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Abstract. In multimodal multi-objective optimization (MMMOO), the
focus is not solely on convergence in objective space, but rather also on
explicitly ensuring diversity in decision space. We illustrate why com-
monly used diversity measures are not entirely appropriate for this task
and propose a sophisticated basin-based evaluation (BBE) method. Also,
BBE variants are developed, capturing the anytime behavior of algo-
rithms. The set of BBE measures is tested by means of an algorithm
configuration study. We show that these new measures also transfer prop-
erties of the well-established hypervolume (HV) indicator to the domain
of MMMOO, thus also accounting for objective space convergence. More-
over, we advance MMMOO research by providing insights into the multi-
modal performance of the considered algorithms. Specifically, algorithms
exploiting local structures are shown to outperform classical evolution-
ary multi-objective optimizers regarding the BBE variants and respective
trade-off with HV.
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1 Introduction

Multi-objective optimization (MOO), i.e., the simultaneous optimization of mul-
tiple (often competing) objectives, is challenging for both research and indus-
trial applications [19]. Despite the practical relevance of MOO and decades of
research in this area, multi-objective optimization problems (MOPs) have long
been treated as black boxes – probably due to their numerous dimensions in the
decision and objective space. This view made it very difficult to study a MOP’s
properties or the algorithmic behavior on it. As a result, MOPs were often visu-
alized only by their Pareto fronts (i.e., a representation of the non-dominated
solutions of the MOP in the objective space), algorithms were designed to con-
verge to this Pareto front as fast as possible, and visualization of this search
behavior was often based on point clouds evolving towards the Pareto front.

In related domains, such as single-objective continuous optimization, knowl-
edge of a problem’s characteristics has proven to be critical for a better problem
understanding and for designing appropriate algorithms. For example, in single-
objective optimization (SOO), it is widely accepted that multimodality can pose
difficult obstacles [21]. Despite the insights gained in SOO, research in MOO has
only recently begun to focus on multimodality [9]. Nevertheless, several visualiza-
tion methods capable of revealing multimodal structures of MOPs [13,24,25,30],
definitions that provide a theoretical description of a MOP’s structural character-
istics such as locally efficient sets [15,16], a couple of benchmark suites consisting
mainly of multimodal MOPs [8,12,17,34], and optimization algorithms with a
particular focus on (finding or at least exploiting local structures of) multimodal
MOPs [10,18,26,29] have been proposed in recent years.

All these advances ultimately help to gain a better understanding of MOPs
and to develop more efficient algorithms. For example, combining visualizations
and theoretical definitions helps categorize MOPs into four categories of multi-
modality: (1) Unimodal MOPs consist of a single locally efficient set (i.e., the
multi-objective counterpart of a local optimum in single-objective optimization)
that naturally maps to the (single) Pareto front of the MOP; (2) Multiglobal
MOPs contain multiple efficient sets that are all mapped to the same Pareto
front; (3) Multilocal MOPs that contain multiple locally efficient sets that map
to different fronts in the objective space; (4) (Truly) Multimodal MOPs, where
some efficient sets map to the same (Pareto) front and others map to different
fronts. A schematic representation of multiglobal and multilocal MOPs is shown
in Fig. 1. Note that due to space limitations, we refrain from showing unimodal
and multimodal MOPs as those are special variants of the shown ones.

Multimodal solutions may, e.g., be interesting to consider if the decision
space values of the optimal points are not feasible, but the values of only slightly
worse non-optimal solutions are. The problem with assessing algorithm perfor-
mance concerning multimodality is that classical evaluation methods like hyper-
volume (HV) [36] cannot account for dominated solutions. Therefore, measures
that consider decision space diversity like the Solow-Polasky (SP) indicator [28]
are used to express to how distributed the solutions are over the efficient sets. A
recent study on the two aforementioned indicators showed that these indicators
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Fig. 1. Schematic differentiation of a multiglobal (left) and a multilocal MOP (right).
There are two further specializations: MOPs containing only a single efficient set (and
front) are called unimodal, whereas MOPs, which are both multilocal and multiglobal,
are called multimodal. This figure is inspired by Figure 1 in [9].

alone are not achieving the desired performance assessment in multimodal prob-
lems by MOO algorithms [23]. However, diversity measures, also those specifi-
cally considering multimodality [22], can neither capture the properties of the
HV nor problem-specific aspects. Thus, there is a need for a new indicator devel-
oped in this paper.

Also in the light of obtaining better problem understanding there is a shortage
of multi-objective landscape features. These features, however, are needed for a
variety of tasks, such as automated algorithm selection [14].

The remainder of this paper is organized as follows. Section 2 describes the
considered algorithms and performance indicators from the literature. Subse-
quently, Sect. 3 presents our proposed measure. Finally, our experimental study
is described in Sect. 4 before Sect. 5 concludes our work.

2 Background

2.1 Algorithms

Until recently, the main focus of algorithmic developments was on the approxi-
mation of globally optimal solutions of MOPs. Well-known and commonly used
respective evolutionary MOO algorithms (EMOAs) are NSGA-II [4] and SMS-
EMOA [7]. NSGA-II uses non-dominated sorting in a first step and crowding dis-
tance in a second step to focus on global convergence and diversity in objective
space. SMS-EMOA implements a (μ + 1) steady-state approach where NSGA-
II’s second step is replaced by a procedure which drops the individual with the
least contribution to the dominated hypervolume. Again, this algorithm does
not consider diversity in decision space. Omni-Optimizer [6] was developed with
the idea in mind to be very generic in the sense that it allows for optimiza-
tion of both single- and multi-objective problems. It operates very much like
NGSA-II, but also adopts diversity preservation in decision space. NSGA-II,
SMS-EMOA and Omni-Optimizer are all evolutionary optimization algorithms.
Recently, Schäpermeier et al. [26] proposed MOLE as a member of the fam-
ily of gradient-based multi-objective optimizers, which refines upon earlier work
on the MOGSA concept [10]. MOLE takes a very different approach to multi-
modality by actively modeling locally efficient sets and exploiting interactions
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between their attraction basins, leading to a sequential exploration of the MO
optimization landscape. Note that due to this sequential nature, MOLE does
not maintain a “population” and thus points need to be sampled from its return
values to enable a fair comparison to the other algorithms, which have fixed-size
populations.

2.2 Indicators

Performance assessment of multi-objective optimizers is a non-trivial task.
Research came up with a plethora of indicators, i.e., functions which map
an approximation set to the real-valued numbers. Usually, an indicator mea-
sures either cardinality, convergence, spread/diversity, or a combination of these.
Prominent examples are the Inverted Generational Distance [36] or the domi-
nated hypervolume in the objective space or the Solow-Polasky measure in deci-
sion space. In this study we focus on the latter two for which we provide more
details:

The hypervolume (HV) [36] is arguably one of the most often used perfor-
mance indicators im MOO. The dominated hypervolume can be interpreted as
the (hyper-)space enclosed by the approximation set and the reference point.
HV rewards both convergence to the Pareto front and diversity and brings along
many desirable properties, e.g., Pareto compliance [37].

In 1994, Solow and Polasky introduced their eponymous Solow-Polasky (SP)
indicator to measure the amount of diversity between species in biology [28].
Its first application in evolutionary computation dates back to work by Ulrich
and Thiele [33] in the context of Evolutionary Diversity Optimization to guide a
single-objective EA towards diversity in (continuous) decision space subject to a
minimum quality threshold. Given a set of points X = {x1, . . . , xµ} and pairwise
(Euclidean) distances d(xi, xj), 1 ≤, i, j ≤ μ let M be a (μ × μ) matrix with
Mij = exp(−θ·d(xi, xj)). Here, θ serves for normalization of the relation between
d and the number of species; its choice is not critical [28]. Now the Solow-Polasky
diversity is defined as the sum of all elements of the Moore-Penrose generalized
inverse M−1 of the matrix M . The measure can be interpreted “as the number
of different species in the population” [28]. Note, however, that the measure
calculates a real-valued diversity in [1, μ] and no integer value. As pointed out
in [32], SP is maximized if points are aligned in a grid.

3 The BBE Measure(s)

For classical MOO, the HV serves as an excellent measure capturing the coverage
of the Pareto front. However, in MMMOO, the local efficient sets that, per
definition, cannot contribute to the HV are of interest as well. One approach to
achieve this is measuring decision space diversity with SP. SP, however, does not
focus on the coverage of the local efficient sets but rather on the coverage on the
whole decision space. Therefore, we introduce a basin-based evaluation (BBE)
method in this paper, which focuses on the coverage of the Pareto front as well
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Fig. 2. If a set of solution points (the black points in the left image) is to be evaluated
with BBE, first (middle image) only the points in the first basin (on the left hand side)
are evaluated and then (right image) only the points in the next basin (on the right
hand side). This continues until all basins of interest are evaluated.

as local efficient sets simultaneously. The main idea is to compute the HV per
basin and not only globally.

The division of the decision space into basins is done based on the technique
for decision space visualization by Schäpermeier et al. [24]. In order to visual-
ize the optimization landscape, they divide the decision space into equal-sized
regions arranged in a grid. Every region is represented by the contained point
with the lowest value in all decision variables. This enables the computation
of multi-objective gradients for all parts of the grid. Then, based on the hull
spanned by the gradients, regions which likely contain parts of the efficient sets
can be identified. With the gradients and the approximation of the efficient sets,
the path from a region to an efficient set can be traced. With this, the accumu-
lated gradient length along the path can be calculated as a measure of distance
to the attracting set. Based on this measure of distance, the visualization of
the regions is determined. For more detailed information on this procedure we
refer the interested reader to [24]. As a by-product, the affiliation of a region to
a basin is determined as well. The latter information is used to evaluate a set
of returned solution points separately per basin for the proposed measure. For
every point of the solution set, the region, and thus, the corresponding basin
they are encapsulated in, is identified. This allows to filter out all points that
are not contained in a basin and calculate a specific metric only for the points of
interest. In the default case, this metric is the HV. See Fig. 2 for a visualization.

As not all basins can be included in the evaluation, only the first k are
evaluated. The order of the basins is determined by non-dominated sorting [4]
of the regions that approximate the efficient sets. The basin which contributes
the most points to the approximated Pareto front thus will be the first in the
constructed order. In case of an equal number of regions, the number of regions
attributed to the next domination layer is decisive. Basins that are not part of the
Pareto front have an equal number of regions (i.e., zero) constituting the Pareto
front. In case of many basins, they can also be joined based on the contained
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Fig. 3. The shown gradient field heatmap belongs to the same highly multimodal
problem instance as the PLOT visualization in Fig. 8: the bi-objective BBOB function
with FID 55 and IID 11. If the basins are considered individually the area covered
by the first basin is relatively small (image in the middle). To circumvent too many
individual basins the efficient sets can be joined, which leads to a potentially distributed
area covered by the first basin (right image).

regions attributed to the domination layer with the lowest number. The joint
basins are regarded as a single one during evaluation, see Fig. 3.

To aggregate the attained HV from the k basins of interest, the arithmetic
mean is taken. Note that this includes a natural weighting between the basins,
as a higher HV is attainable in the basins closer to the Pareto front in case
the reference point is fixed. To capture an algorithm’s anytime behavior, this
mean is recorded in every interval of a specific number of function calls needed
by the algorithm. Here, one can decide if the accumulation of all the points
evaluated by the algorithm up until this point (the solution archive) or only the
ones evaluated in the interval should be considered. A visualization of the latter
case can be seen in Fig. 4. In order to aggregate those intermediate results, the
area under the curve is computed. This value captures the anytime behavior of
an algorithm regarding the convergence to k local efficient sets of interest when
we focus on multimodal multi-objective optimization.

4 Analysis

To test our basin-based indicators we conduct a benchmark study with four
MO optimizers on a set of multimodal problem instances. First, we provide the
experimental setup, followed by our experimental results and we end with a
discussion and interpretation of these results.

4.1 Experimental Setup

Hardware and Software. All experiments were conducted on PALMA, the high-
performance compute cluster of the WWU Münster. Each optimizer run had
access to 1 CPU core and 4 GB of memory. In total, all experiments required
20 000 CPU hours. All experimental code for reproducibility is available online1.
1 Available at: github.com/jeroenrook/BBE-experiments.

https://github.com/jeroenrook/BBE-experiments
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Fig. 4. Shown is a run of NSGA-II on the gradient field heatmap of the Aspar Func-
tion [9] together with the corresponding BBE scores. Note that only the most recent
points are considered, and therefore, the achieved HV of the points in the second basin
eventually declines. (See supplementary material for an animated version of the figure.)

Resources. To run our analysis we use the R implementations of the optimiz-
ers SMS-EMOA [1], NSGA-II [1], Omni-Optimizer [3], and MOLE [27]. Fur-
thermore, we compiled a set of 35 well-established, mainly multimodal MOP
instances. We selected all instances from ZDT [35], DLTZ [5], MMF [34], with
exception of MMF13 and ZDT5, which are provided by smoof [2]. Furthermore,
we selected 5 problem instances (FID ∈ {46, 47, 50, 10, 55}, IID = 1) from BiOb-
jBBOB [31], which are provided by moPLOT [24]. All problem instances have a
2D decision and objective space. For each instance, we approximated the Pareto
front and chose the reference point such that it covered the whole reachable
objective space with moPLOT. These reference points are needed to compute the
HV and the BBE indicators. The approximated Pareto front is used to compute
the maximum obtainable HV. In turn, the maximum HV is used to normalize
the BBE and HV indicators to make them comparable.

Indicators. For computing the BBE measures we use our own R package2. We
used 3 variants of BBE; 1) the mean HV of the basins with the population
returned by the optimizers (BBE(HV)), 2) the mean HV of the basins with the
complete archive of function calls the optimizer made (BBEcum(HV)), and 3)
the area under the curve of the convergence of the mean HV across all basins
during search (BBEcum,auc(HV)). For each variant we considered the 5 most
important basins (automatically derived by the BBE package with the landscape
exploration of moPLOT) and we did not merge basins of joined fronts.

Configuration. To maximize optimizer performance on the problem instances
w.r.t. the indicators we make use of the automated algorithm configurator SMAC
[11] (through Sparkle3). Here, each configuration scenario aims to maximize

2 BBE available at: github.com/jonathan-h1/BBE.
3 Accessible through ada.liacs.nl/projects/sparkle.

https://github.com/jonathan-h1/BBE
https://ada.liacs.nl/projects/sparkle
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Fig. 5. Spearman correlation between performance metrics. Points taken from 25 runs
with all algorithms in all configuration scenarios and on all instances.

performance for one indicator in 10 separate configuration runs. Each configu-
ration run had a budget of 250 algorithm calls and the configuration run with
the highest performance score on the whole training set is used for validation.
We used leave-one-out validation, i.e., we configured on 34 instances to derive
the parameters and then validated the performance on the left out instance.
Separate configuration experiments were conducted, each aiming to maxi-
mize one of the 5 indicator scores: HV, SP, BBE(HV), BBEcum(HV), and
BBEcum,auc(HV).

Validation. We validated each optimizer configuration on each instance 25 times
with fixed random seeds per run. The median score over these runs was used to
represent the configuration’s performance. Furthermore, each run was given a
budget of 25 000 function evaluations. In total, we validated on all 840 pairs that
can be made out of the 6 configurations (including the default configuration), 4
algorithms, and 35 problem instances.

4.2 Indicator Similarity

We start our analysis by focusing on the similarity of the measures. We specifi-
cally look at the Spearman correlations between the indicators over all conducted
optimizer runs, which are visualized in Fig. 5. A high correlation score indicates
that the two indicators yield a similar ordering within the underlying optimizer
runs.

The correlation matrix shows that the global convergence in objective space
measured by hypervolume (HV) is highly correlated with the variants of our
basin-based approach. These high correlations indicate that, despite the reduc-
tion in focus on obtaining global convergence, the basin-based approaches are still
able to measure this property. Another observation is a clear trade-off between
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Table 1. The mean indicator score of the best ranked optimizer under different con-
figuration scenarios. Before the mean was taken over the runs, all indicators, except
SP, were first normalized against the maximum approximated HV for each instance.

Indicator Default Configuration target

HV SP BBE(HV) BBEcum(HV) BBEcum,auc(HV)

HV 1.031 1.071 1.067 1.048 1.072 1.053

SP 2.226 5.195 5.568 3.598 5.197 3.572

BBE(HV) 0.417 0.515 0.497 0.531 0.517 0.488

BBEcum(HV) 0.613 0.651 0.650 0.647 0.650 0.651

BBEcum,auc(HV) 15 074 16 092 16 069 15 891 16 064 16 103

HV and the diversity in decision space (SP). Interestingly, the correlation scores
between the basin-based indicators and SP are higher than between HV and SP.
This suggests that the basin-based indicators are more considerate of the global
decision space diversity than HV is.

We bolster the latter observations by looking at the mean indicator values of
the best-ranked optimizers after automatically configuring for a particular indi-
cator, depicted in Table 1. Here, we see that the best indicator score (or within
proximity to the best) is obtained when explicitly configuring for that indicator.
Additionally, the untargeted indicators tend to improve as well by configuration.
Disappointingly, when we configure for the mean basin-based HV, both HV and
SP are behind compared to the improvements we see in the other configuration
scenarios. Speculatively, this is because the points of the last populations of the
optimizer are more distributed over the different basins. Further, we see that the
configurations of the cumulative BBE variants have excellent performance across
all indicators compared to the BBE variant that focuses only on the points in
the last population. This could potentially be explained by the fact that these
variants aim to visit at least all the basins during search and not on maintaining
a population across the different basins. Thus, by keeping an archive of all visited
points, one can easily obtain a good coverage across all basins retrospectively.

4.3 Rankings

We now shift our focus to the rankings between optimizers under varying circum-
stances. Specifically, we compute the average rankings between the 4 optimizers
(Sect. 2.1) for each indicator-configuration target pair, resulting in a total of 30
rankings. Figure 6 plots these rankings where each column indicates the indicator
by which the ranking was generated, and the rows refer to the configuration tar-
get indicator which was used to tune the optimizers’ parameters. These rankings
reveal that NSGA-II and SMS-EMOA rank best for default parameters. After
configuration, both optimizers are almost always exceeded by MOLE or Omni-
Optimizer for all indicators, except for HV. There, SMS-EMOA also remains the
best-ranked optimizer after configuration. MOLE and Omni-Optimizer have a
larger parameter space compared to SMS-EMOA and NSGA-II, likely making
them more configurable. However, these two optimizers are also conceptually dif-
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Fig. 6. Average rankings of the optimizers for each measure (columns) and config-
uration scenario (rows). The confidence distance (CD) to be significantly differently
ranked, as determined by a Nemenyi test [20] with α < 0.1, is 0.16.

ferent because they exploit structural knowledge of the problem instance during
search. Especially for Omni-Optimizer this causes larger ranking improvements
when it is configured for the basin-based indicators.

4.4 Ranking Changes

The visualized average rankings in Fig. 6 revealed significant changes in the rank-
ing concerning a measure if the algorithms are configured based on different
desired properties. However, the relationship of the ranking shifts, and therefore
the mutual configuration impact on two measures cannot be assessed with this
figure. Thus, we consider the correlation between the ranking shifts with regard
to the measures aggregated over all runs per algorithm and problem instance.
Here, the ranking shift is the difference between the average ranking if the algo-
rithms are run with default settings and the average ranking if the algorithms
are configured for HV or SP. Therefore, a high correlation between two measures
means that the shifts in algorithm rankings per problem instance are similar.
The corresponding correlation heatmaps can be seen in Fig. 7. Independent of
whether the aim is convergence to the Pareto front (configuring for HV) or max-
imizing diversity (configuring for SP), the BBE measure variants yield a higher
correlation of ranking changes with the diversity indicator SP than with HV.
The correlation with HV is relatively small in general, which may be caused by
the small changes in the ranking w.r.t. HV independent of the configuration (see
Fig. 6). Nevertheless, the correlation of the BBE measures with SP indicates that
the former are more similar to a diversity measure than HV and can result in
more similar ranking changes in relation to diversity.
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Fig. 7. The Spearman correlations of the differences between the resulting rankings
after configuration for a certain target and the rankings with default parameters. In
the left plot the configuration target is the HV and in the right one the target is the
SP.

4.5 Discussion

From the presented experimental results, we derive the following insights:
First, the proposed basin-based evaluation captures the main properties of

the classical HV evaluation. This is supported by the observed high correlation
between HV and the introduced BBE variants. Theoretically, this is explained
by the fact that HV is measured per basin. In case of only one basin containing
the efficient set which makes up the Pareto front, the found solution points in
other basins do not matter for the achieved HV score. In general, the proposed
measure variants are generalizations of HV, where HV corresponds to the special
case in which the whole decision space is regarded as one basin.

Second, the proposed measure additionally captures diversity aspects that
HV cannot capture. The HV, even though a reliable measure for global conver-
gence, does not cover decision space diversity, as shown by the low correlation
with the SP. Further, the low correlation of rank shifts, if the algorithms are
configured for SP, demonstrates that the HV lacks the ability to score an algo-
rithm run based on the diversity in decision space of the proposed solution set
as all points that are dominated by others cannot contribute to the HV. The
BBE variants alleviate this issue, as can be seen by the higher correlation with
the SP regarding the general scores and the rank shifts.

Third, the actual aim of MMMOO is not to find an algorithm that is per-
forming well w.r.t. diversity over the complete decision space but conditional
diversity as explained in the following. So far, in MMMOO, a form of general
diversity is used to measure how points are distributed in the complete decision
space and not just areas in decision space that have objective values along the
Pareto front (i.e., multiglobal basins). However, this general diversity can only
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Fig. 8. PLOT visualizations of two functions (left: FID 10, IID 5; right: FID 55, IID
11) from the bi-objective BBOB in decision (x) and objective space (y). The colored
points are locally efficient, with the blue points being globally efficient. The gray-scale
background illustrates the attraction basins of each locally efficient set, with darker
colors indicating more optimal points within a basin. While the left one contains the
good-performing locally efficient sets mostly in the lower right corner, the globally
efficient regions are much further spread in the right function. (Color figure online)

serve as a proxy of the actual goal to find points other than the global efficient
sets. Evenly distributed points may allow choosing the favored combination of
decision variables, but the corresponding objectives may be arbitrarily bad. For
some problem instances, the interesting space may be a fraction of the complete
decision space. As, e.g., shown in Fig. 8, the interesting basins with efficient sets
close to the Pareto front are distributed in the decision space but cover only a
fraction. Thus, the actual desired diversity is a conditional one. The proposed
measure enforces this conditional diversity by only considering the user-defined
basins of interest and neglecting the other parts of the decision space.

5 Conclusions

This paper provides different perspectives on multimodality in multi-objective
optimization and explicitly contributes to problem characterization and algo-
rithm performance evaluation. We not only introduce a specific method for
acquiring comprehensive information on decision-space basins, but also propose
variants of a performance indicator BBE which addresses both convergence in
objective space as well as decision space diversity. In this regard, not overall
diversity but rather conditional diversity adhering to local efficient sets and
basin coverage is accounted for. Classical EMOAs and algorithms exploiting
local problem structures are experimentally compared and automatically con-
figured. We experimentally show that especially the latter algorithms extremely
profit from being configured w.r.t. BBE. By this means, global HV as well as
conditional decision space diversity are optimized and the improvements for clas-
sical EMOAs lag behind. Moreover, it has to be noted that BBE explicitly needs
underlying basin information and is thus not an indicator to be incorporated
into an indicator-based EMOA or that can be computed on-the-fly. However,
it can be used for optimally configuring EMOAs and for getting an increased
understanding on problem hardness w.r.t. multimodality. Also, it can perspec-
tively contribute to deriving multi-objective landscape features. For future work
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it would be interesting to see how BBE behaves for different classes of multi-
modality (e.g., problems with only multiglobal basins) and for problems with
higher dimensionality in both decision or objective space. Furthermore, instead
of using HV, also other measures can potentially be used for computing the basin
performance (e.g., BBE(SP)).
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Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 962–972. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45823-6 90

16. Kerschke, P., et al.: Search dynamics on multimodal multi-objective problems.
Evol. Comput. (ECJ) 27, 577–609 (2019). https://doi.org/10.1162/evco a 00234

17. Li, X., Engelbrecht, A.P., Epitropakis, M.G.: Benchmark functions for cec’2013
special session and competition on niching methods for multimodal function
optimization. Technical report, Evolutionary Computation and Machine Learn-
ing Group, RMIT University, Australia (2013). http://goanna.cs.rmit.edu.au/
∼xiaodong/cec13-niching/competition/

18. Maree, S.C., Alderliesten, T., Bosman, P.A.N.: Real-valued evolutionary multi-
modal multi-objective optimization by Hill-Valley clustering. In: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO), pp. 568–576.
ACM (2019). https://doi.org/10.1145/3321707.3321759

19. Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in
Operation Research and Management Science, vol. 12. Springer, Heidelberg (1998).
https://doi.org/10.1007/978-1-4615-5563-6

20. Nemenyi, P.B.: Distribution-free multiple comparisons. Ph.D. thesis, Princeton
University (1963)

21. Preuss, M.: Multimodal Optimization by Means of Evolutionary Algorithms. Nat-
ural Computing Series (NCS). Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-07407-8

22. Preuss, M., Wessing, S.: Measuring multimodal optimization solution sets with a
view to multiobjective techniques. In: Emmerich, M. et al. (eds.) EVOLVE - A
Bridge Between Probability, Set Oriented Numerics, and Evolutionary Computa-
tion IV, pp. 123–137. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
319-01128-8 9

23. Rook, J., Trautmann, H., Bossek, J., Grimme, C.: On the potential of auto-
mated algorithm configuration on multi-modal multi-objective optimization prob-
lems. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO) Companion. p. tbd. ACM (2022). https://doi.org/10.1145/3520304.
3528998, accepted
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26. Schäpermeier, L., Grimme, C., Kerschke, P.: MOLE: digging tunnels through mul-
timodal multi-objective landscapes. In: Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO). p. tbd. ACM (2022). https://doi.org/10.
1145/3512290.3528793, accepted

https://doi.org/10.1007/978-3-319-54157-0_23
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1007/978-3-319-45823-6_90
https://doi.org/10.1162/evco_a_00234
http://goanna.cs.rmit.edu.au/~xiaodong/cec13-niching/competition/
http://goanna.cs.rmit.edu.au/~xiaodong/cec13-niching/competition/
https://doi.org/10.1145/3321707.3321759
https://doi.org/10.1007/978-1-4615-5563-6
https://doi.org/10.1007/978-3-319-07407-8
https://doi.org/10.1007/978-3-319-07407-8
https://doi.org/10.1007/978-3-319-01128-8_9
https://doi.org/10.1007/978-3-319-01128-8_9
https://doi.org/10.1145/3520304.3528998
https://doi.org/10.1145/3520304.3528998
https://doi.org/10.1007/978-3-030-58115-2_11
https://doi.org/10.1007/978-3-030-58115-2_11
https://doi.org/10.1007/978-3-030-72062-9_50
https://doi.org/10.1145/3512290.3528793
https://doi.org/10.1145/3512290.3528793


206 J. Heins et al.
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