
Stochastic Lo
1085

Part
E
|54

54. Stochastic Local Search Algorithms: An Overview

Holger H. Hoos, Thomas Stützle

In this chapter, we give an overview of the main
concepts underlying the stochastic local search
(SLS) framework and outline some of the most rel-
evant SLS techniques. We also discuss some major
recent research directions in the area of stochas-
tic local search. The remainder of this chapter is
structured as follows. In Sect. 54.1, we situate the
notion of SLS within the broader context of fun-
damental search paradigms and briefly review the
definition of an SLS algorithm. In Sect. 54.2, we
summarize the main issues and trends in the
design of greedy constructive and iterative im-
provement algorithms, while in Sects. 54.3–54.5,
we provide a concise overview of some of the
most widely used simple, hybrid, and popula-
tion-based SLS methods. Finally, in Sect. 54.6,
we discuss some recent topics of interest, such
as the systematic design of SLS algorithms and
methods for the automatic configuration of SLS
algorithms.

54.1 The Nature and Concept of SLS. 1086

54.2 Greedy Construction Heuristics
and Iterative Improvement 1089

54.3 Simple SLS Methods 1091
54.3.1 Randomized Iterative

Improvement 1091
54.3.2 Probabilistic Iterative

Improvement 1091
54.3.3 Simulated Annealing 1092
54.3.4 Tabu Search 1092
54.3.5 Dynamic Local Search. 1093

54.4 Hybrid SLS Methods.............................. 1094
54.4.1 Greedy Randomized

Adaptive Search Procedures 1094
54.4.2 Iterated Greedy Algorithms......... 1094
54.4.3 Iterated Local Search. 1095

54.5 Population-Based SLS Methods 1095
54.5.1 Ant Colony Optimization............. 1096
54.5.2 Evolutionary Algorithms 1097

54.6 Recent Research Directions. 1097
54.6.1 Combination of SLS Algorithms

with Systematic Search
Techniques 1098

54.6.2 SLS Algorithm Engineering.......... 1098
54.6.3 Automatic Configuration

of SLS Algorithms 1100

References ... 1100

Stochastic local search (SLS) algorithms are the method
of choice for solving computationally hard decision
and optimization problems from a wide range of ar-
eas, including computing science, operations research,
engineering, chemistry, biology and physics. SLS com-
prises a spectrum of techniques ranging from simple
constructive and iterative improvement procedures to
more complex methods, such as simulated anneal-
ing (SA), iterated local search or evolutionary al-
gorithms (EAs). As evident from the term stochas-
tic local search, randomization can, and often does,
play a prominent role in these methods. Randomized
choices may be used in the generation of initial so-
lutions or in the decision which of several possible

search steps to perform next – sometimes merely to
break ties between equivalent alternatives, and some-
times to heuristically and probabilistically select from
large and diverse sets of possible candidates. Judi-
cious use of randomization can arguably simplify
algorithm design and help achieve robust algorithm
behavior.

The concept of an SLS algorithm has been defined
formally [54.1] and not only provides a unifying frame-
work for many different types of algorithms, including
the previously mentioned constructive and iterative im-
provement procedures, but also provides a wide range
of more complex search methods commonly known as
metaheuristics.

Part
E
|54.1

1086 Part E Evolutionary Computation

Greedy constructive and iterative improvement pro-
cedures are important SLS algorithms, since they typ-
ically serve as building blocks for more complex SLS
algorithms, whose performance critically depends on
the design choices and fine tuning of these underly-
ing components. Greedy constructive algorithms and
iterative improvement procedures terminate naturally
when a complete solution has been generated or a local
optimum of a given evaluation function is reached, re-
spectively. One possible way to obtain better solutions
is to restart these basic SLS procedures from randomly
chosen initial search positions. However, this approach
has shown to be relatively ineffective in practice for rea-
sonably sized problem instances (and it breaks down for
large instances [54.2]).

To overcome these limitations, over the last
decades, a large number of more sophisticated, gen-
eral-purpose SLS methods [54.1] have been introduced;
these are often called metaheuristics [54.3], since they
are based on higher level schemes for controlling one
or more subsidiary heuristic search procedures. We
divide these general-purpose SLS methods into three
broad classes: simple, hybrid and population-based
SLS methods. Simple SLS methods typically use one
neighborhood relation during the search and either
modify the acceptance criterion for search steps, allow-
ing to occasionally accept worsening steps, or modify
the evaluation function that is used during the local
search process. Examples of simple SLS methods in-
clude SA [54.4, 5] and (simple) tabu search [54.6–9].
A number of SLS methods combine different types of
search steps – for example, construction steps and per-
turbative local search steps – or introduce occasional
larger modifications into current candidate solutions,
to provide appropriate starting points for subsequent
iterative improvement search. Examples of such hy-

brid SLS methods include greedy randomized adaptive
search procedures (GRASPs) [54.10] and iterated local
search [54.11]. Finally, several SLS methods maintain
and manipulate at each iteration a set, or population,
of candidate solutions, which provides a natural way
of increasing search diversification. Examples of such
population-based SLS methods include EAs [54.12–
15], scatter search [54.16, 17] and ant colony optimiza-
tion [54.18–20].

Our classification into simple, hybrid and popula-
tion-based SLS methods is not the only possible one,
and certain SLS algorithms could be seen as belonging
to more than one category. For example, many popu-
lation-based SLS methods are also hybrid, as they use
different search operators or combine the manipulation
of the population of candidate solutions with iterative
improvement on members of the population to achieve
increased performance. In fact, there is an increas-
ing trend to design and apply SLS algorithms that are
not merely based on a single, well-established general-
purpose SLS method, but rather combine flexibly ele-
ments of different SLS methods or incorporate mech-
anisms taken from systematic search algorithms, such
as branch and bound or dynamic programming. The
conceptual framework of SLS naturally accommodates
this development, and the composition of more complex
SLS algorithms from conceptually simpler components
is explicitly supported, for example, by the concept of
generalized local search machines [54.1]. In this con-
text, methodological issues concerning the engineering
of SLS algorithms [54.21, 22] are increasingly gaining
importance. Similarly, the exploitation of automatic al-
gorithm configuration techniques and, more generally,
the programming by optimization paradigm [54.23] en-
able the systematic development of high-performance
SLS algorithms.

54.1 The Nature and Concept of SLS

Computational approaches for the solution of hard,
combinatorial problems can all be viewed as perform-
ing some form of search. Essentially, search algorithms
generate and evaluate candidate solutions for the prob-
lem instance at hand. For combinatorial decision prob-
lems, the evaluation of a candidate solution requires to
check whether the candidate solution is a feasible so-
lution satisfying all given constraints; for combinatorial
optimization problems, it involves computing the value
of the given objective function. For NP-complete de-
cision problems and NP-equivalent optimization prob-

lems, even the most efficient algorithms known to date
require running time exponential in the instance size in
the worst case, while candidate solutions can be evalu-
ated in polynomial time.

A candidate solution for an instance of a com-
binatorial problem is generally composed of solution
components. Consider, for example, the well-known
traveling salesperson problem (TSP). In the TSP, one is
given a weighted, fully connected graph GD .V;E;w/,
where V D fv1; v2; : : : ; vng is the set of jVj D n vertices,
E � V �V is the set of edges that fully connects the

Stochastic Local Search Algorithms: An Overview 54.1 The Nature and Concept of SLS 1087
Part

E
|54.1

graph, and w W E 7!RC

0 is a function that assigns to
each edge e 2 E a nonnegative weight w.e/. The objec-
tive is to find a minimum-weight Hamiltonian cycle in
G. A candidate solution for a TSP instance can be repre-
sented by a permutation � D .�.1/;�.2/; : : : ; �.n// of
the vertex indices, and the objective function w is given
as

w.�/ WD w.v�.n/; v�.1//

C
n�1X
iD1

w.v�.i/; v�.iC1// : (54.1)

In the TSP, a (complete) candidate solution, commonly
also called a tour, can be seen as consisting of n out of
the n 	 .n� 1/ possible edges, and each edge represents
a solution component.

Any given tour can be modified by removing two
edges and introducing two unique new edges such that
another valid tour is obtained. This modification is an
example of a perturbation of a complete candidate so-
lution, and we refer to search algorithms that make
systematic use of such solution modifications as per-
turbative search methods. In practice, such perturbative
search methods iteratively modify a current candidate
solution according to some rule, and this process ends
when a given termination criterion is met.

Perturbative search methods start from some com-
plete candidate solution. The task of generating such
candidate solutions is commonly accomplished by con-
structive search methods or construction heuristics.
Constructive search methods iteratively extend an ini-
tially empty candidate solution by one or several solu-
tion components until a complete candidate solution is
obtained. Constructive search methods can thus be seen
as operating in a search space of partial candidate solu-
tions. An example of a constructive search method is the
nearest neighbor heuristic for the TSP. An initial ver-
tex is chosen randomly, and at each construction step,
the nearest neighbor heuristic follows a minimal weight
edge to one of the vertices that have not yet been vis-
ited. These steps are iterated until all vertices have been
visited, and the tour is completed by returning to the
initial vertex.

Generally speaking, local search algorithms start at
some initial search position and iteratively move, based
on local information, from the current position to neigh-
boring positions in the search space. Both perturbative
and constructive search methods match this general de-
scription. While in the literature, the term local search
is mostly used for perturbative search methods, it also

applies to constructive search methods: A partial solu-
tion corresponds to a position in the search space of
partial candidate solutions, and the neighbors of a par-
tial solutions are obtained by extending it with one or
more solution components. In fact, there are a number
of well-known generic SLS methods, such as GRASP,
iterated greedy and ant colony optimization, that are
based on constructive local search.

Many local search algorithms use randomized de-
cisions, for example, for generating initial solutions or
when determining search steps. We therefore refer to
such methods as stochastic local search (SLS) algo-
rithms. The following components need to be specified
to define an SLS algorithm (for a formal definition, we
refer to Chap. 1 of [54.1]).

� Search space – comprises the set of candidate so-
lutions (or search positions) for the given problem
instance.� Solution set – consists of the search positions that
are considered to be solutions of the given problem
instance. In the case of decision problems, the solu-
tion set comprises all feasible candidate solutions;
in the case of optimization problems, the solution
set typically comprises all optimal feasible candi-
date solutions.� Neighborhood relation – specifies the direct neigh-
bors of each candidate solution s, i. e., the search
positions that can be reached from s in a single
search step of the SLS algorithm.� Memory states – hold additional information about
the search beyond the search position. If an algo-
rithm is memoryless, the memory may consist of
a single, constant state.� Initialization function – specifies the search initial-
ization in the form of a probability distribution over
initial search positions and memory states.� Step function – determines the computation of
search steps by mapping each search position and
memory state to a probability distribution over its
neighboring search positions and memory states.� Termination predicate – used to decide search ter-
mination based on the current search position and
memory state.

The formal definition of an SLS algorithm speci-
fies the initialization function, the step function, and
the termination predicate as probability distributions,
which the algorithm samples at each step during any
given run. In practice, however, the initialization func-
tion, the step function, and the termination predicate

Part
E
|54.1

1088 Part E Evolutionary Computation

will be specified by procedures, and the correspond-
ing probability distributions are only implicitly defined.
Note that the definition of an SLS algorithm is general
enough to include deterministic local search algorithms.
In fact, formally we can describe deterministic local
search algorithms as special cases of SLS algorithms –
deterministic decisions can be modeled using degener-
ate probability distributions (Dirac delta).

The working principle of an SLS algorithm is then
as follows. The search process starts from some ini-
tial search state that is generated by the initialization
function. While some termination criterion is not satis-
fied, search steps are performed according to the step
function. In the case of optimization problems, the
SLS algorithm keeps track of the best solution found
so far, which is then returned upon termination of
the algorithm. In the case of decision problems, the
SLS algorithm typically stops as soon as a (feasible)
solution is found or another termination criterion is
satisfied.

In all but the simplest cases, the search process is
guided by an evaluation function, which measures the
quality of candidate solutions. The efficacy of this guid-
ance depends on the properties of the evaluation func-
tion and the way in which it is integrated into the search
process. Evaluation functions are generally problem
specific. For many optimization problems, the objec-
tive function given by the problem definition is used;
however, different evaluation functions can sometimes
provide better guidance, for example, in the sense of ap-
proximation guarantees [54.24]. In decision problems,
an appropriate evaluation function has to be defined by
the algorithm designer. Often, the objective function
used for optimization variants of the decision prob-
lem can provide useful guidance. For example, for the
satisfiability problem in propositional logic (SAT), the
objective function of MAX-SAT, which, in a nutshell,
counts the number of constraint violations, provides ef-
fective guidance. Some SLS methods, such as dynamic
local search (briefly discussed in Sect. 54.3), modify the
evaluation function during the search process.

The general concept of SLS algorithms, as intro-
duced above and discussed in depth by Hoos and
Stützle [54.1], provides a unified view of constructive
and perturbative local search techniques that range from
rather simplistic greedy constructive heuristics and iter-
ative improvement algorithms to rather complex hybrid
and population-based SLS methods. Population-based
algorithms, which manipulate sets of candidate solu-
tions at each iteration, fall under the definition of an
SLS algorithm by considering search positions consist-

ing of sets of candidate solutions. In this case, the step
function also operates on sets of candidate solutions for
the given problem instance. For example, in the case of
typical EAs, recombination,mutation, and selection can
all be modeled as operations on sets of candidate solu-
tions, which are formally parts of a single-step function
used for mapping one generation to the next.

It is instructive to contrast the concept of an SLS
algorithm with that of a metaheuristic. Metaheuristics
have been described as heuristics that are superimposed
on another heuristic [54.6], a [54.25]:

master strategy that guides and modifies other
heuristics to produce solutions beyond those that
are normally generated in a quest for local optimal-
ity,

as [54.20]:

a set of algorithmic concepts that can be used to
define heuristic methods applicable to a wide set of
different problems,

and as [54.26]:

a high-level problem-independent algorithmic
framework that provides a set of guidelines
or strategies to develop heuristic optimization
algorithms.

However, the term metaheuristic [54.26]:

is also used to refer to a problem-specific implemen-
tation of a heuristic optimization algorithm accord-
ing to the guidelines expressed in such a framework.

As is evident from these characterizations, there is
no formal definition of the term metaheuristic, and its
precise meaning has evolved over time. The term meta-
heuristic is commonly used to refer to the high-level
guidance strategies that in many occasions are used
to extend underlying greedy constructive or perturba-
tive search procedures. Hence, the scope of the term
metaheuristic differs from that of an SLS algorithm; it
comprises what can be similarly loosely characterized
as general-purpose SLS methods, but extends naturally
to higher-level search strategies involving paradigms
other than SLS, such as systematic search methods
based on backtracking.

Conversely, the term metaheuristic is usually not
applied to simple SLS procedures (such as random

Stochastic Local Search Algorithms: An Overview 54.2 Greedy Construction Heuristics and Iterative Improvement 1089
Part

E
|54.2

sampling, random walk and iterative improvement),
nor to problem-specific SLS algorithms with prov-
able properties. Therefore, there are SLS algorithms
based on metaheuristics (such as ant colony opti-
mization, iterated local search or EAs for various
problems), SLS algorithms that are not metaheuristics
(such as 2-opt for the TSP or conflict-directed ran-
dom walk for SAT) and metaheuristics that are not
based on SLS (such as various branch and bound

methods and hybrids between systematic and local
search).

Because the notion of an SLS algorithm explicitly
refers to aspects that are not related to the high-level
guidance of the search process, such as the choice of
a neighborhood relation, evaluation function and ter-
mination predicate, research on SLS also covers the
design, implementation and analysis of these more
problem-specific components.

54.2 Greedy Construction Heuristics and Iterative Improvement

The main SLS techniques underlying more complex
SLS methods (or metaheuristics) comprise (greedy)
constructive search and iterative improvement algo-
rithms. In the following, we discuss the main principles
and choices underlying these methods.

Constructive search procedures (or construction
heuristics) typically evaluate at each construction step
the quality of the available solution components based
on a heuristic function. Greedy construction heuristics
choose to add at each step a solution component with
best heuristic value, breaking ties either randomly or
by means of a secondary heuristic function. For several
polynomially solvable problems, such as the minimum
spanning tree problem, greedy construction heuristics
(for example, Kruskal’s algorithm) are guaranteed to
produce optimal solutions [54.27]; unfortunately, for
NP-hard problems, this is generally not the case, due
to the myopic decisions taken during solution construc-
tion.

A useful distinction can be made between static and
adaptive construction heuristics. In static construction
heuristics, the heuristic values associated with solution
components are precomputed before the actual con-
struction process is executed and remain unchanged
throughout. In adaptive construction heuristics, the
heuristic values are recomputed at each construction
step to take into account the impact of the current par-

Fig. 54.1 A 2-exchange move for the symmetric TSP.
Note that the pair of edges to be introduced is uniquely
determined to ensure that the neighbor is again a tour

tial solution. Adaptive construction heuristics tend to
be more accurate and result in better quality candidate
solutions than static heuristics, but they are also com-
putationally more expensive.

Construction heuristics are often used to provide
good initial candidate solutions for perturbative local
search algorithms. One of the most basic SLS meth-
ods is to iteratively improve a candidate solution for
a given problem instance. Such an iterative improve-
ment algorithm starts from some initial search position
and iteratively replaces the current candidate solution s
by an improving neighboring candidate solution s0. The
local search is terminated once no improving neighbor
is available, that is, 8s0 2 N.s/ W g.s/� g.s0/, where g.	/
is the evaluation function to be minimized, and N.s/ de-
notes the set of neighbors of s. In the literature, iterated
improvement algorithms are also referred to as iterated
descent or (in the case of maximization problems) hill-
climbing procedures.

Neighborhoods are problem specific, and it is gener-
ally difficult to predict a priori which of several possible
neighborhoods results in best performance. However,
for most problems, standard neighborhoods exist. Un-
der the k-exchange neighborhood, two candidate solu-
tions are neighbors if they differ by at most k solution
components. An example is the 2-exchange neighbor-
hood for the TSP, where two tours are neighbors if they
differ by a pair of edges. Figure 54.1 illustrates a move
in this neighborhood. In a k-exchange neighborhood,
each candidate solution has O.nk/ direct neighbors,
where n is the number of solution components in each
candidate solution. Thus, the neighborhood size is ex-
ponential in k, as is the time to identify improving
neighbors. While using larger neighborhoods typically
makes it possible to reach better solutions, finding those
solutions also takes more time. In other words, there
is a tradeoff between the quality of the local optima

Part
E
|54.2

1090 Part E Evolutionary Computation

reachable by an iterative improvement algorithm and
its run time. In practice, neighborhoods that involve
a quadratic or cubic time-complexity may already re-
sult in prohibitive computation times for large problem
instances.

The overall time-complexity of searching a given
neighborhood is determined by its size and the cost of
evaluating each neighbor. The power of local search
crucially relies on the fact that caching and incremen-
tal updating techniques can significantly reduce the cost
of evaluating neighbors compared to computing the re-
spective evaluation function values from scratch. For
example, the quality of a 2-exchange neighbor of a tour
for a TSP instance with n vertices can be computed
from the quality of the current tour by subtracting and
adding two edge weights (that is, two numbers) each;
computing the weight of such a tour from scratch, on
the other hand, requires n additions. Sometimes, to
render the computation of the incremental updates as
efficient as possible, additional data structures need to
be implemented, but the net effect is often a very large
reduction in computational effort.

A second important technique for reducing the
time-complexity of evaluating a given neighborhood
is based on the idea of excluding from consideration
neighbors that are unlikely or provably unable to lead
to improvements. These neighborhoods pruning tech-
niques play a crucial role in many high-performance
SLS algorithms. Examples of such pruning techniques
are the fixed radius searches and nearest neighbors lists
used for the TSP [54.28–30], the use of so-called don’t
look bits [54.28], as well as reduced neighborhoods for
the job-shop scheduling problem [54.31] and pre-tests
for search steps, as done for the single machine total
weighted tardiness problem [54.32].

The speed and performance of iterative improve-
ment algorithms also depends on the mechanism
used to determine search steps, the so-called pivoting
rule [54.33]. Iterative best improvement chooses at each
step a neighboring candidate solution that mostly im-
proves the evaluation function value. Any ties that occur
can be broken either randomly, according to the order
in which the neighborhood is searched, or based on
a secondary criterion (as in [54.34]). In order to find
a most improving neighbors, iterative best improvement
needs to examine the entire neighborhood in each step.
Iterative first improvement, in contrast, examines the
neighborhood in some given order and moves to the first
improving neighboring candidate solution found during
this neighborhood scan. Iterative first improvement ap-
plies improving search steps earlier than iterative best

improvement, but the amount of improvement achieved
in each step tends to be smaller; therefore, it usually
requires more improvement steps to reach a local opti-
mum. If a candidate solution is a local optimum, first-
and best-improvement algorithms detect this only by in-
specting the entire neighborhoods of that solution; don’t
look bits [54.28, 29] offer a particularly useful mecha-
nism for reducing the time required by this final check,
the so-called check-out time.

Interestingly, the local optimum found by itera-
tive first improvement depends on the order in which
the neighborhood is examined. This property can be
exploited by using a random order for scanning the
neighborhood, and repeated runs of random-order first
improvement algorithms can identify very different lo-
cal optima, even if each run is started from the same ini-
tial position [54.1, Sect. 2.1]. Thus, the search process
in random-order first improvement is more diversified
than in the first improvement algorithms that scan local
neighborhoods in fixed order.

The notion of local optimality is defined with re-
spect to a specific neighborhood. Thus, changing the
neighborhood during the local search process may pro-
vide an effective means for escaping from poor quality
local optima, and offers the opportunity to benefit from
the advantages of large neighborhoods without incur-
ring the computational burden associated with using
them exclusively. In the context of iterative improve-
ment algorithms, this idea forms the basis of variable
neighborhood descent (VND), a variant of a general-
purpose SLS method known as variable neighborhood
search (VNS) [54.35, 36]. VND uses a sequence of
neighborhoods N1;N2; : : : ;Nk; this sequence is typ-
ically ordered according to increasing neighborhood
size or increasing time complexity of searching the
neighborhoods. VND starts by using the first neigh-
borhood, N1, until a local optimum is reached. Every
time the exploration of a neighborhood Ni does not
identify an improving local search step, that is, a lo-
cal optimum w.r.t. neighborhood Ni is found, VND
switches to the next neighborhood,NiC1 in the given se-
quence. Whenever an improving move has been made
in a neighborhood Ni, VND switches back to N1 and
continues using the subsequent neighborhoods, N2 etc.,
from there. The search is terminated when a local opti-
mum w.r.t. Nk has been reached. The central idea of this
scheme is to use small neighborhoods whenever possi-
ble, since they allow for the most efficient local search
process. The VND scheme typically results in a signif-
icant reduction of computation time when compared to
an iterative improvement algorithm that uses the largest

Stochastic Local Search Algorithms: An Overview 54.3 Simple SLS Methods 1091
Part

E
|54.3

neighborhood only. VND typically finds high-quality
local optima, because upon termination, the resulting
candidate solution is locally optimal with respect to all
k neighborhoods examined.

Finally, recent years have seen an explosion in the
development of iterative improvement methods that ex-
ploit very large scale neighborhood, whose size is
typically exponential in the size of the given prob-
lem instance [54.37]. In fact, there are two main ap-
proaches to searching these neighborhoods. The first
is to perform a heuristic search in the neighborhood,
since a exact search would be computationally too
demanding. This idea forms the basis of variable-
depth search algorithms, where the number of solu-
tion components that are modified in each step is not
determined a priori. Interestingly, the two best-known
variable-depth search algorithms, the Kernighan–Lin
algorithm for graph partitioning [54.38] and the Lin–

Kernighan algorithm for the TSP [54.39], have been
devised about in the early 1970s, a fact that illus-
trates the lasting interest in these types of methods.
The more recent concept of ejection chains [54.40]
is related to variable-depth search. Another interest-
ing approach is to devise neighborhoods with a special
structure that allows them to be searched either in
polynomial time or at least very efficiently in prac-
tice [54.37, 41–43]. This is the central idea behindmany
recent developments in very large scale neighborhoods,
which include techniques such as Dynasearch [54.32,
44] and cyclic exchange neighborhoods [54.45, 46].
As a result of these research efforts, current state-
of-the-art methods for a variety of combinatorial prob-
lems such as the TSP [54.47] or the single machine
total weighted tardiness problem [54.48] rely on iter-
ative improvement algorithms based on very large scale
neighborhoods.

54.3 Simple SLS Methods

Iterative improvement algorithms accept only improv-
ing neighbors as new current candidate solutions, and
they terminate when encountering a local optimum. To
allow the search process to progress beyond local op-
tima, many SLS methods permit moves to worsening
neighbors. We refer to the methods discussed in the
following as simple SLS methods, because they essen-
tially only use one type of search steps, in a single, fixed
neighborhood relation.

54.3.1 Randomized Iterative Improvement

The key idea behind randomized iterative improve-
ment (RII) is to occasionally perform moves to random
neighboring candidate solutions irrespective of their
evaluation function value. The simplest way of imple-
menting this idea is to apply, with a given probability
wp, a so-called uninformed random walk step, which
chooses a neighbor of the current candidate solution
uniformly at random, while with probability 1�wp, an
improvement step is performed. Often, the improve-
ment step will correspond to one iteration of a best
improvement procedure. The parameter wp is referred
to as walk probability or, simply, noise parameter. RII
algorithms have the property that they can perform arbi-
trarily long sequences of random walk steps; the length
of these sequences (i. e., the number of consecutive
random walk steps) follows a geometric distribution

with parameter wp. This allows effective escapes from
local optima and renders RII probabilistically approx-
imately complete [54.1, Sect. 4.1]. A main advantage
of RII is ease of implementation – often, only a few
additional lines of code are required to extend an it-
erative improvement procedure to an RII procedure –
and its behavior is effectively controlled by a single
parameter.

RII algorithms have been shown to perform quite
well in a number of applications. For example, in the
1990s, minor variations of RII, in which random walk
steps are determined based on the status of constraint
violations rather than chosen uniformly at random, have
been state of the art for solving the SAT [54.49, 50] and
other constraint satisfaction problems [54.51]. Due to
their simplicity, RII algorithms also facilitate theoreti-
cal analyses, including characterization of performance
in dependence of parameter settings [54.52].

54.3.2 Probabilistic Iterative Improvement

Instead of accepting worsening search steps regardless
of the amount of deterioration in evaluation function
value they caused (as is the case for random walk
steps), it may be preferable to have the probability
of acceptance depend on the change of the evaluation
function value incurred. This is the key idea underlying
probabilistic iterative improvement (PII). Unlike RII,

Part
E
|54.3

1092 Part E Evolutionary Computation

each step of PII involves two phases: first, a neighbor-
ing candidate solution s0 2 N.s/ is selected uniformly
at random (proposal mechanism); then, a probabilis-
tic decision is made whether to accept s0 as the new
search position (acceptance test). For minimization
problems, the acceptance probability is often based on
theMetropolis condition and defined as

paccept.T; s; s
0/

WD
8<
:

1 if g.s0/ < g.s/

exp

�
g.s/� g.s0/

T

�
otherwise ;

(54.2)

where paccept.T; s; s0/ is the acceptance probability, g
is the evaluation function to be minimized, and T is
a parameter that influences the probability of accept-
ing a worsening search step. PII is closely related to
simulated annealing (SA), discussed next; in fact, when
using the acceptance mechanism given above, PII is
equivalent to constant-temperature SA. In light of this
connection, parameter T is also called temperature. For
various applications, such PII procedures have been
shown to perform quite well, provided that T is cho-
sen carefully [54.53, 54]. It is worth noting that in the
limit for T D 0, PII effectively turns into an iterative
improvement procedure (i. e., never accepts worsening
steps), while for T D1, it performs a uniform random
walk.

54.3.3 Simulated Annealing

Simulated annealing (SA) [54.4, 5] is similar to PII,
except that the parameter T is modified at run time.
Following the analogy of the physical annealing of
solid materials (e.g., metals and glass), which inspired
SA, the temperature T is initially set to some high
value and then gradually decreased. At the beginning
of the search process, high temperature values result
in relatively high probabilities of accepting worsening
candidate solutions. As the temperature is decreased,
the search process becomes increasingly greedy; for
very low settings of the temperature, almost only im-
proving neighbors or neighbors with evaluation func-
tion value equal to the current candidate solution are
accepted.

Standard SA algorithms iterate over the same two
stage process as PII, typically using uniform sam-
pling (with or without replacement) from the neigh-
borhood as a proposal mechanism and a parameter-

ized acceptance test based on the Metropolis condi-
tion (54.2) [54.4, 5]. The modification of temperature T
is managed by a so-called annealing (or cooling) sched-
ule, which is a function that determines the temperature
value at each search step. One of the most common
choices is a geometric cooling schedule, defined by an
initial temperature, T0, a parameter ˛ between 0 and
1, and a value k, called the temperature length, which
defines the number of candidate solutions that are pro-
posed at each fixed value of the temperature; every k
steps, the temperature is updated as T WD ˛ 	 T . Impor-
tant parameters of SA are often determined based on
characteristics of the problem instance to be solved.
For example, the initial temperature may be based on
statistics derived from an initial, short random walk,
the temperature length may be set to a multiple of
the neighborhood size, and the search process may
be terminated when the frequency with which pro-
posed search steps are accepted falls below a given
threshold.

SA is one of the oldest and most studied SLS
methods. It has been applied to a very broad range of
computational problems, and many types of annealing
schedules, proposal mechanisms, and acceptance tests
have been investigated. SA has also been subject to
a substantial amount of theoretical analysis, which has
yielded various convergence results. For more details
on SA, we refer to [54.55, 56].

54.3.4 Tabu Search

Tabu search (TS) differs significantly from the previ-
ously discussed SLS methods, in that it makes a direct
and systematic use of memory to direct the search pro-
cess [54.25]. In its most basic form, which is also called
simple tabu search, TS expands an iterative improve-
ment procedure with a short-term memory to prevent
the local search process from returning to recently vis-
ited search positions. Instead of memorizing complete
candidate solutions and forbidding these explicitly, TS
usually associates a tabu status with specific solution
components. In the latter case, TS stores for each so-
lution component the time (i.e., the iteration number)
at which it was last modified. Each solution component
is then considered as potentially tabu if the difference
between the stored iteration number and the current it-
eration number is larger than the value of a parameter
called tabu tenure (or tabu list length). The tabu status
of a local search step is then determined based on spe-
cific tabu criteria, which are a function of the tabu status
of solution components that are affected by it. One ef-

Stochastic Local Search Algorithms: An Overview 54.3 Simple SLS Methods 1093
Part

E
|54.3

fect is that once a search step has been performed, it is
tabu in that it cannot be reversed for a certain number
of iterations.

Seen from a neighborhood perspective, TS dynam-
ically restricts the set of neighbors permissible at each
local search step by excluding neighbors that are cur-
rently tabu. Since the tabu mechanism through prohi-
bition of solution components is quite restrictive, many
simple TS algorithms use an aspiration criterion, which
overrides the tabu status of neighbors if specific condi-
tions are satisfied; for example, if a local search step
leads to a new best solution, aspiration allows it to be
accepted regardless of its tabu status.

As an example, consider a simple TS algorithm for
the TSP, based on the 2-exchange neighborhood. Edges
that are removed (or introduced) by a 2-exchange step
may then not be reintroduced into (or removed from)
the current tour for tt search steps, where tt is the tabu
tenure.

For several problems, even simple TS algorithms
have been shown to perform quite well. However, the
performance of TS strongly depends on the tabu tenure
setting. To avoid the difficulty of finding fixed settings
suitable for a given problem, mechanisms such as re-
active tabu search [54.57] have been devised to adapt
the tabu tenure at run time. Simple TS algorithms can
be improved in many different ways. In particular, var-
ious mechanisms have been developed that make use
of intermediate-term and long-term memory to further
enhance the performance of simple TS. For a detailed
description of such techniques, which aim either at in-
tensifying the search in specific areas of the search
space or at diversifying the search to explore unvisited
search space regions, we refer to the book by Glover
and Laguna [54.25].

54.3.5 Dynamic Local Search

In contrast to the simple SLS methods discussed so far,
dynamic local search (DLS) does not accept worsening
search steps, but rather modifies the evaluation func-
tion during the search in order to escape from local
optima. These modifications of the evaluation func-
tion g are commonly triggered whenever the underlying
local search algorithm, typically an iterative improve-
ment procedure, has reached a locally optimal solution
with respect to g0, the current evaluation function. Next,
the evaluation function is modified and the subsidiary
local search algorithm is run until a local optimum
(with respect to the new g0) is encountered. These lo-
cal search phases and evaluation function updates are

iterated until some termination criterion is met (see Al-
gorithm 54.1).

Algorithm 54.1 High-level outline of dynamic local
search
Dynamic local search (DLS):
determine initial candidate solution s
initialize penalties
while termination criterion is not satisfied do
compute modified evaluation function g0

from g and penalties
perform subsidiary local search on s using g0

update penalties based on s
end while

The modified evaluation function g0 is typically
computed as the sum of the original evaluation function
and penalties associated with each solution component,
that is

g0.s/ WD g.s/C
X

i2SC.s/

penalty.i/ ; (54.3)

where g is the original evaluation function, SC.s/ is
the set of solution components of candidate solution s,
and penalty(i) is the penalty of solution component i.
Initially, all penalties are set to zero. Variants of DLS
differ in the details of their penalty update mecha-
nism (e.g., additive vs. multiplicative updates, occa-
sional reduction of penalties) and the choice of the
solution components whose penalties are adjusted. For
example, guided local search [54.58, 59] uses the fol-
lowing mechanism for choosing the solution compo-
nents whose penalties are increased: First, a utility
value u.i/ WD gi.s/=.1C penalty.i// is computed for
each solution component i, where gi.s/ measures the
impact of i on the evaluation function; then, the penal-
ties of solution components with maximal utility are
increased.

DLS algorithms are sometimes referred to as a soft
form of tabu search, since solution components are not
strictly forbidden, but the effect of the penalties resem-
bles a soft prohibition. There are also conceptual links
to Lagrangian methods [54.60, 61]. DLS algorithms
have been shown to reach state-of-the-art performance
for SAT [54.62] and for the maximum clique prob-
lem [54.63].

Part
E
|54.4

1094 Part E Evolutionary Computation

54.4 Hybrid SLS Methods

The performance of basic SLS techniques can often
be improved by combining them with each other. In
fact, even RII can be seen as a combination of iterative
improvement and random walk, using the same neigh-
borhood. Several other SLS methods combine different
types of search steps, and in the following, we briefly
discuss some prominent examples.

54.4.1 Greedy Randomized
Adaptive Search Procedures

As mentioned previously, construction heuristic can
be easily and effectively combined with perturbative
local search procedures. While greedy construction
heuristics generally generate only one or very few
different candidate solutions, randomization of the con-
striction process makes it possible to generate many
different high-quality solutions. The idea underlying
GRASP [54.10, 64] is to combine randomized greedy
construction with a subsequent perturbative local search
phase, whose goal is to improve the candidate so-
lutions produced by the construction heuristic. The
two phases of solution construction and perturbative
local search are repeated until a termination crite-
rion, e.g., maximum computation time, is met. The
term adaptive in GRASP refers to the fact that the
hybrid search process typically uses an adaptive con-
struction heuristic. Randomization in GRASP is real-
ized based on the concept of a restricted candidate
list, which contains the best-scoring solution compo-
nents according to the given heuristic function. In
the simplest and most common GRASP variants, el-
ements are chosen uniformly at random from this
restricted candidate list during the construction pro-
cess. For a detailed description, various extensions,
and an overview of applications of GRASP, we refer
to [54.64].

54.4.2 Iterated Greedy Algorithms

A disadvantage of GRASP is that new candidate
solutions are constructed from scratch and indepen-
dently of previously found solutions. Iterated greedy
(IG) algorithms iteratively apply greedy construction
heuristics to generate a chain of high-quality candi-
date solutions. The central idea is to alternate be-
tween solution construction and destruction phases,
and thus to combine at least two different types of
search steps. IG algorithms first build an initial, com-

plete candidate solution s. Then, they iterate over
the following phases, until a termination criterion is
met:

1. Starting from the current candidate solution, s, a de-
struction phase is executed, during which some
solution components are removed from s, result-
ing in a partial candidate solution s0. The solution
components that are removed in this phase may be
chosen at random or, for example, based on their
impact on the evaluation function.

2. Starting from s0, a construction heuristic is used to
generate another candidate solution, s00. This con-
struction heuristic may differ from the one used to
generate the initial candidate solution.

3. Based on an acceptance criterion, a decision is
made whether to continue the search from s or s00.
Additionally, it is often useful to further im-
prove complete candidate solutions by means of
a subsidiary perturbative local search procedure
(see Algorithm 54.2 for a high-level outline of
IG).

Algorithm 54.2 High-level outline of an iterated
greedy (IG) algorithm

Iterated greedy (IG):
construct initial candidate solution s
perform subsidiary local search on s
while termination criterion is not satisfied do

apply destruction to s, resulting in s0

apply constructive heuristic starting from s0,
resulting in s00

perform subsidiary local search on s00 (optional)
based on acceptance criterion, keep s or
accept s WD s00

end while

The principle underlying IG methods has been
rediscovered several times, and consequently, can
be found under various names, including ruin-and-
recreate [54.65], iterative flattening [54.66], and it-
erative construction heuristic [54.67]; it has also
been used in the context of SA [54.68]. IG al-
gorithms, especially when combined with perturba-
tive local search methods, have reached state-of-the-
art performance for a number of problems, includ-
ing several variants of flowshop scheduling [54.69,
70].

Stochastic Local Search Algorithms: An Overview 54.5 Population-Based SLS Methods 1095
Part

E
|54.5

54.4.3 Iterated Local Search

Iterated local search (ILS) generates a sequence of so-
lutions by alternating applications of a perturbation
mechanism and of a subsidiary local search algorithm.
Consequently, ILS can be seen as a hybrid between the
search methods underlying the local search and pertur-
bation phases.

An ILS algorithm is specified by four main compo-
nents. The first is the mechanism used for generating
an initial solution, for example, a greedy constructive
heuristic. The second is a subsidiary (perturbative) local
search procedure; typically, this is an iterative improve-
ment algorithm, but often, other simple SLS methods
are used. The third component is a perturbation proce-
dure that introduces a modification to a given candidate
solution. These perturbations should be complementary
to the modifications introduced by the subsidiary local
search procedure; in particular, the effect of the pertur-
bation procedure should not be easily reversible by the
local search procedure. The fourth component is an ac-
ceptance criterion, which is used to decide whether to
accept the outcome of the latest perturbation and local
search phase.

ILS starts by generating an initial candidate solu-
tion, to which then subsidiary local search is applied. It
then iterates over the following phases, until a termina-
tion criterion is met:

1. Perturbation is applied to the current candidate
solution s, to obtain an intermediate candidate so-
lution s0.

2. Subsidiary local search is applied to s0.
3. Based on the acceptance criterion, a decision is

made whether to continue the search from s or s0

(see Algorithm 54.3 for a high-level outline of
ILS).

Often, the subsidiary search is based on iterative im-
provement and ends in a local optimum; ILS can there-

fore be seen as performing a biased random walk in the
space of local optima produced by the given subsidiary
local search procedure. The acceptance criterion (to-
gether with the strength of the perturbation mechanism)
then determines the degree of search intensification: if
only improving candidate solutions are accepted, ILS
performs a randomized first-improvement search in the
space of local optima; if any new local optimum is ac-
cepted, ILS performs a random walk in the space of
local optima.

Algorithm 54.3 High-level outline of iterated local
search
Iterated local search (ILS):
generate initial candidate solution s
perform subsidiary local search on s
while termination criterion is not satisfied do

apply perturbation to s, resulting in s0

perform subsidiary local search on s0

based on acceptance criterion, keep s
or accept s WD s0

end while

An attractive feature of ILS is that basic versions
can be quickly and easily implemented, especially if
a simple SLS algorithm or an iterative improvement
procedure is already available. Using some additional
refinements, ILS methods define the current state of
the art for solving many combinatorial problems, in-
cluding the TSP [54.71]. Similar to IG, ILS is based
on an idea that has been rediscovered several times
and is known under various names, including large-
step Markov chains [54.29] and chained local optimiza-
tion [54.72]. There is also a close conceptual connection
with several variants of variable neighborhood search
(VNS) [54.35]; in fact, the so-called basic VNS and
skewed VNS algorithms can be seen as variants of
ILS that adapt the perturbation strength at run time.
For more details on iterated local search, we refer
to [54.73].

54.5 Population-Based SLS Methods

The use of a population of candidate solutions offers
a convenient way to increase diversification in SLS.
For example, population-based extensions of ILS algo-
rithms have been proposedwith this aim inmind [54.74,
75]. A further potential benefit comes from the inher-
ent parallelizability of the most population-based SLS

methods, although the parallelization thus achieved is
not necessarily more effective than the simple and
generic approach of performing multiple independent
runs of an SLS algorithm in parallel (see also [54.1],
Sect. 4.4). As previously remarked, population-based
methods can be cast into the SLS framework described

Part
E
|54.5

1096 Part E Evolutionary Computation

in Sect. 54.1 by defining search positions to consist of
sets of candidate solutions and by using neighborhood
relations, initialization, and step functions that operate
on such populations.

Unfortunately, the benefits derived from the use of
populations come at the cost of increased complex-
ity, in terms of implementation effort, and parameters
that need to be set appropriately. In what follows,
we describe two of the most prominent population-
based methods, one based on a constructive search
paradigm (ant colony optimization), and the other based
on a perturbative search paradigm (evolutionary algo-
rithms).

54.5.1 Ant Colony Optimization

Ant colony optimization (ACO) algorithms have orig-
inally been inspired by the trail-following behavior of
real ant species, which allows them to find shortest
paths [54.76, 77]. This biological phenomenon gave
rise to a surprisingly effective algorithm for combina-
torial optimization [54.18, 19]. In ACO, the artificial
ants perform a randomized constructive search that is
biased by (artificial) pheromone trails and heuristic in-
formation derived from the given problem instance. The
pheromone trails are numerical values associated with
solution components that are adapted at run time to
reflect experience gleaned from the search process so
far.

During solution construction, at each step every
ant chooses a solution component, probabilistically
preferring those with high-pheromone trail and heuris-
tic information values. For illustration, consider the
TSP – the first problem to which ACO has been
applied [54.18]. Each edge .i; j/ has an associated
pheromone value �ij and a heuristic value �ij, which for
the TSP is typically defined as 1=w.i; j/, that is, the in-
verse of the edge weight. In ant system [54.19], the first
ACO algorithm for the TSP, an ant located at vertex
i would add vertex j to its current partial tour s0 with
probability

pij D
�˛ij 	 �ˇijP

l2N.i/ �
˛
il 	 �ˇil

; (54.4)

where N.i/ is the feasible neighborhood of vertex i, i. e.,
the set of all vertices that have not yet been visited in s0,
and ˛ and ˇ are parameters that control the relative im-
portance of pheromone trails and heuristic information,
respectively. Note that the tour construction procedure

implemented by the artificial ants is a randomized ver-
sion of the nearest neighbor construction heuristic. In
fact, randomizing a greedy construction heuristic based
on pheromone trails associated with the decisions to
be made would generally be a good initial step to-
ward an effective ACO algorithm for a combinatorial
problem.

Once every ant has constructed a complete can-
didate solution, it is typically highly advantageous to
apply an iterative improvement procedure or a sim-
ple SLS algorithm [54.20, 78]. Next, the pheromone
trail values are updated by means of two counteracting
mechanisms. The first models pheromone evaporation
and decreases some or all pheromone trail values by
a constant factor. The second models pheromone de-
posit and increases the pheromone trail levels of solu-
tion components that have been used by one or more
ants. The amount of pheromone deposited typically de-
pends on the quality of the respective solutions. In the
best performing ACO algorithms, only some of the ants
with the highest quality solutions are allowed to deposit
pheromone. The overall result of the pheromone update
is an increased probability of choosing solution com-
ponents in subsequent solution constructions that have
previously been found to occur in high-quality solu-
tions. ACO algorithms then cycle through these phases
of solution construction, application of local search,
and pheromone update until some termination criterion
is met (see Algorithm 54.4 for a high-level outline of
ACO).

Algorithm 54.4 High-level outline of ant colony
optimization

Ant colony optimization (ACO):
initialize pheromone trails
while termination criterion is not satisfied do

generate population sp of candidate solutions
using subsidiary randomized
constructive search

perform subsidiary local search on sp
update pheromone trails

end while

Many different variants of ACO algorithms have
been studied. Along with many additional details on
ACO, these are described in the book by Dorigo and
Stützle [54.20]; for more recent surveys, we refer the
reader to [54.79, 80]. The ACO metaheuristic [54.81,
82] provides a general framework for these variants
and a generic view of how to apply ACO algorithms.
ACO is also one of the most successful algorithmic

Stochastic Local Search Algorithms: An Overview 54.6 Recent Research Directions 1097
Part

E
|54.6

techniques within the broader field of swarm intelli-
gence [54.83].

54.5.2 Evolutionary Algorithms

Evolutionary algorithms (EAs) are a prominent class of
population-based SLS methods that are loosely inspired
by concepts from biological evolution. Unlike ACO al-
gorithms, EAs work with a population of complete can-
didate solutions. The initial set of candidate solutions
is typically created randomly, but greedy construction
heuristics may also be used to seed the population. This
population then undergoes an artificial evolution, where
at each iteration, the population of candidate solutions
is modified by means of mutation, recombination and
selection.

Mutation operators typically introduce small, ran-
dom perturbations into individual candidate solutions.
The strength of these perturbations is usually controlled
by a parameter calledmutation rate; alternatively, a spe-
cific, fixed perturbation, akin to a random walk step
in RII, may be performed. Recombination operators
generate one or more new candidate solutions by com-
bining information from two or more parent candidate
solutions. The most common type of recombination
is crossover, inspired by the homonymous mechanism
in biological evolution; it generates offspring by as-
sembling partial candidate solutions from linear repre-
sentations of two parents. In addition to mutation and
recombination, selection mechanisms are used to deter-
mine the candidate solutions that will undergo mutation
and recombination, as well as those that will form the
population used in the next iteration of the evolutionary
process. Selection is based on the fitness, i. e., evalu-
ation function values, of the candidate solutions, such
that better candidate solutions have a higher probability
to be selected.

Details of the mutation, recombination and selec-
tion mechanisms all have a strong impact on the per-
formance of an EA. Generally, the use of problem
specific knowledge within these mechanisms leads to
better performance. In fact, much research in EAs has
been devoted to the design of effective mutation and

recombination operators; a good example for this is
the TSP [54.84, 85]. To achieve cutting-edge perfor-
mance in an EA, it is often useful to improve at least
the best candidate solutions in a given population by
means of a perturbative local search method, such as
iterative improvement. The resulting class of hybrid al-
gorithms, which are also known as memetic algorithms
(MA) [54.86], are enjoying increasing popularity as
a broadly applicable method for solving solving combi-
natorial problems (see Algorithm 54.5 for a high-level
outline of an MA).

Algorithm 54.5 High-level outline of a memetic
algorithm
Memetic algorithm (MA):
initialize population p
perform subsidiary local search on each
candidate solution in p

while termination criterion is not satisfied do
generate set pr of candidate solutions
through recombination

perform subsidiary local search on each
candidate solution of pr

generate set pm of candidate solutions
from p[pr through mutation

perform subsidiary local search on each
candidate solution of pm

select new population p from candidate
solutions in p[pr[pm

end while

Several other techniques are conceptually related to
evolutionary algorithms but have different roots. Scat-
ter search and path relinking are SLS methods whose
origins can be traced back to the mid-1970s [54.16].
Scatter search can be seen as a memetic algorithm that
uses special types of recombination and selection mech-
anisms. Path relinking corresponds to a specific form of
interpolation between two (or possibly more) candidate
solutions and is thus conceptually related to recombi-
nation operators. Both methods have recently become
increasingly popular; details can be found in [54.17,
87].

54.6 Recent Research Directions

In this section, we concisely discuss three research
directions that we regard as particularly timely and
promising: combinations of SLS and systematic search

techniques, SLS algorithm engineering, and automated
configuration and design of SLS algorithms. For other
topics of interests, such as SLS algorithms for mul-

Part
E
|54.6

1098 Part E Evolutionary Computation

tiobjective [54.88–90], stochastic [54.91] or dynamic
problems [54.92, 93], we refer to the literature for more
details.

54.6.1 Combination of SLS Algorithms
with Systematic Search Techniques

Systematic search and SLS are traditionally seen as
two distinct approaches for solving challenging com-
binatorial problems. Interestingly, the particular ad-
vantages and disadvantages of each of these ap-
proaches render them rather complementary. There-
fore, it is hardly surprising that over the last few
years, there has been increased interest in the ex-
ploration and development of hybrid algorithms that
combine ideas from both paradigms. For example, re-
lated to the area of mathematical programming, the
term Matheuristics has recently been coined to refer
to methods that combine elements from mathematical
programming techniques (which are primarily based
on systematic search) and (meta)heuristic search algo-
rithms [54.94].

Hybrids between SLS and systematic search fall
into two main classes. The first of these consists of ap-
proaches where the systematic search algorithm plays
the role of the master process, and an SLS proce-
dure is used to solve subproblems that arise during the
systematic search process. Probably, the simplest, yet
potentially effective method is to use an SLS algorithm
to provide an initial high-quality (primal) bound on the
optimal solution of the problem, which is then used
by the systematic search algorithm for pruning parts of
the search tree. Several more elaborate schemes have
been devised, e.g., in the context of column generation
and separation routines in integer programming [54.95].
Other approaches introduce the spirit of local search
into integer programming solvers; examples of these in-
clude local branching [54.96] and relaxation-induced
neighborhood search [54.97]. We refer to [54.95] for
a recent overview of such combinations.

The second class of hybrid approaches is based on
the idea of using systematic search procedures to deal
with specific tasks arising while running an SLS al-
gorithm. Very-large neighborhood search [54.37], as
discussed in Sect. 54.2, is probably one of the best-
known examples. Elements of tree search methods can
also be exploited within constructive search algorithms,
as exemplified by the use of branch and bound tech-
niques in ACO algorithms [54.98, 99]. Other examples
include tour merging [54.100] and the usage of infor-
mation derived from integer programming formulations

of optimization problems in heuristic methods [54.101].
We refer to [54.102] for a survey of this general ap-
proach. A taxonomy of the possible combinations of
exact and local search algorithms has been introduced
by Jourdan et al. [54.103].

Despite an increasing number of efforts on com-
bining systematic search methods and SLS methods, as
reviewed in [54.94], much work remains to be done in
this direction, especially considering that the two un-
derlying fundamental search paradigms are developed
primarily in rather disjoint communities. We believe
that much can be gained by overcoming the traditional
view of these two approaches as being competing with
each other in favour of focusing on synergies due to
their complementarity.

54.6.2 SLS Algorithm Engineering

Despite the impressive successes in SLS research and
applications – SLS algorithms are now firmly estab-
lished as the method of choice for tackling a broad
range of combinatorial problems – there are still sig-
nificant shortcomings. Perhaps most prominently, there
is a lack of guidelines and best practices regarding the
design and development of effective SLS algorithms.
Current practice is to implement one specific SLS
method, based on one or more construction heuristics
or iterative improvement procedures. However, general-
purpose SLS methods are not fully defined recipes: they
leave many design choices open, and typically only spe-
cific combinations of these choices will result in an
effective algorithms for a given problem. Even worse,
the underlying basic construction and iterative improve-
ment procedures have a tremendous influence on the
final performance of the SLS algorithms built on them,
and this influence is frequently neglected.

We firmly believe that a more methodological ap-
proach needs to be taken toward the design and imple-
mentation of SLS algorithms. The research direction
dedicated to developing such an approach is called
stochastic local search algorithm engineering or, for
short, SLS engineering; it is conceptually related to
algorithm engineering [54.104] and software engineer-
ing [54.105], where similar methodological issues are
tackled in a different context. Algorithm engineering is
rather closely related to SLS engineering; it has been
conceived as an extension to the traditionally more the-
oretically oriented research on algorithms. Algorithm
engineering, according to [54.104], deals with the it-
erative process of designing, analyzing, implementing,
tuning and experimentally evaluating algorithms. SLS

Stochastic Local Search Algorithms: An Overview 54.6 Recent Research Directions 1099
Part

E
|54.6

engineering shares this motivation; however, the al-
gorithms that are dealt with in the context of SLS
approaches have substantially more complex and un-
predictable behavior than those typically considered
in algorithm engineering. There are several reasons
for this: SLS algorithms are usually used for solv-
ing NP-hard problems, they allow for many more
degrees of freedom in the choice of algorithm com-
ponents, and their stochasticity makes analysis more
complex.

From a high-level perspective, an initial approach
to a successful SLS engineering process would proceed
in a bottom-up fashion. Starting from knowledge about
the problem, it would build SLS algorithms by itera-
tively adding complexity to simple, basic algorithms.
More concretely, a tentative first attempt at such a pro-
cess could be as follows:

1. Study existing knowledge on the problem to be
solved and its characteristics;

2. Implement basic and advanced constructive and it-
erative improvement procedures;

3. Starting from these, add complexity (for example,
by moving to simple SLS methods);

4. Improve performance by gradually adding concepts
from more complex SLS techniques (for exam-
ple, perturbations, prohibition mechanisms, popula-
tions);

5. Further configure and fine-tune parameters and de-
sign choices;

6. If found to be useful: iterate over steps 4–5.

Obviously, such a process would not necessarily
strictly follow this outline, but insights gained at later
stages could prompt revisiting earlier design decisions.
Several high-performance SLS algorithms have already
been developed following roughly the process outlined
above (see [54.106] for an explicit example).

The SLS engineering process can be supported in
various ways. Algorithm development, implementation
and testing is facilitated by the use of programming
frameworks like Paradiseo [54.107, 108] and EasyLo-
cal++ [54.109, 110], dedicated languages and systems
like COMET [54.111], libraries of data types (such
as LEDA [54.112]), and statistical tools, such as the
comprehensive, open-source R environment [54.113].
We expect that software environments specifically de-
signed for the automated empirical analysis and design
of algorithms, such as HAL [54.114, 115], will be
especially useful in this context. Tools for the auto-
matic configuration and tuning of algorithms, discussed

further in the next section are also of considerable
importance.

Furthermore, we see an improved understanding of
the relationship between problem and instance features
on the one side, and the properties and the behavior of
SLS methods on the other side as key enabling fac-
tors for advanced SLS engineering approaches. The
potential insights to be gained are not only of practical
value to SLS engineering but also of considerable sci-
entific interest. Progress in this direction is facilitated
by advanced search space analysis techniques, statis-
tical methods and machine learning approaches (see,
e.g., Merz and Freisleben [54.116], Xu et al. [54.117]
and Watson et al. [54.118]). Another promising av-
enue for future research involves the integration of
theoretical insights into the design process, for ex-
ample, by restricting design alternatives or parameter
choices.

It is important to note that research toward SLS
engineering adopts a component-wise view of SLS meth-
ods. For example, iterated local search (ILS) uses
perturbations to diversify the search as well as ac-
ceptance tests (components: perturbations, acceptance
tests), while evolutionary algorithms prominently in-
volve the use of a population of solutions (component:
population of solutions). Each of these components
can be instantiated in different ways, and various com-
binations are possible. An effective SLS engineering
process should provide guidance to the algorithm de-
signer regarding the choice and configuration of these
components. It would naturally and incrementally lead
to combinations of algorithmic components taken from
different SLS methods (or other paradigms, such as
mathematical programming – [54.94]), if these con-
tribute to desirable performance characteristics of the
algorithm under design. Such an engineering process
would therefore rather naturally produce hybrid algo-
rithms that are effective for solving the given computa-
tional problem.

Finally, SLS engineering highlights more the im-
portance of decisions concerning the underlying basic
SLS techniques (such as construction heuristics, neigh-
borhoods, efficient data structures, etc.) than the gen-
eral-purpose SLS methods (or metaheuristics) used in
a given algorithm design scenario. In fact, in our ex-
perience, such fundamental choices together with: (i)
the level of expertise of the SLS algorithm developer
and implementer, (ii) the time invested in designing and
configuring the SLS algorithm, (iii) the creative use of
insights into algorithm behavior and interaction with
problem characteristics play a considerably more im-

Part
E
|54

1100 Part E Evolutionary Computation

portant role in the design of effective SLS algorithms
than the focus on specific features prescribed by so-
called metaheuristics.

54.6.3 Automatic Configuration
of SLS Algorithms

The performance of algorithms for virtually any com-
putationally challenging problem (and in particular, for
any NP-hard problem) depends strongly on appropriate
settings of algorithm parameters. In many cases, there
are tens of such parameter; for example, the well-known
commercial CPLEX solver for integer programming
problems has more than 130 user-specifiable param-
eters that influence its search behavior. Likewise, the
behavior of most SLS algorithms is controlled by pa-
rameters, and many design choices can be exposed in
the form of parameters. This gives rise to algorithms
with many categorical and numerical parameters. Cate-
gorical parameters are used to make choices from a dis-
crete set of design variants, such as search strategies,
neighborhoods or perturbation mechanisms. Numeri-
cal parameters often arise as subordinate parameters
that directly control the behavior of a search strategy
(e.g., temperature in SA and tabu tenure in simple tabu
search). The goal in automated algorithm configura-
tion is to find settings of these parameters that achieve
optimized performance w.r.t. a performance metric of
interest (for example, solution quality or computation
time).

Automated algorithm configuration methods are an
active area of research and have been demonstrated to
achieve very substantial performance gains on many
widely studied and challenging problems [54.119]. So-
called offline configuration methods, which determine
performance-optimizing parameter settings on a rep-
resentative set of benchmark instances during a train-
ing phase before algorithm deployment, have arguably
been studied most intensely been studied. These in-

clude procedures that are limited to tuning numerical
parameters, such as CALIBRA [54.120], experimen-
tal design-based approaches [54.69, 121], SPO [54.122]
and SPOC [54.123]. Methods that can handle cat-
egorical as well as numerical parameters are con-
siderably more versatile; these include racing proce-
dures [54.124, 125], model-free configuration proce-
dures [54.126–128], and recent sequential model-based
techniques [54.129, 130].

In online configuration, algorithm parameters are
modified while attempting to solve a given problem
instance. There are some inherent advantages of on-
line configuration methods w.r.t. offline methods, es-
pecially when targeting very heterogeneous instances,
where appropriate algorithm parameters may depend
strongly on the problem instance to be solved. Some
of these methods fall into the realm of reactive search
methods [54.131]; others have been studied in the
area of evolutionary computation (for an overview,
we refer to [54.132]). Unfortunately, most online con-
figuration methods presently available deal with very
few parameters primarily responsible for algorithm
performance (often only one) and rely on specific
insight into the working principles of the given algo-
rithm.

There are also various approaches for determining
configurations of a given algorithm that result in good
performance on a given problem instance. These per-
instance configuration methods typically make use of
computationally cheap instance features, which provide
the basis for selecting the configuration to be used for
solving a given instance [54.133–135].

Finally, we believe that there is significant promise
in approaches for automating large parts of the de-
sign process of performance-optimized SLS algorithms
as, for example, outlined in recent work on computer-
aided algorithm design for generalized local search ma-
chines [54.136] and the programming by optimization
(PbO) software design paradigm [54.23].

References

54.1 H.H. Hoos, T. Stützle: Stochastic Local Search—
Foundations and Applications (Morgan Kauf-
mann, San Francisco 2004)

54.2 G.R. Schreiber, O.C. Martin: Cut size statistics of
graph bisection heuristics, SIAM J. Optim. 10(1),
231–251 (1999)

54.3 M. Gendreau, J.-Y. Potvin (Eds.): Handbook of
Metaheuristics, International Series in Opera-

tions Research & Management Science, Vol. 146
(Springer, New York 2010)

54.4 S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi: Opti-
mization by simulated annealing, Science 220,
671–680 (1983)

54.5 V. Cerný: A thermodynamical approach to the
traveling salesman problem, J. Optim. Theory
Appl. 45(1), 41–51 (1985)

Stochastic Local Search Algorithms: An Overview References 1101
Part

E
|54

54.6 F. Glover: Future paths for integer programming
and links to artificial intelligence, Comput. Oper.
Res. 13(5), 533–549 (1986)

54.7 F. Glover: Tabu search – Part I, ORSA J. Comput.
1(3), 190–206 (1989)

54.8 F. Glover: Tabu search – Part II, ORSA J. Comput.
2(1), 4–32 (1990)

54.9 P. Hansen, B. Jaumard: Algorithms for the maxi-
mum satisfiability problem, Computing 44, 279–
303 (1990)

54.10 T.A. Feo, M.G.C. Resende: A probabilistic heuristic
for a computationally difficult set covering prob-
lem, Oper. Res. Lett. 8(2), 67–71 (1989)

54.11 H.R. Lourenço, O. Martin, T. Stützle: Iterated lo-
cal search. In: Handbook of Metaheuristics, ed. by
F. Glover, G. Kochenberger (Kluwer, Norwell 2002)
pp. 321–353

54.12 J.H. Holland: Adaption in Natural and Artificial
Systems (The University of Michigan, Ann Arbor
1975)

54.13 D.E. Goldberg: Genetic Algorithms in Search,
Optimization, and Machine Learning (Addison-
Wesley, Reading 1989)

54.14 I. Rechenberg: Evolutionsstrategie – Optimierung
technischer Systeme nach Prinzipien der biologis-
chen Information (Fromman, Freiburg, Germany
1973)

54.15 H.-P. Schwefel: Numerical Optimization of Com-
puter Models (Wiley, Chichester 1981)

54.16 F. Glover: Heuristics for integer programming us-
ing surrogate constraints, Decis. Sci. 8, 156–164
(1977)

54.17 F. Glover, M. Laguna, R. Martí: Scatter search and
path relinking: Advances and applications. In:
Handbook of Metaheuristics, ed. by F. Glover,
G. Kochenberger (Kluwer, Norwell 2002) pp. 1–35

54.18 M. Dorigo, V. Maniezzo, A. Colorni: Positive feed-
back as a search strategy. Techn. Rep. 91-016,
Dipartimento di Elettronica, Politecnico di Milano,
Italy, 1991

54.19 M. Dorigo, V. Maniezzo, A. Colorni: Ant System:
Optimization by a colony of cooperating agents,
IEEE Trans. Syst. Man. Cybern. B 26(1), 29–41
(1996)

54.20 M. Dorigo, T. Stützle: Ant Colony Optimization (MIT,
Cambridge 2004)

54.21 T. Stützle, M. Birattari, H.H. Hoos: Engineering
stochastic local search algorithms – designing,
implementing and analyzing effective heuristics,
Lect. Notes Comput. Sci. 4638, 1–221 (2007)

54.22 T. Stützle, M. Birattari, H.H. Hoos: Engineering
stochastic local search algorithms – designing,
implementing and analyzing effective heuristics,
Lect. Notes Comput. Sci. 5217, 1–155 (2009)

54.23 H.H. Hoos: Programming by optimization, Com-
mun. ACM 55, 70–80 (2012)

54.24 S. Khanna, R. Motwani, M. Sudan, U. Vazirani:
On syntactic versus computational views of ap-
proximability, Proc. 35th Annu. IEEE Symp. Found.

Comput. Sci. (IEEE Computer Society, Los Alamitos
1994) pp. 819–830

54.25 F. Glover, M. Laguna: Tabu Search (Kluwer, Boston
1997)

54.26 K. Sörensen, F. Glover: Metaheuristics. In: Ency-
clopedia of Operations Research and Manage-
ment Science, ed. by S.I. Gass, M.C. Fu (Springer,
Berlin 2013) pp. 960–970

54.27 C.H. Papadimitriou, K. Steiglitz: Combinatorial
Optimization – Algorithms and Complexity (Pren-
tice Hall, Englewood Cliffs 1982)

54.28 J.L. Bentley: Fast algorithms for geometric trav-
eling salesman problems, ORSA J. Comput. 4(4),
387–411 (1992)

54.29 O.C. Martin, S.W. Otto, E.W. Felten: Large-step
Markov chains for the traveling salesman prob-
lem, Complex Syst. 5(3), 299–326 (1991)

54.30 D.S. Johnson, L.A. McGeoch: The traveling sales-
man problem: A case study in local optimization.
In: Local Search in Combinatorial Optimization,
ed. by E.H.L. Aarts, J.K. Lenstra (Wiley, Chichester
1997) pp. 215–310

54.31 A.S. Jain, B. Rangaswamy, S. Meeran: New and
“stronger” job-shop neighbourhoods: A focus on
the method of Nowicki and Smutnicki, J. Heuris-
tics 6(4), 457–480 (2000)

54.32 R.K. Congram, C.N. Potts, S. van de Velde: An
iterated dynasearch algorithm for the single-
machine total weighted tardiness scheduling
problem, INFORMS J. Comput. 14(1), 52–67 (2002)

54.33 M. Yannakakis: The analysis of local search prob-
lems and their heuristics, Lect. Notes Comput. Sci.
415, 298–310 (1990)

54.34 R. Battiti, M. Protasi: Reactive search, a history-
based heuristic for MAX-SAT, ACM J. Exp. Algorith-
mics 2, 2 (1997)

54.35 P. Hansen, N. Mladenović: Variable neighborhood
search: Principles and applications, Eur. J. Oper.
Res. 130(3), 449–467 (2001)

54.36 P. Hansen, N. Mladenović: Variable neighborhood
search. In: Handbook of Metaheuristics, ed. by
F. Glover, G. Kochenberger (Kluwer, Norwell 2002)
pp. 145–184

54.37 R.K. Ahuja, O. Ergun, J.B. Orlin, A.P. Punnen:
A survey of very large-scale neighborhood search
techniques, Discrete Appl. Math. 123(1–3), 75–102
(2002)

54.38 B.W. Kernighan, S. Lin: An efficient heuristic pro-
cedure for partitioning graphs, Bell Syst. Technol.
J. 49, 213–219 (1970)

54.39 S. Lin, B.W. Kernighan: An effective heuristic al-
gorithm for the traveling salesmanproblem, Oper.
Res. 21(2), 498–516 (1973)

54.40 F. Glover: Ejection chain, reference structures and
alternating path methods for traveling salesman
problems, Discrete. Appl. Math. 65(1–3), 223–253
(1996)

54.41 R.K. Ahuja, O. Ergun, J.B. Orlin, A.P. Punnen: Very
large-scale neighborhood search. In: Handbook

Part
E
|54

1102 Part E Evolutionary Computation

of Approximation Algorithms and Metaheuristics,
Computer and Information Science Series, ed. by
T.F. Gonzalez (Chapman Hall/CRC, Boca Raton 2007)
pp. 1–12

54.42 I. Dumitrescu: Constrained Path and Cycle Prob-
lems, Ph.D. Thesis (University of Melbourne, De-
partment of Mathematics and Statistics 2002)

54.43 M. Chiarandini, I. Dumitrescu, T. Stützle: Very
large-scale neighborhood search: Overview and
case studies on coloring problems. In: Hybrid
Metaheuristics – An Emergent Approach to Opti-
mization, Studies in Computational Intelligence,
Vol. 117, ed. by C. Blum,M.J. Blesa Aguilera, A. Roli,
M. Sampels (Springer, Berlin 2008) pp. 117–150

54.44 C.N. Potts, S. van de Velde: Dynasearch: Iter-
ative local improvement by dynamic program-
ming; Part I, the traveling salesman problem.
Techn. Rep. LPOM–9511, Faculty of Mechanical En-
gineering, University of Twente, Enschede, The
Netherlands, 1995

54.45 P.M. Thompson, J.B. Orlin: The theory of cycle
transfers, Working Paper OR 200-89, Operations
Research Center, MIT, Cambridge 1989

54.46 P.M. Thompson, H.N. Psaraftis: Cyclic transfer al-
gorithm for multivehicle routing and scheduling
problems, Oper. Res. 41, 935–946 (1993)

54.47 K. Helsgaun: An effective implementation of the
Lin-Kernighan traveling salesman heuristic, Eur.
J. Oper. Res. 126(1), 106–130 (2000)

54.48 A. Grosso, F. Della Croce, R. Tadei: An en-
hanced dynasearch neighborhood for the single-
machine total weighted tardiness scheduling
problem, Oper. Res. Lett. 32(1), 68–72 (2004)

54.49 B. Selman, H. Kautz: Domain-independent ex-
tensions to GSAT: Solving large structured satis-
fiability problems, Proc. 13th Int. Jt. Conf. Artif.
Intell., ed. by R. Bajcsy (Morgan Kaufmann, San
Francisco 1993) pp. 290–295

54.50 B. Selman, H. Kautz, B. Cohen: Noise strategies for
improving local search, Proc. 12th Natl. Conf. Artif.
Intell., AAAI/The MIT (1994) pp. 337–343

54.51 O. Steinmann, A. Strohmaier, T. Stützle: Tabu
search vs. random walk, Lect. Notes Artif. Intell.
1303, 337–348 (1997)

54.52 O.J. Mengshoel: Understanding the role of noise
in stochastic local search: Analysis and experi-
ments, Artif. Intell. 172(8/9), 955–990 (2008)

54.53 D.T. Connolly: An improved annealing scheme for
the QAP, Eur. J. Oper. Res. 46(1), 93–100 (1990)

54.54 M. Fielding: Simulated annealing with an optimal
fixed temperature, SIAM J. Optim. 11(2), 289–307
(2000)

54.55 E.H.L. Aarts, J.H.M. Korst, P.J.M. van Laarhoven:
Simulated annealing. In: Local Search in Com-
binatorial Optimization, ed. by E.H.L. Aarts,
J.K. Lenstra (Wiley, Chichester 1997) pp. 91–120

54.56 A.G. Nikolaev, S.H. Jacobsen: Simulated anneal-
ing. In: Handbook of Metaheuristics, Interna-
tional Series in Operations Research & Manage-

ment Science, Vol. 146, ed. by M. Gendreau, J.-Y.
Potvin (Springer, New York 2010) pp. 1–40 2 edi-
tion, chapter 8

54.57 R. Battiti, G. Tecchiolli: Simulated annealing and
tabu search in the long run: A comparison on QAP
tasks, Comput. Math. Appl. 28(6), 1–8 (1994)

54.58 C. Voudouris: Guided Local Search for Combina-
torial Optimization Problems, Ph.D. Thesis (Uni-
versity of Essex, Department of Computer Science,
Colchester 1997)

54.59 C. Voudouris, E. Tsang: Guided local search and its
application to the travelling salesman problem,
Eur. J. Oper. Res. 113(2), 469–499 (1999)

54.60 Y. Shang, B.W. Wah: A discrete Lagrangian-based
global-search method for solving satisfiability
problems, J. Glob. Optim. 12(1), 61–100 (1998)

54.61 D. Schuurmans, F. Southey, R.C. Holte: The ex-
ponentiated subgradient algorithm for heuristic
boolean programming, Proc. 17th Int. Jt. Conf. Ar-
tif. Intell., ed. by B. Nebel (Morgan Kaufmann, San
Francisco 2001) pp. 334–341

54.62 F. Hutter, D.A.D. Tompkins, H.H. Hoos: Scaling and
probabilistic smoothing: Efficient dynamic local
search for SAT, Lect. Notes Comput. Sci. 2470, 233–
248 (2002)

54.63 W.J. Pullan, H.H. Hoos: Dynamic local search for
the maximum clique problem, J. Artif. Intell. Res.
25, 159–185 (2006)

54.64 M.G.C. Resende, C.C. Ribeiro: Greedy random-
ized adaptive search procedures: Advances and
applications. In: Handbook of Metaheuristics, In-
ternational Series in Operations Research & Man-
agement Science, Vol. 146, ed. by M. Gendreau,
J.-Y. Potvin (Springer, New York 2010) pp. 281–317

54.65 G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt,
G. Dueck: Record breaking optimization results
using the ruin and recreate principle, J. Comput.
Phys. 159(2), 139–171 (2000)

54.66 A. Cesta, A. Oddi, S.F. Smith: Iterative flatten-
ing: A scalable method for solving multi-capacity
scheduling problems, Proc. 17th Natl. Conf. Artif.
Intell., AAAI/The MIT (2000) pp. 742–747

54.67 A.J. Richmond, J.E. Beasley: An iterative con-
struction heuristic for the ore selection problem,
J. Heuristics 10, 153–167 (2004)

54.68 L.W. Jacobs, M.J. Brusco: A local search heuristic
for large set-covering problems, Nav. Res. Logist.
42(7), 1129–1140 (1995)

54.69 R. Ruiz, T. Stützle: A simple and effective iter-
ated greedy algorithm for the permutation flow-
shop scheduling problem, Eur. J. Oper. Res. 177(3),
2033–2049 (2007)

54.70 R. Ruiz, T. Stützle: An iterated greedy heuristic for
the sequence dependent setup times flowshop
problem with makespan and weighted tardi-
ness objectives, Eur. J. Oper. Res. 187(3), 1143–1159
(2008)

54.71 D.S. Johnson, L.A. McGeoch: Experimental anal-
ysis of heuristics for the STSP. In: The Travel-

Stochastic Local Search Algorithms: An Overview References 1103
Part

E
|54

ing Salesman Problem and its Variations, ed.
by G. Gutin, A. Punnen (Kluwer, Dordrecht, The
Netherlands 2002) pp. 369–443

54.72 D. Applegate, W. Cook, A. Rohe: Chained Lin-
Kernighan for large traveling salesman problems,
INFORMS J. Comput. 15(1), 82–92 (2003)

54.73 H.R. Lourenço, O. Martin, T. Stützle: Iterated
local search: Framework and applications. In:
Handbook of Metaheuristics, International Se-
ries in Operations Research & Management Sci-
ence, Vol. 146, ed. by M. Gendreau, J.-Y. Potvin
(Springer, New York 2010) pp. 363–397

54.74 T. Stützle: Iterated local search for the quadratic
assignment problem, Eur. J. Oper. Res. 174(3),
1519–1539 (2006)

54.75 I. Hong, A.B. Kahng, B.R. Moon: Improved large-
step Markov chain variants for the symmetric TSP,
J. Heuristics 3(1), 63–81 (1997)

54.76 S. Goss, S. Aron, J.L. Deneubourg, J.M. Pasteels:
Self-organized shortcuts in the Argentine ant,
Naturwissenschaften 76, 579–581 (1989)

54.77 J.-L. Deneubourg, S. Aron, S. Goss, J.-M. Pasteels:
The self-organizing exploratory pattern of the Ar-
gentine ant, J. Insect Behav. 3, 159–168 (1990)

54.78 T. Stützle, H.H. Hoos:MAX–MIN ant system, Future
Gener. Comput. Syst. 16(8), 889–914 (2000)

54.79 M. Dorigo, M. Birattari, T. Stützle: Ant colony
optimization: Artificial ants as a computational
intelligence technique, IEEE Comput. Intell. Mag.
1(4), 28–39 (2006)

54.80 M. Dorigo, T. Stützle: Ant colony optimization:
Overview and recent advances. In: Handbook of
Metaheuristics, International Series in Operations
Research & Management Science, Vol. 146, ed.
by M. Gendreau, J.-Y. Potvin (Springer, New York
2010) pp. 227–263

54.81 M. Dorigo, G. Di Caro: The ant colony optimization
meta-heuristic. In: New Ideas in Optimization,
ed. by D. Corne, M. Dorigo, F. Glover (McGraw Hill,
London 1999) pp. 11–32

54.82 M. Dorigo, G. Di Caro, L.M. Gambardella: Ant al-
gorithms for discrete optimization, Artif. Life 5(2),
137–172 (1999)

54.83 E. Bonabeau, M. Dorigo, G. Theraulaz: Swarm
Intelligence: From Natural to Artificial Systems
(Oxford Univ. Press, New York 1999)

54.84 J.-Y. Potvin: Genetic algorithms for the traveling
salesman problem, Ann. Oper. Res. 63, 339–370
(1996)

54.85 P. Merz, B. Freisleben: Memetic algorithms for the
traveling salesman problem, Complex Syst. 13(4),
297–345 (2001)

54.86 P. Moscato: Memetic algorithms: A short intro-
duction. In: New Ideas in Optimization, ed. by
D. Corne, M. Dorigo, F. Glover (McGraw Hill, Lon-
don 1999) pp. 219–234

54.87 M. Laguna, R. Martí: Scatter Search: Methodology
and Implementations in C, Vol. 24 (Kluwer, Boston
2003)

54.88 M. Ehrgott, X. Gandibleux: Approximative solu-
tion methods for combinatorial multicriteria op-
timization, TOP 12(1), 1–88 (2004)

54.89 M. Ehrgott, X. Gandibleux: Hybrid metaheuristics
for multi-objective combinatorial optimization.
In: Hybrid Metaheuristics: An emergent approach
for optimization, ed. by C. Blum, M.J. Blesa,
A. Roli, M. Sampels (Springer, Berlin, Germany
2008) pp. 221–259

54.90 L. Paquete, T. Stützle: Stochastic local search al-
gorithms for multiobjective combinatorial opti-
mization: A review. In: Handbook of Approxi-
mation Algorithms and Metaheuristics, Computer
and Information Science Series, ed. by T.F. Gonza-
lez (Chapman Hall/CRC, Boca Raton 2007) pp. 1–15

54.91 L. Bianchi, M. Dorigo, L.M. Gambardella,W.J. Gut-
jahr: A survey on metaheuristics for stochastic
combinatorial optimization, Nat. Comput. 8(2),
239–287 (2009)

54.92 D. Ouelhadj, S. Petrovic: A survey of dynamic
scheduling in manufacturing systems, J. Sched.
12(4), 417–431 (2009)

54.93 V. Pillac, M. Gendreau, C. Guéret, A. L. Medaglia:
A review of dynamic vehicle routing problems.
Techn. Rep. CIRRELT-2011-62, Interuniversity Re-
search Centre on Enterprise Networks, Logistics
and Transportation, Montréal, Canada, October
2011

54.94 V. Maniezzo, T. Stützle, S. Voß (Eds.): Matheuris-
tics – Hybridizing Metaheuristics and Mathemat-
ical Programming, Annals of Information Sys-
tems, Vol. 10 (Springer, New York 2010)

54.95 J. Puchinger, G.R. Raidl, S. Pirkwieser: MetaBoost-
ing: Enhancing integer programming techniques
bymetaheuristics. In:Matheuristics – Hybridizing
Metaheuristics and Mathematical Programming,
Annals of Information Systems, Vol. 10, ed. by
V. Maniezzo, T. Stützle, S. Voß (Springer, New York
2010) pp. 71–102

54.96 M. Fischetti, A. Lodi: Local branching, Math. Pro-
gram. 98(1/3), 23–47 (2003)

54.97 E. Danna, E. Rothberg, C. Le Pape: Exploring re-
laxation induced neighborhoods to improve mip
solutions, Math Program. 102(1), 71–90 (2005)

54.98 V. Maniezzo: Exact and approximate nondeter-
ministic tree-search procedures for the quadratic
assignment problem, INFORMS J. Comput. 11(4),
358–369 (1999)

54.99 C. Blum: Beam-ACO for simple assembly line bal-
ancing, INFORMS J. Comput. 20(4), 618–627 (2008)

54.100 W. Cook, P. Seymour: Tour merging via branch-
decomposition, INFORMS J. Comput. 15(3), 233–
248 (2003)

54.101 M.A. Boschetti, V. Maniezzo: Benders decompo-
sition, Lagrangean relaxation and metaheuristic
design, J. Heuristics 15(3), 283–312 (2009)

54.102 I. Dumitrescu, T. Stützle: Usage of exact algo-
rithms to enhance stochastic local search algo-
rithms. In: Matheuristics – Hybridizing Meta-

Part
E
|54

1104 Part E Evolutionary Computation

heuristics and Mathematical Programming, An-
nals of Information Systems, Vol. 10, ed. by
V. Maniezzo, T. Stützle, S. Voß (Springer, New York
2010) pp. 103–134

54.103 L. Jourdan, M. Basseur, E.-G. Talbi: Hybridizing
exact methods and metaheuristics: A taxonomy,
Eur. J. Oper. Res. 199(3), 620–629 (2009)

54.104 C. Demetrescu, I. Finocchi, G.F. Italiano: Algorithm
engineering, Bulletin EATCS 79, 48–63 (2003)

54.105 I. Sommerville (Ed.): Software Engineering, 7th
edn. (Addison Wesley, Boston 2004)

54.106 P. Balaprakash, M. Birattari, T. Stützle: Engineer-
ing stochastic local search algorithms: A case
study in estimation-based local search for the
probabilistic traveling salesman problem. In: Re-
cent Advances in Evolutionary Computation for
Combinatorial Optimization, Studies in Computa-
tional Intelligence, Vol. 153, ed. by C. Cotta, J. van
Hemert (Springer, Berlin 2008) pp. 55–69

54.107 S. Cahon, N. Melab, E.-G. Talbi: ParadisEO:
A framework for the reusable design of parallel
and distributed metaheuristics, J. Heuristics 10(3),
357–380 (2004)

54.108 Paradiseo: A Software Framework for Metaheuris-
tics, http://paradiseo.gforge.inria.fr

54.109 L. Di Gaspero, A. Schaerf: Writing local search
algorithms using EASYLOCAL++. In: Optimiza-
tion Software Class Libraries, ed. by S. Voß,
D.L. Woodruff (Kluwer, Boston, 2002) pp. 155–175

54.110 Atlassian Bitbucket: https://bitbucket.org/satt/
easylocal-3

54.111 P. Van Hentenryck, L. Michel: Constraint-Based
Local Search (MIT, Cambridge 2005)

54.112 K. Mehlhorn, S. Näher: LEDA: A Platform for Com-
binatorial and Geometric Computing (Cambridge
Univ. Press, Cambridge 1999)

54.113 The R Project for Statistical Computing, http://
www.r-project.org

54.114 C.W. Nell, C. Fawcett, H.H. Hoos, K. Leyton-Brown:
HAL: A framework for the automated design and
analysis of high-performance algorithms, Lect.
Notes Comput. Sci. 6683, 600–615 (2011)

54.115 HAL: The High-performance Algorithm Laboratory,
http://hal.cs.ubc.ca/

54.116 P. Merz, B. Freisleben: Fitness landscapes and
memetic algorithm design. In: New Ideas in Op-
timization, ed. by D. Corne, M. Dorigo, F. Glover
(McGraw Hill, London 1999) pp. 244–260

54.117 L. Xu, H. Hoos, K. Leyton-Brown: Hierarchical
hardness models for SAT, Lect. Notes Comput. Sci.
4741, 696–711 (2007)

54.118 J.-P. Watson, L.D. Whitley, A.E. Howe: Linking
search space structure, run-time dynamics, and
problem difficulty: A step towards demystifying
tabu search, J. Artif. Intell. Res. 24, 221–261 (2005)

54.119 H.H. Hoos: Automated algorithm configuration
and parameter tuning. In: Autonomous Search,
ed. by Y. Hamadi, E. Monfroy, F. Saubion (Springer,
Berlin 2012) pp. 37–71

54.120 B. Adenso-Díaz, M. Laguna: Fine-tuning of
algorithms using fractional experimental de-
signs and local search, Oper. Res. 54(1), 99–114
(2006)

54.121 S.P. Coy, B.L. Golden, G.C. Runger, E.A. Wasil: Using
experimental design to find effective parame-
ter settings for heuristics, J. Heuristics 7(1), 77–97
(2001)

54.122 T. Bartz-Beielstein: Experimental Research in
Evolutionary Computation – The New Experimen-
talism (Springer, Berlin 2006)

54.123 F. Hutter, H.H. Hoos, K. Leyton-Brown, K.P. Mur-
phy: An experimental investigation of model-
based parameter optimisation: SPO and beyond,
Genet. Evol. Comput. Conf., GECCO 2009, ed.
by F. Rothlauf (ACM, New York 2009) pp. 271–
278

54.124 M. Birattari, T. Stützle, L. Paquete, K. Varrentrapp:
A racing algorithm for configuring metaheuristics,
Proc. Genet. Evol. Comput. Conf. (GECCO-2002),
ed. by W.B. Langdon, E. Cantú-Paz, K.E. Math-
ias, R. Roy, D. Davis, R. Poli, K. Balakrishnan,
V. Honavar, G. Rudolph, J. Wegener, L. Bull,
M.A. Potter, A.C. Schultz, J.F. Miller, E.K. Burke,
N. Jonoska (Morgan Kaufmann, San Francisco
2002) pp. 11–18

54.125 M. Birattari, Z. Yuan, P. Balaprakash, T. Stützle:
F-Race and iterated F-Race: An overview. In:
Experimental Methods for the Analysis of Opti-
mization Algorithms, ed. by T. Bartz-Beielstein,
M. Chiarandini, L. Paquete, M. Preuss (Springer,
Berlin, Germany 2010) pp. 311–336

54.126 F. Hutter, H.H. Hoos, T. Stützle: Automatic algo-
rithm configuration based on local search, Proc.
22nd Conf. Artif. Intell. (AAAI), ed. by R.C. Holte,
A. Howe (AAAI / The MIT, Menlo Park 2007) pp. 1152–
1157

54.127 C. Ansótegui, M. Sellmann, K. Tierney: A gender-
based genetic algorithm for the automatic con-
figuration of algorithms, Proc. 15th Int. Conf.
Princ. Pract. Constraint Program. (CP 2009) (2009)
pp. 142–157

54.128 F. Hutter, H.H. Hoos, K. Leyton-Brown, T. Stützle:
Param ILS: An automatic algorithm configura-
tion framework, J. Artif. Intell. Res. 36, 267–306
(2009)

54.129 F. Hutter, H.H. Hoos, K. Leyton-Brown: Sequen-
tial model-based optimization for general al-
gorithm configuration, Lect. Notes Comput. Sci.
6683, 507–523 (2011)

54.130 F. Hutter, H.H. Hoos, K. Leyton-Brown: Parallel al-
gorithm configuration, Lect. Notes Comput. Sci.
7219, 55–70 (2011)

54.131 R. Battiti, M. Brunato, F. Mascia: Reactive Search
and Intelligent Optimization, Operations Re-
search/Computer Science Interfaces Series, Vol. 45
(Springer, New York 2008)

54.132 A.E. Eiben, Z. Michalewicz, M. Schoenauer,
J.E. Smith: Parameter control in evolutionary

http://paradiseo.gforge.inria.fr
https://bitbucket.org/satt/easylocal-3
https://bitbucket.org/satt/easylocal-3
http://www.r-project.org
http://www.r-project.org
http://hal.cs.ubc.ca/

Stochastic Local Search Algorithms: An Overview References 1105
Part

E
|54

algorithms. In: Parameter Setting in Evolu-
tionary Algorithms, ed. by F. Lobo, C.F. Lima,
Z. Michalewicz (Springer, Berlin, Germany 2007)
pp. 19–46

54.133 F. Hutter, Y. Hamadi, H.H. Hoos, K. Leyton-
Brown: Performance prediction and automated
tuning of randomized and parametric algo-
rithms, Lect. Notes Comput. Sci. 4204, 213–228
(2006)

54.134 L. Xu, H.H. Hoos, K. Leyton-Brown: Hydra: Au-
tomatically configuring algorithms for portfolio-

based selection, Proc. 24th AAAI Conf. Artif. Intell.
(AAAI-10) (2010) pp. 210–216

54.135 S. Kadioglu, Y. Malitsky, M. Sellmann, K. Tierney:
ISAC – Instance-specific algorithm configuration,
Proc. 19th Eur. Conf. Artif. Intell. (ECAI 2010) (2010)
pp. 751–756

54.136 H.H. Hoos: Computer-aided algorithm design us-
ing generalised local searchmachines and related
design patterns. Techn. Rep. TR-2009-26, Univer-
sity of British Columbia, Department of Computer
Science, 2009

	54 Stochastic Local Search Algorithms: An Overview
	54.1 The Nature and Concept of SLS
	54.2 Greedy Construction Heuristics and Iterative Improvement
	54.3 Simple SLS Methods
	54.4 Hybrid SLS Methods
	54.5 Population-Based SLS Methods
	54.6 Recent Research Directions
	References

