, say, a set 
of typical input data), also known as 
parameter tuning or algorithm con-
figuration; 

Level 1. The design space represent-
ed by an existing piece of software is 
extended by exposing design choices 
hardwired into code. Such choices in-
clude certain magic constants, or liter-
als that, when modified, could affect 
performance but not the program’s 
correct function, as well as hidden pa-
rameters and named constants that 
could take different values without 
compromising the program’s correct-
ness. Further examples of hardwired 
choices are variables set to constant 
values but not exposed as externally 
accessible parameters and abandoned 
design alternatives, or pieces of code 
that could be used in addition to or 
instead of active code without compro-
mising correctness but that are no lon-
ger reachable during execution of the 
current version of the program; 

Level 2. Design choices considered 
during the normal course of the soft-
ware-development process are actively 
kept and exposed to the user; 

Level 3. The software-development 
process is structured and carried out 
in a way that seeks to provide design 
choices and alternatives in many per-
formance-relevant components of a 
project; and 

Level 4. The software-development 
process is centered on the idea of pro-
viding design choices and alternatives 
in all parts of a project that might bene-
fit from them; design choices that can-
not be justified convincingly are not 
made prematurely. 

While levels 0 and 1 deal with exist-
ing software and essentially involve 
adding one or more phases to the 
development process based on PbO 
principles, levels 2–4 integrate PbO 
tightly into software creation. These 
higher levels of PbO typically involve 
assessing the cost of developing alter-
natives against the value ascribed to 
the possible gains in performance (a 
topic discussed later). Note that lev-
els 3 and 4 lend themselves to a team 
approach, where various team mem-
bers contribute alternative designs for 
functionally equivalent components. 
The first example in the table can be 
classified as level 0 and the second 
as level 1, while the late-development 
stages of the SPEAR SAT solver fall be-
tween levels 2 and 3. 

It is possible to apply the PbO para-
digm with existing methods and tools, 

particularly since research on automat-
ed algorithm configuration has yielded 
several powerful techniques (discussed 
later). Nevertheless, especially at the 
highest levels of PbO-based software 
development, substantial benefit can 
be gained from using dedicated tools. 
Software development using dedicated 
PbO support involves three key stages 
(see Figure 2): 

˲˲ Developers write the source code 
for a program in a language generi-
cally extended with constructs that 
explicitly declare alternative blocks 
of code and parameters that are to be 
exposed on the command line; for a 
programming language <L>, we call 
the thus extended language PbO-<L>. 
This enriched source specifies a de-
sign space of programs rather than a 
single program; 

˲˲ A tool we call the “PbO weaver” 
transforms this PbO-<L> specifica-
tion into a program written entirely 
in language <L> that exposes the de-
sign choices specified in the original 
source as parameters; it also produces 
a description of the respective design 
space; and 

˲˲ A second tool called the “PbO de-
sign optimizer” produces from the 
parametric <L>-source a fully instan-
tiated <L>-source, that is, a version of 
the program in which all design choic-
es are made in a way that results in de-
sirable performance characteristics on 
benchmark inputs characteristic of a 
given use context. This version of the 
program can then be deployed, in the 
case of compiled languages <L> (such 
as C and C++) after compilation. 

The PbO-based approach to soft-
ware development can provide sub-
stantially increased flexibility to soft-
ware developers, providers, and users 
alike. In particular, it makes it possible 
to automatically customize software 
for optimized performance in differ-
ent use contexts. This optimization 
can be carried out automatically by the 
software developer, provider, and even 
user; furthermore, it can, in principle, 
be performed at the level of a paramet-
ric executable and does not require 
sources to be made available to the 
provider or user. PbO also provides a 
generic way for creating software that 
periodically and automatically adapts 
itself for optimized performance as the 
use context changes over time. This 

Figure 2. Developers produce a PbO-enhanced source code in their language of choice, 
<L>, from which the PbO weaver generates parametric source code in pure <L>, as well 
as a description of the design space; the PbO design optimizer uses this parametric source, 
along with benchmark input data, to produce a fully instantiated version of the source code, 
optimized specifically for deployment in the given use context. 

Figure 1. Globus Online architecture. 
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process could be set up to take place 
entirely client-side or be delivered as 
an Internet service. In the latter case, 
input data from the actual application 
is collected client-side and transmitted 
to the service provider, where the PbO 
design optimizer is run to produce a 
new software configuration that is then 
transmitted back to the client and de-
ployed there. 

Another attractive feature of PbO 
involves the ability to generate multi-
ple programs for a given purpose that 
are automatically combined into a 
per-instance selector; that is, a mecha-
nism that selects one of them to be run 
on given input data based on charac-
teristics of that data or into a parallel 
portfolio that runs them concurrently 
on the same input, optimized for a giv-
en use context. These complex designs 
are generated from the same design-
space specification (in the form of a 
PbO-<L> source) that gives rise to a 
single, optimized program. PbO thus 
offers generic and automated ways 
of taking advantage of the fact that 
large design spaces typically contain 
programs that work well on differ-
ent kinds of input data; it also offers 
a generic, automated way of generat-
ing parallel programs from inherently 
sequential sources. To construct port-
folios and per-instance selectors, the 
PbO weaver must produce a suitably 
modified parametric source for the 
component programs, as well as for 
an execution controller that launches, 
monitors, and terminates the compo-
nent programs as needed. Moreover, 
the PbO design optimizer must also 
produce fully instantiated sources 
(or parameter settings) for all compo-
nent programs; when building a per-
instance selector, it also makes use 
of a “feature extractor” that computes 
from given input data the features that 
serve as the basis for determining the 
component program to be run.

Design-Space Specification 
To facilitate specification of design 
spaces, we introduce three basic mech-
anisms; the first two provide dedicated 
support for exposing parameters and 
specifying alternative blocks of code, 
respectively. Level 1 of PbO (explored 
earlier) reflects the need for both 
mechanisms—one required to expose 
magic constants and hidden param-

sets of interchangeable blocks of code 
representing design alternatives (pos-
sibly nested and distributed across 
the source code), and one for logging 
the current value of arbitrary (typed) 
expressions at runtime. Depending 
on PbO weaver settings, information 
logged this way could be written to 
one or more files (particularly to stan-
dard output) or to a database; it could 
also be sent directly to an execution 
controller, using other mechanisms 
(such as remote procedure calls and 
network sockets). Details on these 
constructs are provided in the online 
Appendix. 

Meta-Algorithmic Optimization 
Following specification of a design 
space, meta-algorithmic optimization 
procedures are used to automatically 
find a program with desirable perfor-
mance characteristics within it. In the 
simplest case, these procedures deter-
mine a single, fully instantiated pro-
gram with performance (measured ac-
cording to a user-defined metric, such 
as average runtime) optimized for a 
given set of inputs. Since choices can 
be exposed as parameters (handled by 
the PbO weaver described in the Appen-
dix), the problem solved by these meta-
algorithmic optimization procedures 
corresponds to the well-known algo-
rithm-configuration problem (some-
times called the “parameter tuning 
problem”), which can be described as 
follows: Given a target algorithm A that 
can be configured via a set of exposed 
parameters, a set of input data I and a 
performance metric m, find a param-
eter configuration of A that yields opti-
mized performance on I, as measured 
by m (see, for example, Hoos,13 Hutter 
et al.,19 and Hutter et al.20). 

In principle, algorithm configu-
ration can be viewed as a stochastic 
optimization problem (where the 
stochasticity stems from the perfor-
mance variation observed over a set 
of input data or from randomization 
of the computation performed on 
the data and solved using standard 
stochastic-optimization procedures 
(see, for example, Spall34). However, 
such procedures lack mechanisms 
for dealing with sets of inputs and 
capped runs. The issue of perfor-
mance variation over input sets is 
important, because evaluating many 

eters, the other to capture design al-
ternatives that might otherwise have 
been abandoned. The same require-
ments are encountered at higher levels 
of PbO. The third mechanism provides 
lightweight support for exposing in-
formation available while a program is 
running; this information can be used 
to adaptively control design choices at 
runtime (by automatically generated 
execution controllers), as well as for 
debugging and empirical analysis. 

All three mechanisms can, in prin-
ciple, be realized within the target 
language used for implementing the 
program under development; however, 
this approach to design-space speci-
fication suffers from several weak-
nesses: First, it does not allow for easy, 
automatic extraction of design-space 
descriptions required as input for the 
design-optimization process. Second, 
it does not easily support instantiation; 
the process in which certain design 
choices made during design optimiza-
tion are hardwired into the source code 
to produce leaner, more-efficient ex-
ecutables. Finally, it does not facilitate 
dedicated PbO support by widely used 
software-development environments 
and tools, as in, say, PbO-aware syntax 
highlighting, folding, and manage-
ment of design alternatives. The use 
of conditional compilation (provided 
by, say, the C pre-processor) addresses 
lack of support for instantiation but 
adds substantial overhead to the me-
ta-algorithmic optimization process 
(discussed later), which often involves 
running thousands of distinct configu-
rations of a program. 

These issues are best addressed by a 
generic programming-language exten-
sion providing dedicated support for 
exposing parameters, design alterna-
tives, and runtime information. Such 
an extension would facilitate clear, 
explicit specification of the parts of a 
program representing design choices 
deliberately left open in a manner that 
is independent of the programming 
language used. It also provides a bet-
ter basis for extending and enhancing 
widely used development platforms to 
support use of PbO. 

The programming-language exten-
sion proposed here consists of four 
simple constructs, including two for 
declaring and accessing (typed) pa-
rameters, one for declaring choices, or 
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program configurations on all inputs 
from a given set can incur a substan-
tial (sometimes prohibitive) compu-
tational burden that can and typically 
should be avoided, given that poor 
performance often manifests across 
a range of inputs. Furthermore, there 
are situations in which candidate 
configurations can be discarded with-
out completing runs that exceed a 
certain time bound, considering the 
performance measured for other con-
figurations; such runs can be capped, 
or terminated when that time bound 
is reached or exceeded.19 

Note, too, the specification of al-
ternative blocks of code that are cen-
tral to the way a design space is con-
structed in PbO, necessarily leads to 
categorical parameters, or parameters 
with a discrete set of unordered val-
ues, and nested alternatives give rise 
to conditional parameters. Therefore, 
general methods for algorithm con-
figuration used in the context of PbO 
must support categorical and condi-
tional parameters, ruling out stan-
dard procedures for stochastic and 
numerical optimization. 

Three classes of methods are spe-
cifically designed for carrying out al-
gorithm-configuration tasks (see also 
Hoos13): Racing procedures iteratively 
evaluate target algorithm configura-
tions on inputs from a given set, using 
statistical hypothesis tests to elimi-
nate candidate configurations signifi-
cantly outperformed by other configu-
rations; model-free search procedures 
use suitably adapted search tech-
niques, particularly stochastic local 
search methods (such as iterated lo-
cal search) to explore potentially vast 
configuration spaces; and sequential 
model-based optimization (SMBO) 
methods build a response surface 
model that relates parameter settings 
to performance, using the model to 
iteratively identify promising param-
eter settings. 

Racing procedures were originally 
introduced to solve model-selection 
problems in machine learning.27 When 
adapted to the problem of selecting a 
program for a given task from a set of 
interchangeable candidates, where 
each candidate may correspond to a 
configuration of a parameterized al-
gorithm, the key idea is to sequentially 
evaluate the candidates on a series 

of benchmark inputs and eliminate 
programs as soon as they fall too far 
behind the current incumbent, or the 
candidate with overall best perfor-
mance at a given stage of the race. A 
line of work initiated by Birattari et 
al. in 2002 has more recently led to a 
procedure dubbed “Iterated F-Race” 
that is demonstrated effective at solv-
ing difficult algorithm-configuration 
tasks with up to 12 parameters4; there 
is some indication that Iterated F-Race 
may also be able to handle substantial-
ly more complex situations. 

As of this writing, model-free search 
techniques, most notably the Fo-
cusedILS procedure of Hutter et al.,19 
represent the state of the art in solving 
algorithm-configuration problems of 
the kind that arise in the PbO context. 
Along with BasicILS, another member 
of the ParamILS family of algorithm-
configuration procedures,19,20 it is 
today the only method that supports 
categorical and conditional param-
eters, as well as capping. At the core 
of the ParamILS framework is Iterated 
Local Search, or ILS, a versatile, well-
known stochastic local-search method 
that has been applied with great suc-
cess to a range of difficult combinato-
rial problems (see, for example, Hoos 
and Stützle16). ILS iteratively performs 
phases of simple local search, de-
signed to quickly reach or approach 
a locally optimal solution of a given 
problem instance, interspersed with 
so-called perturbation phases, to es-
cape from local optima. Starting from 
a local optimum x, ILS performs one 
perturbation phase in each iteration, 
followed by a local search phase, with 
the aim of reaching (or approaching) a 
new local optimum x́ . It then uses a so-
called “acceptance criterion” to decide 
whether to continue the search pro-
cess from x́  or revert to the previous 
local optimum, x. Applying this mech-
anism, ILS aims to solve a given prob-
lem instance by exploring the space of 
its locally optimal solutions. ParamILS 
performs iterated local search in the 
configuration space of a given para-
metric algorithm. 

While BasicILS, the simplest vari-
ant of ParamILS, evaluates candidate 
configurations based on a fixed num-
ber of target algorithm runs, the more 
sophisticated FocusedILS procedure 
uses a heuristic mechanism to per-

PbO lets human 
experts focus  
on the creative  
task of imagining 
possible 
mechanisms for 
solving given 
problems or 
subproblems,  
while the tedious 
job of determining 
what works best  
in a given 
use context 
is performed 
automatically. 
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form runs on a candidate configura-
tion only as long as that configuration 
appears promising compared to the 
current incumbent; it therefore avoids 
wasting computational effort on con-
figurations easily recognized as per-
forming poorly. The use of FocusedILS 
for configuring highly parametric soft-
ware has led to substantial improve-
ment in the state of the art in solving 
prominent classes of SAT,18,24 mixed-
integer programming,21 and planning 
problems.35 In the case of mixed-inte-
ger programming, our group used Fo-
cusedILS to configure 76 parameters 
of the widely used commercial CPLEX 
software (searching within a design 
space of 1.9 · 1047 configurations of 
the solver), resulting in up to 50-fold 
speedups over the extensively opti-
mized default configuration.21 

SMBO procedures for algorithm 
configuration are based on the idea of 
using the information gained from pa-
rameter configurations evaluated so 
far to build and maintain a response 
surface model that directly captures 
the dependence of target-algorithm 
performance on parameter settings; 
this model is used to determine prom-
ising configurations at any stage of 
an iterative model-based search pro-
cedure. Almost all existing work on 
sequential model-based optimization 
focuses on a setting known as “black-
box function optimization,” with re-
sulting procedures suffering from 
the same shortcomings as standard 
numerical optimization procedures, 
in that they do not support categori-
cal and conditional parameters nor 
provide mechanisms for effectively 
dealing with sets of inputs and cap-
ping of runs. However, two of these 
limitations were overcome in 2011 
by a procedure dubbed “Sequential 
Model-based Algorithm Configura-
tion,” or SMAC, handling categori-
cal parameters while exploiting the 
fact that performance is evaluated on 
a set of inputs.22 Evidence suggests 
that SMAC can, at least on some chal-
lenging configuration benchmarks, 
reach and sometimes exceed the per-
formance of FocusedILS. We expect 
further work will lead to SMBO-based 
procedures that turn out to be use-
ful for solving design-optimization 
tasks in the context of PbO, particu-
larly when the parameter response of 

a given target algorithm is reasonably 
regular and performance evaluations 
are very costly. 

The idea of automatically con-
structing a per-instance algorithm se-
lector from a single parametric design 
was recently explored by Xu et al.39 
and, independently, by Kadioglu et 
al.23 In each, a given feature extractor 
was used to compute a vector of fea-
tures from the given input to be pro-
cessed. The method by Kadioglu et al., 
dubbed ISAC, uses a combination of 
clustering based on the feature values 
and automatic algorithm configura-
tion to produce an algorithm selector. 
The Hydra procedure by Xu et al. itera-
tively adds configurations of a given 
program to the set available to the per-
instance selector; in each iteration, 
Hydra automatically determines an 
additional configuration to maximally 
improve the performance obtained 
when building a selector using the 
thus extended set of configurations. 
In principle, both Hydra and ISAC 
can make use of arbitrary feature ex-
tractors and algorithm configuration 
procedures. Whereas ISAC produces 
a single selector based on a number 
of components automatically deter-
mined by the G-means algorithm,12 
Hydra builds a series of selectors; the 
longer it runs, the more configura-
tions are available for selection, and 
the better the expected performance 
of the resulting selector. Furthermore, 
Hydra makes use of arbitrary selector 
builders; Xu et al.39 used a procedure 
based on the regression-based perfor-
mance predictor underlying the well-
known SATzilla approach,30,40 though 
many alternatives are possible. 

Procedures for building per-in-
stance algorithm selectors fit natu-
rally into the context of PbO. To con-
struct per-instance selectors from a 
given design-space specification, the 
PbO design optimizer uses a proce-
dure (such as Hydra or ISAC) to obtain 
a suitable set of optimized programs. 
The design optimizer would also pro-
duce an execution manager that first 
calls the feature extractor provided 
by the user (specific to the given com-
putational tasks but not dependent 
on the design of the program used to 
achieve it), then selects the compo-
nent algorithm to be run based on the 
resulting input features. 

Although algorithm portfolios have 
been investigated (see, for example, 
Gomes and Selman10 or Huberman 
et al.17), to the best of our knowledge 
effective methods for automatically 
constructing portfolios from a single 
parametric design have not yet been 
developed, though we expect such 
methods to be available soon. The 
PbO design optimizer can then use a 
portfolio-construction procedure to 
obtain a set of programs from a given 
design-space specification and pro-
duce an execution manager to coordi-
nate their execution. In the simplest 
case, where the component solvers 
run independently in parallel on the 
same input data, the execution man-
ager starts each component program 
and processes the results from these 
runs when the component programs 
terminate. When applied to a task in 
which candidate programs differ only 
in the time they require for processing 
a given input (as in sorting or solving 
SAT), as soon as the first component 
program terminates successfully, the 
execution manager aborts all remain-
ing component programs and returns 
the result from the one successful run. 
In the case of programs designed to 
solve optimization tasks, the execu-
tion manager monitors the best solu-
tions produced by each component 
solver, providing the best of them at 
any given time. 

Cost and Concerns 
Readers might raise several concerns 
regarding PbO-based software devel-
opment. The first pertains to the cost 
incurred by the approach in terms of 
computational resources and human 
development effort. It might seem 
that, due to its use of compute-inten-
sive meta-algorithmic optimization 
procedures, PbO always requires large 
amounts of computational resources. 
However, while meta-algorithmic op-
timization in a large design space can 
be computationally expensive, it has 
been shown to yield good results at 
relatively modest computational cost 
in many cases.18,21,35 Furthermore, the 
meta-algorithmic optimization tech-
niques mentioned earlier tend to pro-
duce increasingly better results as they 
are run for longer and longer times; 
moreover, they can all be adapted to 
make use of parallel computation to 
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more effectively search potentially very 
large design spaces.14 

Since PbO aims to replace human 
development effort with computation, 
additional human effort incurred by 
the approach is of special concern. 
Level 0, the most basic form of PbO, 
causes no such overhead, and the add-
ed effort at level 1 can be minimized 
through effective, lightweight mecha-
nisms for exposing design choices.d 
Starting at level 2, conceiving, imple-
menting, and testing design alterna-
tives requires additional human effort. 
This development cost must be out-
weighed by the gains in performance 
a software developer might reasonably 
hope to achieve by optimizing perfor-
mance-critical parts of a design. Us-
ing this criterion, even at levels 3 and 
4, the development of design choices 
and alternatives may well focus on a 
relatively small number of key compo-
nents of a complex software system. At 
the same time, in cases where perfor-
mance matters sufficiently, the over-
head associated with higher levels of 
PbO is at least partially offset by the 
substantial human effort otherwise 
expended for manual exploration of 
design choices. 

Rather disturbingly, it might seem 
that when dealing with the large, com-
binatorial spaces of programs key to 
the PbO paradigm, the occurrence of 
bugs would be amplified to the point 
where testing and debugging becomes 
a major burden, if not completely in-
feasible. However, because design 
alternatives for individual mecha-
nisms and components can be tested 
separately, the combinatorial set of 
programs to be checked is effectively 
reduced to a set that grows linearly 
with the number of choices and design 
alternatives available at each choice 
point. While there is potential for error 
conditions arising only in particular in-
stantiations of multiple design choic-
es, such conditions are mostly avoided 
by following sound practices regarding 
encapsulation of program code and 

d	 Experience shows that even the rather modest 
effort required to expose an additional param-
eter when using languages like C and C++ can 
discourage developers, just like the overhead 
of frequent recompilation severely limits 
their exploration of design choices accessed 
through conditional compilation or source-
level modifications.

data structures, along with appropri-
ate use of unit testing. Furthermore, as 
observed in 2010 by Hutter et al.,21 de-
sign-optimization tools (such as “auto-
mated algorithm configurators”) make 
it possible to find previously unknown 
bugs in widely used software devel-
oped through traditional methods; we 
expect the same to hold for PbO-based 
software development. 

A final concern follows from the ob-
servation that software optimization 
for a narrowly defined use context can 
lead to brittle performance. It is promi-
nent in machine learning, which offers 
various techniques for addressing it. 
A combination of judicious practices 
for constructing input datasets in the 
optimization process, appropriately 
defined optimization objectives, and 
suitable methods for assessing the 
performance of candidate designs ap-
pears to be effective in avoiding brittle 
performance and poor generalization 
beyond narrowly defined classes of in-
put data. 

Robust performance is tradition-
ally important in situations where im-
portant features of the input data to be 
processed might change over time. The 
PbO paradigm offers an attractive way 
to deal with such situations based on 
the idea of automatically adapting the 
program design, so, at any given time, 
a program is well suited for the current 
input data, an idea closely related to the 
concept of lifelong learning. This ad-
aptation can be achieved by using the 
PbO design optimizer to automatically 
generate new programs optimized for 
input data representative of the current 
use context. This process takes place 
after the initial design phase, in the ac-
tual application context, and does not 
involve human designers. Moreover, it 
can be carried out by a deployed system 
involving a highly parametric program, 
a meta-algorithmic optimization pro-
cedure, and a mechanism for deciding 
which input data encountered over the 
system’s lifetime is to be used when as-
sessing the performance of candidate 
program designs. 

Related Work 
Efforts conceptually related to the 
ideas behind PbO can be traced back 
more than 30 years to the work of Rice32 
in the mid-1970s, but the powerful op-
timization and machine-learning tech-

niques, as well as the computational 
environments required to carry out the 
automated design optimization at the 
heart of PbO, have only recently been 
readily available. 

PbO is a logical extension of exist-
ing work on parameter tuning (see, for 
example, Adenso-Diaz and Laguna1 or 
Birattari et al.4) automated algorithm 
configuration (see, for example, Hut-
ter et al.18 or KhudaBukhsh et al.24) 
and automated algorithm selection 
(see, for example, Guerri and Milano,11 
Leyton-Brown et al.,25 or Xu et al.40), as 
well as of the more general approach of 
computer-aided algorithm design15; it 
is also complementary to work on algo-
rithm portfolios (see, for example, Ga-
gliolo,9 Gomes and Selman,10 or Huber-
man et al.17) and self-adaptation (see, 
for example, Battiti et al.,3 Carchrae 
and Beck,5 or Da Cost et al.7), which 
can benefit from PbO and be leveraged 
in PbO-based software development. 
We also see connections with work in 
algorithm synthesis (see, for exam-
ple, Monette et al.28 or Westfold and 
Smith37), algorithm engineering (see, 
for example, Sanders and Schultes33), 
and meta-learning (see, for example, 
Vilalta and Drissi36).

Furthermore, many studies clearly 
exhibit key elements of the PbO ap-
proach and bear witness to its benefits, 
including our own work on algorithm 
configuration for complete and in-
complete SAT solvers,18,24 for several 
well-known solvers for mixed-integer 
programming problems,21 and for two 
well-known general-purpose planning 
systems.35 While these studies focused 
on optimizing the performance of soft-
ware for solving NP-hard problems, a 
broad range of similar work involves 
software running in polynomial time.e 
For example, Whaley et al.38 automati-
cally performed mostly low-level op-
timizations of performance-critical, 
basic linear algebra routines used in 
numerous applications; Pan and Ei-
genmann31 automatically determined 
performance-maximizing combina-
tions of compiler optimizations for 
a given program or program section; 
Diao et al.8 automatically configured a 
database server for minimal response 

e	 Optimization of this software, on the other 
hand, is a combinatorial problem with high 
computational complexity.
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time in an e-commerce application; 
and Li et al.26 automatically created 
hybrid sorting algorithms that outper-
form those provided by several widely 
used libraries, including the C++ Stan-
dard Template Library. 

Where the Road Goes…
The PbO paradigm offers numerous 
benefits to software developers and us-
ers alike, including better performance 
of programs created this way and eas-
ier, more effective adaptation to dif-
ferent (and changing) use contexts, as 
well as better use of human capabili-
ties and skills throughout the develop-
ment process. 

To be effective, PbO needs to be 
used in combination with other tech-
niques and established practices. In 
particular, careful consideration of 
design patterns, memory-access and 
communication patterns, data orga-
nization, and threading will still be 
crucially important for achieving high 
performance in many cases, as will 
performance-profiling approaches. 
PbO should be seen as complement-
ing, rather than superseding, these 
considerations, which conversely in-
form and constrain the design choices 
realized in the context of a PbO-based 
development process. The cost of PbO 
induces additional constraints and 
may in certain cases limit the degree 
to which the approach can be applied. 
Still, many areas of computing sci-
ence and its applications have much 
to gain from PbO, particularly for soft-
ware using techniques from artificial 
intelligence, machine learning, and 
data mining, as well as simulation 
software, performance-critical pro-
cedures from standard libraries, and 
even data transmissions protocols, 
basically any situation involving heu-
ristic design choices. 

While lower levels of PbO, in com-
bination with existing tools, are al-
ready able to achieve substantial 
benefits, we believe the full potential 
of PbO is realized through higher lev-
els of PbO-based software develop-
ment and dedicated support in the 
form of the language extensions and 
tools outlined here. A first version of 
a weaver for PbO-C was implemented 
by the author and now available at 
http://www.prog-by-opt.net. PbO de-
sign optimization can be achieved 

through readily available automated 
algorithm-configuration procedures 
(such as ParamILS19,20), and we expect 
even better performing procedures to 
be available within the next two years. 
Similarly, meta-algorithmic proce-
dures that effectively produce per-
instance algorithm selectors from 
a single, highly parametric design 
are available today (see, for example, 
Xu et al.39) and will likely be further 
improved in the near future. We are 
currently working on automated 
procedures for generating parallel 
portfolios from a given design-space 
specification and expect to obtain 
useful results soon. We plan to inte-
grate these (and possibly other) meta-
algorithmic optimization procedures 
into a single PbO design optimizer 
that facilitates their use in the context 
of PbO-based software development. 

The High Performance Algorithm 
Laboratory (HAL) environment29 is 
designed to support computer-aided 
design and empirical analysis of high-
performance algorithms through 
ready-to-use, state-of-the-art analysis 
and design procedures. HAL provides 
an ideal platform for realizing and op-
erating an integrated PbO design op-
timizer and could thus provide strong 
support for PbO-based software de-
velopment. Furthermore, extensions 
and enhancements of widely used 
development platforms, particularly 
the Eclipse integrated development 
environment (http://www.eclipse.
org), will provide useful support for 
PbO-based software development. Be-
sides syntax highlighting and folding 
for PbO constructs, we envision tools 
that support developers tracking and 
navigating parameters and choices 
(especially distributed choices) de-
clared in PbO sources, and in using 
PbO weavers and optimizers in their 
various modes. 

We expect PbO to also facilitate 
scientific insight into the efficacy of 
algorithms and their components, as 
well as into the empirical complex-
ity of computational problems. For 
example, to measure the extent to 
which a particular instance of a de-
sign choice contributes to overall per-
formance, one would simply remove 
that instance (or instruct the weaver 
to ignore it) and compare the perfor-
mance obtained in one or more use 

Because it 
enables empirical 
investigation into 
the interaction 
between 
problem-instance 
characteristics 
and the efficacy 
of certain solver 
components, 
PbO promises to 
facilitate insight 
into what renders 
certain problems  
so difficult to solve. 
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contexts when optimizing within this 
reduced design space with the per-
formance obtained from the original 
design space. Further analysis of the 
differences between the two designs 
could then produce insight into the 
degree to which other design choices 
might compensate for the effects of 
eliminating that choice instance from 
the design space. Comparing designs 
optimized for different use contexts 
can reveal interactions between char-
acteristics of a program’s inputs and 
the mechanisms that should be used 
to achieve good performance on those 
inputs. Finally, because it enables em-
pirical investigation into the interac-
tion between problem instance char-
acteristics and the efficacy of certain 
solver components, PbO promises to 
facilitate insight into what renders 
certain problems so difficult to solve. 

While much work remains to realize 
the full potential of the approach, PbO 
will change the way developers and 
users create, use, and study software. 
While PbO will be especially effective 
in the context of solving NP-hard prob-
lems, where general insight into prac-
tically effective solution methods is 
limited, we are convinced it will prove 
useful on a much broader scale. 
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