
Towards Reliable Multi-Hop Broadcast in VANETs:
An Analytical Approach

Mozhdeh Gholibeigi‡, Mitra Baratchi‡, Hans van den Berg∗‡, Geert Heijenk‡
‡ University of Twente, The Netherlands

∗Netherlands Organization for Applied Scientific Research (TNO), The Netherlands
Email: [m.gholibeigi,m.baratchi,j.l.vandenberg,geert.heijenk]@utwente.nl

Abstract—Intelligent Transportation Systems in the domain
of vehicular networking, have recently been subject to rapid
development. In vehicular ad hoc networks, data broadcast is
one of the main communication types and its reliability is crucial
for high performance applications. However, due to the lack
of acknowledgment techniques in IEEE 802.11p standard, it is
challenging to ensure communication reliability. In this work,
we analytically model a receiver-oriented reliability mechanism,
with the objective of on-demand error recovery for multi-hop
broadcast vehicular communication. In particular, using ab-
sorbing Markov modeling and probabilistic graphical modeling,
we analyze its performance in terms of relevant indicators,
such as overhead and delivery ratio. Further, the model is
validated using simulations. The results are useful in tuning the
influential parameters and accordingly adjusting trade-offs and
meet performance requirements in various circumstances.

Index Terms—Multi-hop broadcast, reliability, analytical mod-
eling, vehicular ad hoc networks.

I. INTRODUCTION

Intelligent Transportation Systems (ITS) have much poten-
tial in improving traffic efficiency and safety in the domain
of vehicular networking. Data broadcast, as one of the main
communication types in vehicular networks, receives signifi-
cant attention in the research community. At the same time
802.11p/1609, which is the standard communication protocol
suite for vehicular networks, does not have a MAC-Layer
acknowledgement scheme for broadcast [3] [1]. This leads to
challenges in providing reliable communication. Accordingly,
delivery of data and evaluating its reliability are among the
main performance concerns.

In our work in [9] [10], we analytically modeled and
evaluated a receiver-based end-to-end reliability assurance
mechanism for vehicular networks in the context of single-
hop (geo-)broadcast. This mechanism, which is described in
Section III, enables loss detection and correction by means of
sequence numbering and checking at communicating parties,
as shown at high-level in Figure 1 and is suitable for various
ITS applications, demanding strict requirements on delivery
assurance. In vehicular networks, it is quite common that
nodes act as relays in order to disseminate information over
multi-hops beyond the transmission range of individual nodes.
Hence, in this paper we aim to model the aforementioned
reliability mechanism in the context of multi-hop broadcast.
That is, those nodes failing to receive a packet after several
hops of rebroadcasts and having detected such a loss through

this mechanism, will broadcast retransmission requests to their
one-hop neighborhood. Accordingly, the neighbors possessing
that missing packet will reply by retransmitting it.
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Figure 1: The operation principle of the E2E reliablility mechanism.

Our analytical approach is not based on a specific net-
work scenario and can provide results for various settings
and accordingly basic insights regarding the system behavior.
As a result of this, our model is extensible by introducing
more detail into the parameterization of the model. The main
contributions of this paper are as follow:

(i) we analytically model the error recovery process in the
context of multi-hop broadcasting.
(ii) based on the analytical model, we analyze its func-
tionality, in terms of relevant performance indicators.
(iii) we validate observations from the analytical analysis,
using simulations.

The rest of the paper is organized as follows. At first, the re-
lated work is discussed in Section II. Section III introduces the
proposed reliability mechanism and the multi-hop broadcast
model. The analytical modeling and analysis of the integrated
multi-hop broadcast and reliability mechanism is discussed
in Section IV. Numerical results are presented in Section V.
Conclusions and the future work are given in the final section.

II. RELATED WORK

In this section, we discuss some of the mechanisms for
multi-hop (geo-)broadcasting in vehicular networks and ap-
proaches proposed for reliability improvement in the literature.

Klein Wolterink et al. proposed Constrained Geocast in [14]
which targets the vehicles based on their future and not the cur-
rent position. Dynamic Time-Stable Geocast (DTSG) protocol
[17] improves reliability by keeping the geocast message alive



for some adjustable time in the geocast region. Geocache [15]
is a peer-to-peer pull-based geocast protocol which improves
reliability by allowing vehicles to cooperatively collect and
disseminate data.

The approach in [19] is a cooperative repetition by pig-
gybacking old messages to the new ones as a means of im-
proving reliability. Hassanabadi et al. proposed Synchronized
Persistent Coded Repetition (SPCR) algorithm [11] as the
main functionality of the reliability sub-layer in the application
layer of the WAVE stack to increase the reliability of safety
applications.

In Grid-based Predictive Geographical Routing (GPGR) [4]
node positions are predicted during the relay node selection as
a means of increasing reliability. The authors in [7] proposed
an analytical model to predict the number of nodes in the
neighborhood and adjust the probability of rebroadcast for
a better coverage. In [18] an end-to-end geocast acknowl-
edgement scheme is proposed, in which individual ACKs are
accumulated into larger messages in an aggregator and further
forwarded back over multiple hops to the original source.

In summary, most of the related work consider modeling or
simulating a specific scenario and rely on some default settings
(e.g., rebroadcast decision making mechanisms) as a means
of reliable delivery. Works with definitive and event-driven
reliability schemes, either mostly do not rely on accurate
information, regarding the necessity of error recovery, from
the receiving side or rely on, probably unnecessary, overload-
ing acknowledgments. Given this, in this work we develop
a novel approach to model and analyze the receiver-based
reliability assurance mechanism, as described in Section III.
This mechanism is based on on-demand error recovery from
the receiving side, avoiding redundant traffic. Our approach is
not dependent to a particular setting and hence is applicable
to various scenarios.

III. THE END-TO-END RELIABLE GEOCAST

The mechanism discussed in this paper, is a receiver-
based end-to-end reliability assurance for (geo-)broadcast in
vehicular environments. It enables error recovery by imple-
menting a sequence numbering and checking functionality at
communicating parties, as shown in the flowcharts in Figure 2
and Figure 3. Through this mechanism, on failure of receiving
a packet, a retransmission request is broadcast to all one-hop
neighbors. Accordingly, the neighbors possessing that missing
packet will reply by retransmitting it. As a means of collision
avoidance, due to concurrent requests and replies, back-off
timers are considered prior to requests and replies. Note that
request and reply packets are broadcast to the single-hop
neighborhood and they would not be sent, if overheard during
the back-off (i.e. other nodes send the same request or reply
that is overheard by the node backing off to send it). For
further detail regarding its functionality, we refer to our work
in [9]. It is worth pointing out that here we assume that the
underlying ETSI/ITS standard geo-networking infrastructure
[5] is functionally available, as the basis to implement such a
reliability mechanism.

IV. MODELLING AND ANALYSIS
The focus of this section is on modeling and analyzing

the performance of the proposed approach, in a multi-hop
broadcast scenario. For this purpose, at first we need modeling
of multi-hop broadcasting, which is described in Section IV-A.
We call multi-hop broadcasting as the first phase of operation.
Next, in Section IV-B the error recovery functionality is
modeled, using absorbing Markov chains. We call this the
second phase of operation and its performance is evaluated
in terms of relevant performance indicators, introduced later
in Section IV-C. The notation used in this paper, is listed in
Table I.

Table I: Notation.

Parameter Definition

N The number of network nodes

b The number of the rebroadcasts (first phase)

prb The probability of data packet rebroadcast (first phase)

k The number of the retransmission requests (second phase)

pT The probability of successful packet transmission

R Transmission range (m)
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Figure 2: The sender side of the E2E reliablility mechanism.

A. PRELIMINARY WORK ON MULTI-HOP BROADCAST
MODEL

In this section, we briefly describe our work on modeling
multi-hop broadcast in [8], as the preliminary steps of the
work in this paper. That is, we analytically modeled a single
cycle of multi-hop broadcast in two-dimensional vehicular
networks. The model incorporates network topology in its
basis. As a result, the effect of major network characteristics
such as network density and the number of 1-hop neighbors are
considered in the model as described in the following. These
characteristics play a crucial role in the overall dissemination
penetration rate.

Let tuple T = (N,R,prb, f(θ), b, U((xmin, xmax), (ymin, ymax)))

denote a network topology of N nodes with transmission
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Figure 3: The receiver side of the E2E reliablility mechanism.

range R, uniformly distributed in a two dimensional area
(xmin, xmax), (ymin, ymax). In such a network arbitrary
nodes i and j, within the threshold distance R are reachable.
Accordingly, we constructed the N ×N reachability matrix D,
with dij elements either 0 or 1, for i and j as non-reachable
(i.e. their euclidean distance is more than R) and reachable
(i.e. their euclidean distance is less than or equal to R)
pair of nodes, respectively. Figure 4 shows an example
reachability graph of N = 7 nodes in a 2km× 2km area, with
the transmission range R = 300m and its corresponding matrix
D of reachability. All the diagonal elements are set to 1. We
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Figure 4: The reachability graph of a topology of N = 7 nodes.

further defined the function f(θij) that parameterizes the
probability of successful transmission between an arbitrary
pair of nodes i and j that are reachable (i.e. dij = 1).
f(θij) is a function of effective factors on successful packet
transmission between an arbitrary pair of nodes i and j, such
as transmission rate, probability of propagation loss, hidden
nodes and probability of collision (represented in general by
θij). Now, by multiplying each (ij)th element of matrix D to
the corresponding f(θij), we get the successful transmission
probability matrix, denoted by QT . The elements qij of this
matrix are either 0 or f(θij). Without loss of generality, for
any given i and j, we made the assumption of f(θij) = pT
as the average probability of successful transmission between
any given pair of nodes.

Given this, we consider a scenario where a source node
s in a particular topology T broadcasts a packet and nodes

that receive the packet rebroadcast it with probability prb.
Accordingly, using the concept of recursive function definition,
we define P (x, b, Y ) as the probability for an arbitrary node x of
the network to have this packet, after b number of rebroadcasts
have been done, as follows.

P (x, b, Y ) =



P (x, b− 1, Y ) +
(
1− P (x, b− 1, Y )

)
×(

1−
∏

∀n∈Y \{x}

(
1−

(
P (n, b− 1, Y \{x})−

P (n, b− 2, Y \{x})
)
× prb × qnx

))
, if b ≥ 2

qsx +
(
1− qsx

)
×

(
1−

∏
∀n∈Y \{x}(

1− P (n, 0, Y \{x})× prb × qnx
))

, if b = 1

qsx, if b = 0.

(1)

Y in P (x, b, Y ) represents the set of all network nodes, as the
potential rebroadcasters that node x may receive the packet
from. Note that b = 0 is considered for the original broadcast
by the source node s. See [8] for more detail regarding
formulation, though this is not requisite to follow the work
here.

Considering such a scenario, at the end of a given number
of rebroadcasts b, there would be nodes failed to successfully
receive the broadcast packet. Assuming such nodes detected
the loss, using the reliability mechanism described earlier in
section III, they are supposed to broadcast a retransmission
request for each lost packet. As mentioned earlier, we call
this phase, after the end of the multi-hop rebroadcast (first
phase), the error recovery (second phase). In the next section,
we continue by modeling this phase of operation and later
analyzing its performance on providing reliable data delivery.

B. ERROR RECOVERY MODEL

At the end of the multi-hop rebroadcast phase, we end up
with a situation where some nodes may have and some other
may not have a broadcast packet with some probability. Such
probabilities are computed according to Eq. 1. Let ni denote
the status of an arbitrary node i regarding having (ni = 1)
or not having (ni = 0) a packet. We could reasonably model
the process of error recovery after the end of the multi-hop
rebroadcast as a discrete-time absorbing Markov chain, where
each state is a combination of the status of all N nodes. Hence,
the system state space could be characterized as the binary
representation of the states as B =

∑i=N
i=1 ni × 2i−1. Since the

source node has status 1, in principle the number of states is
2(N−1). However, due to topology constraints regarding node
connectivities, in practice the state space would have fewer
number of states and accordingly would be different for each
particular topology.

Figure 5 shows an example of the state space for N = 4

nodes, with principally 2(4−1) = 8 states. In the binary
representation of the states, the leftmost position represents the
source node. Since the nodes with status ”0” may receive the
packet, as a result of request / reply rounds of error recovery



mechanism, the system jumps between the transient states.
Clearly, the transition between states, in the direction where
the status of any given node changes as 1→ 0, has logically
zero probability to take place. At the end, the desired state,
where all nodes have the packet, is the absorbing state and
once entered cannot be left.

1001 1010 1011 1100 

1111 

1000 

1101 1110 

Absorbing state α  

Figure 5: The Markov chain of 4 nodes, with binary state numbering.

An absorbing Markov chain with M transient states and one
absorbing state is canonically characterized by [13]

T =

[
Q −→q
−→
0 I1

]
, (2)

where Q is an M ×M transition probability matrix, with
elements {qij | i, j= 1, 2, . . . ,M}, representing the probability
of transition from the transient state i to the transient state
j. −→q = (q1α, q2α, ..., qMα) is a 1×M absorbing probability
vector, containing probabilities of direct transition from either
of the transient states to the absorbing state α. Note that
matrix Q and its elements are not the same as matrix QT ,
described earlier in Section IV-A. I1 is a 1× 1 (because of one
absorbing state) identity matrix and

−→
0T is a 1×M vector of

zeros. The condition −→q +Q−→e = 1 must hold for an absorbing
Markov chain, given by Eq. 2. That is, the probabilities of
leaving any arbitrary system state to other states or staying
at the same state, all should sum up to one, where −→e is a
vector of ones of size 1×M . Besides Q and −→q , a 1× (M + 1)

vector −→P = (Pα, P1, ..., PM ) of the initial probability distribution
of system states, is needed to fully parameterize an absorbing
Markov chain. In our case, it includes the probabilities of
ending up in either of the system states (including the absorb-
ing state with probability Pα), after the end of the multi-hop
rebroadcast (first phase). These probabilities could be derived
from Eq. 1.

The Hamming weight (i.e. the number of nodes with status
”1”) of an arbitrary state i, denoted by H(i), is the number of
potential replying nodes in that state and accordingly, N −H(i),
denoted by F (i), is the number of potential requesting nodes
(with status ”0”) in the same state. The Hamming distance
between two states i and j (with logically non-zero probability
of transition), denoted by HD(i, j), shows the number of ”0→
1” changes. In other words, it shows the number of nodes that
received a packet, as a result of transition from state i to j.
Given this, we aim to find the probability of transition from
arbitrary state i to j, denoted by qij .

Since in a "multi-hop" setting not all nodes are in one-
hop neighborhood of each other, for modeling we need to

differentiate among nodes, based on their positions in the
network. Hence, we explicitly consider:

(i) the set of node(s) sending request(s), among the poten-
tial requesters in a particular state (denoted by the random
variable A);
(ii) the set of node(s) receiving the request(s), among the
potential repliers (denoted by the random variable B);
(iii) the set of node(s) replying back to the received
request(s) (denoted by the random variable C);
(iv) the particular set of node(s) receiving the reply(ies),
among all the existing nodes with status ”0” (denoted by
the random variable D, with the only instance d). This
results in the corresponding 0→ 1 turns and consequently,
the changed system state.

One may note that these four random variables correspond
to four steps of a transition from an arbitrary state i to an
arbitrary state j. Such randomness implies the fact that a
transition might be achieved through various ways, depending
on the instances of these random variables, as shown in the
example in Figure 6. Each of these ways may result in a
different transition probability which contributes to the overall
qij probability of transition from state i to state j.
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Figure 6: Transition from i = 1110010 to j = 1111010.

Recalling from the system state space and the Hamming
weight property of states, we attribute an arbitrary state i to
two vectors −−→repi of size 1×H(i) and −−→reqi of size 1× F (i),
representing the ID’s of the potential repliers and requesters
in state i, respectively. For instance, considering i= 1110010 as a
transient state of a network of N = 7 nodes and labeling nodes
from left to right, we have −−→repi= (1, 2, 3, 6), −−→reqi= (4, 5, 7).

Due to the topology-dependent reachability limitations be-
tween nodes, the random variables A, B, C and D are condi-
tionally dependent. That is, the identity of nodes that act at
each step of a transition, depends on the identity of nodes that
acted in the previous step. Bayesian Networks can capture such
conditional dependencies. Given this, we define a Bayesian
network, represented by the following Directed Acyclic Graph
(DAG) [16], as shown in Figure 7.

The rationale behind considering "maximum independent"
subsets in the first and third step, lies in the fact that according
to the reliable (geo-)broadcast protocol, neighboring nodes
hear each other and do not send identical requests and replies.
This implies that in these steps, we just need to consider
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Figure 7: The DAG of the transition from state i to j.

the maximum independent subsets (i.e. pairwise non-adjacent
nodes) of potential requesters / repliers, as the ones that may
really send requests / replies for the same packet.

Following this, we have the joint probability of A, B, C and
D, by the chain rule of Bayesian networks [16] as

P (A,B,C,D) =P (A)P (B |A)P (C |B)P (D | C). (3)

Recalling the last step of the transition, we are interested
in extracting P (D = d) (denoted by P (d)) in Eq. 3, which is
indeed qij . We can compute P (d) from the joint probability
by the method of marginalization [12], which is summing out
variables A, B and C. Accordingly, P (d) is given by

P (d) =

∑
∀a ∈ A

∑
∀b ∈ B

∑
∀c ∈ C

P (a)P (b | a)P (c | b)P (d | c). (4)

By pushing the sums we have P (d) as

P (d) =

∑
∀c ∈ C

P (d | c)
∑
∀b ∈ B

P (c | b)
∑
∀a ∈ A

P (b | a)P (a)︸ ︷︷ ︸
P(a)︸ ︷︷ ︸

P(b)︸ ︷︷ ︸
P(c)︸ ︷︷ ︸

P(d)

, (5)

This is computationally less complex and could be solved by
an inside-out dynamic programming method. In what follows,
we calculate P (a), P (b | a), P (c | b) and P (d | c) in four steps.

Step 1. P(a) This is the probability of a given maximum
independent subset a of nodes in −−→reqi, to be the requesters
for a missing packet. We reasonably assume that in practice
all the nodes that miss a packet and pairwise are far enough
not to hear each other, will send a request for that packet.
This implies that only the nodes in a Maximum independent
subset of nodes in −−→reqi will send such a request. Considering
all the maximum independent subsets are equally likely to
be chosen, the probability P (a) is given by 1/nr(MIS(−−→reqi)),
where nr(MIS(−−→reqi)) represents the number of all maximum
independent subsets of −−→reqi.

Step 2. P(b | a) We define the following two probabilities
for a given node n ∈ −−→repi, to either belong to the subset b or
its complement b

′
related to −−→repi.

P (n ∈ b) = 1− (1− pT )|an|, (6)

where |an| represents the cardinality of the set of nodes in
a that can reach node n. Such probability implies that node
n should receive a request, at least from one of the nodes
in an. Accordingly, the probability P (n ∈ b′) is given by the
following equation.

P (n ∈ b
′
) = (1− pT )|an|. (7)

Consequently, P (b | a) is given by

P (b | a) =
∏
∀x∈b

P (x ∈ b)
∏

∀y∈b
′

P (y ∈ b
′
), (8)

implying that the probability that only and only the nodes in
the subset b and no other node in −−→repi receive the request(s),
sent by nodes in the subset a.

Step 3. P(c | b) Inline with the assumption in Step 1, P (c | b)
is given by

P (c | b) = 1/nr(MIS(b)), (9)

where nr(MIS(b)) represents the number of all maximum
independent subsets of the subset b.

Step 4. P(d | c) Similar to Step 2, in order to compute
P (d | c), we define the following two probabilities for a given
node n ∈ −−→reqi, to either belong to the subset d or its comple-
ment d

′
related to −−→reqi.

P (n ∈ d) = 1− (1− pT )|cn|, (10)

where |cn| represents the cardinality of the set of nodes in
c that can reach node n. Such probability implies that node
n should receive a reply, at least from one of the nodes in
|cn|. Accordingly, the probability P (n ∈ d′

) is given by the
following equation.

P (n ∈ d
′
) = (1− pT )|cn|. (11)

Consequently, P (d | c) is given by

P (d | c) =
∏
∀x∈d

P (x ∈ d)
∏

∀y∈d
′

P (y ∈ d
′
), (12)

where it implies the probability that only the nodes in d and
no other node in −−→reqi receive the reply(s), sent by nodes in the
subset c. Now, by substituting all the relevant terms in Eq. 5,
we arrive at P (d)= qij as follows.

P (d) =qij =
∑
∀c ∈ C

|d|∏
x=1

P (x ∈ d)
|d

′
|∏

y=1

P (y ∈ d
′
)×
∑
∀b ∈ B

1/nr(MIS(b))

×
∑
∀a ∈ A

|b|∏
x=1

P (x ∈ b)
|b

′
|∏

y=1

P (y ∈ b
′
)× 1/nr(MIS(−−→reqi)). (13)

P (d) =qij in Eq. 13 is capable of capturing all paths maybe
traversed through, during the transition. Note that in a given
scenario the transition from a particular state i to a particular
state j could be logically feasible (i.e. there is no 1 → 0



change in the status of any node). However, due to the
reachability constraints qij maybe just 0, implying it is not
practicable to transit directly from state i to j.

The elements of the absorption vector −→q are derived
similarly by considering d = −−→reqi in Eq. 13. Given this, we
have the main attributes of the AMC and this completes the
parameterization of the system.

C. PERFORMANCE METRICS

The Key Performance Indicators used to assess the perfor-
mance of the mechanism, are introduced in this section.

1) Complete delivery probability: Considering the retrans-
mission request-based property of the introduced error re-
covery technique, it is relevant the probability of successful
packet delivery to all receivers within k retransmission steps.
Hence, for the modeled AMC, we focus on the Cumulative
Distribution Function (CDF) of the number of retransmission
steps k, until absorption. Note that for an AMC, such a
probability is given by a First Passage Time (FPT) distribution,
interpreted as the number of steps, required to end up in
the absorbing state [13]. Given this and denoting the random
variable, describing the number of retransmission steps until
absorption by S, the Cumulative Distribution Function (CDF)
of S is given by

FS(k) = Pr(S ≤ k) = 1− ~P
′
(Qk)~e, (14)

where ~P
′ is the initial state probability vector −→P , without Pα.

2) PMF of the number of retransmission steps: Besides
absorption within a limited number of retransmission steps,
it may be of interest as well, the probability of absorption
in exactly a predefined number of retransmission steps. That
is the Probability Mass Function (PMF) of the number of
retransmission steps and obtained from CDF, as follows.

fS(0) = FS(0),

fS(k) = FS(k)− FS(k − 1), k = 1, 2, . . . ,K.
(15)

3) Overhead of error recovery: Based on the fact that
this receiver-based error recovery mechanism is built up on
retransmission requests, it is also relevant to know the im-
posed overhead of such a scheme and investigate how many
retransmission steps k are to be done in a given scenario, for
all the nodes to successfully receive a packet. This is given
by the following equation.

H =

∞∑
k=1

fS(k) · k. (16)

It is interpreted as the expected number of retransmission
steps, obtained by taking average over probabilities of absorp-
tion, for all the given number of retransmission steps k.

4) Residual loss probability: In order to keep a reasonable
trade-off between the overhead and improved reliability, it is
also equally important to keep track of the system failure, in
the case of the limited number of allowed retransmission steps.
For this, we define the residual loss probability metric. That

is, the average probability for an arbitrary station to be failed,
after k= K retransmission steps, given by

pKres =

∑M
i=1 |Si(n = 0)| · PK

i

M
, (17)

where |Si(n = 0)| is the cardinality of the set of nodes with
status ”0” in state i and PKi is ith element of vector −→P .TK ,
representing the probability of being in state i after k= K

retransmission steps.

V. NUMERICAL RESULTS

The results of evaluating the performance of the system, in
terms of the introduced metrics, are presented in this section.
First, we implement the analytical model, using a Wolfram
Mathematica implementation and validate it using simulations.
Then we continue analyzing the system in detail, relying on the
validated analytical model. Key system parameters such as the
number of nodes, successful packet transmission probability,
the transmission range and the number of retransmission
requests are considered as the inputs to the model. The results
for each numerical setting are obtained by averaging over
twenty random topologies of a given number of nodes and
transmission range, uniformly distributed in a 2km × 2km
two-dimensional area. The rebroadcasting probability prb, in
the multi-hop rebroadcast phase (first phase), is considered 1.
Accordingly, the number of rebroadcasts b in the first phase
is considered equal to the number of nodes N , assuming
each node rebroadcasts only once, unless it is explicitly
mentioned. Also note that the number of retransmission steps
k refers to retransmission requesting steps in the error recovery
phase (second phase), not to be confused with the number of
rebroadcasts b in the first phase. Logarithmic scales are used
in some graphs, as a means of reasonable presentation.

A. Validation by simulation

We use NS-3 to validate our model. For this, we set up a
multi-hop wireless network of nodes, considering the above-
mentioned specifications, with constant positions. This is a
reasonable setting, considering the dissemination time of a
packet, which is in the order of milliseconds, with regard to
velocity of moving vehicles. The propagation loss is assumed
to be negligible. Probabilistic packet transmission loss and
the reliability assurance mechanism are implemented at the
application level on all nodes. 0.95% confidence limits are
used for the purpose of validation.

Figure 8a shows the results, obtained via simulations and
the analytical analysis, as the overhead of error recovery, in
terms of the number of retransmission steps, against increasing
probability of successful packet transmission pT , in a network
of N = 10 nodes with the transmission range R = 0.5km. As
expected, overhead follows a descending flow by an increase
in pT and the two curves follow each other closely. Figure 8b
shows the results, obtained via simulations and the analytical
analysis, for the residual probability of loss in a network of
N = 10 nodes and R = 0.5km. This probability decreases
at the expense of more retransmissions. In particular, we



observe a sharper decrease supported by a higher probability
of successful packet transmission pT = 0.98. The results
obtained from simulations are inline with the analysis, being
within the confidence limits. Though they slightly fall apart,
due to practical implementation differences between platforms
and simplifications of the mathematical modeling. Relying on
these observations, confirming the validity of the analytical
modeling, in the rest of the paper, we merely consider the
analytical model.
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(b) Residual loss probability.

Figure 8: Validation test cases.

B. Analytical System Performance

In this section we present the results of analysing the
analytical model, considering various numerical settings.

Figure 9 demonstrates CDF and PMF of the number of
retransmission steps, until all stations receive the packet in a
network of N = 5 nodes, during the error recovery phase,
for different packet success probabilities, pT . Figure 9c and
9d demonstrate the same metrics for N = 10 nodes. For
both N , we observe that PMFs are more evenly distributed
for lower success probabilities, confirming necessity of more
retransmission steps to be carried out to end up in the
absorbing state, where all nodes have successfully received
the broadcast packet. Comparing the peer graphs for N = 5
and N = 10, we follow a faster decrease in PMF values,
against increasing number of retransmission steps, for N = 10.
This indicates the positive effect of increased network density
on system absorption. The common remark regarding Figure
9b and 9d is the lightweight tail distribution of probability
of absorption over the number of retransmission steps. This
could be a determinative knowledge for the trade-off between
improved reliability and imposed overhead, in terms of the
number of retransmission steps.

It is likely that all nodes successfully receive a packet at the
initial rebroadcast phase. Such a probability (Pα in −→P ), which
is not included in Figure 9b and Figure 9d, contributes to the
overall probability of successful packet delivery to all nodes.
Such that, adding this probability to the corresponding sum
of PMFs of all the number of retransmission steps (i.e. CDF),
sums up to 1, as it is supposed to be and shown in Figure 9a
and Figure 9c. The same is valid for all the other experiments.

In Figure 10, we see the effect of the number of rebroadcasts
b in the first phase (i.e. the multi-hop rebroadcast), on the
error recovery (second phase) performance, for the transmis-
sion range R = 0.5km and the packet success probability
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Figure 9: CDF and PMF of the number of retransmission steps for
different probabilities, N = 5, 10.

b : 3

b : 10

2 4 8 10

-0.3

-0.2

-0.1

0.0

nr. of retransmissions k

Lo
g1
0
C
D
F

6

(a) CDF,N = 10

b : 3

b : 10

2 4 8 10

-2.0

-1.5

-1.0

-0.5

0.0

nr. of retransmissions k

Lo
g1
0
pr
ob
ab
ili
ty

6

(b) PMF,N = 10

Figure 10: CDF and PMF of the number of retransmission steps for
pT = 0.5 and different rebroadcast steps, b = 3, 10.

pT = 0.5. These figures demonstrate CDF and PMF of the
number of retransmission steps k, until all stations successfully
receive the packet, during the error recovery phase, given
different number of rebroadcasts b, in the first phase.

These observations are mainly useful in the case of applying
probabilistic rebroadcasts in the first phase. For instance, we
see no big difference between results, belonging to b = 3 and
b = 10 number of rebroadcasts. Hence, the rebroadcasting
probability prb could be adjusted, not to overload the network
with excessive rebroadcasts.

Figure 11 demonstrates the probability that a given num-
ber of stations fail to receive the packet, after k = 2, 8
retransmission requests, for three different probabilities pT =
0.3, 0.6, 0.9. What is straight in these figures, is sharper
decrease of the probability of failing having higher number
of unsuccessful stations, for higher probability of success pT .
The same behavior, in a more intense scale, is observable while
comparing Figures 11a and 11b. In particular, when supported
by better channel conditions (i.e. for the higher pT = 0.9),
increasing the number of retransmission steps k, results in
way more significant improvement. Figure 12a demonstrates
the overhead of error recovery, in terms of the number of
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Figure 11: Failure probability after k retransmission steps, N = 10,
R = 0.5km.

retransmission steps k against increasing probability of suc-
cessful packet transmission pT , for three transmission ranges
R = 0.3, 0.5, 0.8km, in a network of N = 10 nodes. We
note a smooth decay in the imposed overhead, as either pT
or R increases. The dominant pT factor, suppressing the gap
between curves corresponding to various R, is traceable as the
curves merges towards higher pT s.
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Figure 12: Recovery overhead and residual probability of loss,
N = 10, R = 0.5km.

The residual loss probability is shown in Figure 12b for a
network of N = 10 nodes and R = 0.5km. Expected behavior
of the system is confirmed by the model, as we see smaller
probabilities of residual loss, against increase in pT . Non-
significant gap between curves, belonging to three different
number of retransmission steps k, implies the fact that most
of nodes are reachable by fewer number of retransmissions.

VI. CONCLUSION AND FUTURE WORK

In this paper, we analytically modeled and evaluated a
reliability assurance mechanism, for multi-hop broadcast set-
ting, as a means of providing detailed insight into the system
functionality. Using simulations, we proved the validity of
the model. These observations are useful for designing rel-
evant optimization schemes, for reliable data dissemination.
For instance, parameters such as nodes’ transmission range
or, particularly in this case, the number of retransmissions
could be tuned, given various network densities and channel
conditions.

Our model is general, in a sense that it is not based on a spe-
cific network topology, but topologies are input to the model,
in terms of connectivity graphs. Also, the model is extensible

such that elaborate f(θ) functions, considering detailed pa-
rameterization of data dissemination, can be augmented into
the transition probability matrix that we developed.

Ensuring ultra reliable broadcast, using existing technolo-
gies [6] is not yet achieved. Motivated by the concepts of
Internet of Vehicles (IoV) and heterogeneous networking, as
the main design criteria for the next generation of the mobile
networking system, 5G, in our next work we will investigate
the gain of using cellular communication technologies, to
contribute to vehicular communications with a higher level
of reliability.
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