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Abstract Developers of high-performance algorithms for hard computational prob-
lems increasingly take advantage of automated parameter tuning and algorithm con-
figuration tools, and consequently often create solvers with many parameters and vast
configuration spaces. However, there has been very little work to help these algorithm
developers answer questions about the high-quality configurations produced by these
tools, specifically about which parameter changes contribute most to improved perfor-
mance. In this work, we present an automated technique for answering such questions
by performing ablation analysis between two algorithm configurations. We perform
an extensive empirical analysis of our technique on five scenarios from propositional
satisfiability, mixed-integer programming and AI planning, and show that in all of
these scenarios more than 95% of the performance gains between default configura-
tions and optimised configurations obtained from automated configuration tools can
be explained by modifying the values of a small number of parameters (1–4 in the sce-
narios we studied). We also investigate the use of our ablation analysis procedure for
producing configurations that generalise well to previously-unseen problem domains,
as well as for analysing the structure of the algorithm parameter response surface near
and between high-performance configurations.
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1 Introduction

High-performance solvers for hard computational problems, such as propositional
satisfiability (SAT) or mixed-integer programming (MIP), are typically run by users
on classes of problem instances from different application domains; for example, a
SAT solver might be run on sets of random 3-sat, hardware verification or software
verification instances, and a MIP solver might be used to solve MIP-formulations
of logistics, routing or production planning problems. The existence of such varied
domains provides an incentive to the developers of such solvers to parameterise aspects
of their implementation in order to be able to obtain good performance on each target
problem domain. Finding good values manually for these algorithm parameters is
difficult, as even human experts have trouble predicting which configurations will
result in high performance due to interactions between parameters and the sheer size
of the combinatorial configuration spaces involved.

While tools specifically designed for automatically tuning the parameters of such
algorithms have been in use for at least a decade (see, e.g., Birattari et al. (2002)),
the introduction of advanced procedures capable of dealing with dozens of parame-
ters, such as ParamILS(Hutter et al. 2007b, 2009), GGA(Ansótegui et al. 2009),
irace (López-Ibáñez et al. 2011) and SMAC(Hutter et al. 2011), has generated great
interest in the area of automated algorithm configuration. The success of these auto-
matic algorithm configurators in practice has inspired a software design paradigm
called Programming by Optimisation (PbO) (Hoos 2012), which encourages devel-
opers to expose design choices and actively seek alternatives for key parts of their
algorithms, leading to highly parametric designs that are then automatically optimised
for specific use contexts.

However, many configurations are sampled by these configuration tools, and devel-
opers are often left wondering why their algorithm parameters were set to specific
values by the automated configuration process, or whether the modification of some
parameters from their default settings was truly necessary to achieve substantially
improved performance. Given a highly parameteric algorithm, after making many
parameter changes as a result of automated configuration, how can an algorithm devel-
oper know which of the parameter changes were actually important? The ability to
answer questions like these will allow developers to focus their efforts on the aspects
of their solvers that are providing themost performance gains (or losses), in an iterative
algorithm development process.

In this work, we introduce the concept of ablation analysis, a procedure investi-
gating the path of configurations obtained by iteratively modifying parameter settings
from a source configuration (e.g., an expert-defined default) to those from a target
configuration (e.g., one obtained from an automatic configurator). Parameter values
are modified one at a time, and at each stage the configuration with the best perfor-
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mance is retained 1. We present a brute-force approach to this analysis, as well as an
accelerated version that takes advantage of racing methods for algorithm selection.
We demonstrate the effectiveness of this approach with an empirical study on five
well-studied algorithm configuration scenarios that involve high-performance solvers
for SAT, MIP and AI planning problems, and we show that for these scenarios, more
than 95% of the performance gains from automated configuration can be obtained by
the modification of at most 4 (out of 26–76) algorithm parameters. This observation
has the potential to improve the design of automated configuration approaches, by
searching intelligently in the local region around an algorithm’s default configuration
rather than rapidly (and randomly) diversifying to other parts of the configuration
space.

We also present the results of several additional experiments using our ablation
analysis approach to produce algorithm configurations that generalise well to unseen
problem instances from different domains. Finally, we carried out experiments to
analyse the structure of the algorithm parameter response surface near and between
configurations with high performance, by performing ablation analysis with these
high-performance configurations as the source and target configurations.

The remainder of this paper is structured as follows: In Sect. 2, we place our con-
tribution in context with related work in parameter importance, and we then provide
an in-depth explanation of both variants of our ablation analysis procedure in Sect. 3.
Section4 presents the details of the experimental study that we performed, with the
results of that study shown and discussed in Sects. 5 and 6. We discuss opportunities
for future work in this area in Sect. 8 and then conclude in Sect. 9.

2 Background and related work

Many individual applications of automated algorithm configuration to specific solvers
include statements from the authors about the modified parameters, as a post-hoc
subjective justification without formal analysis. Examples of this include the con-
figuration of a state-of-the-art industrial sat solver (Hutter et al. 2007a), as well as
the automated design of general-purpose frameworks for AI planning (Vallati et al.
2011, 2013). However, there has been relatively little work on systematic techniques
for assessing parameter importance. The most closely related area of related work
is that of sensitivity analysis in statistics, especially analysis of variance (ANOVA)
and functional ANOVA(Hooker 2007) approaches to decomposing model or function
response variance into low-order components. Furthermore, related work on interac-
tive parameter exploration using contour plot visualization (Bartz-Beielstein 2006), on
evolutionary algorithms for parameter relevance estimation (Nannen and Eiben 2007)
and on experimental design for analysing optimization algorithms (Chiarandini and
Goegebeur 2010) can be found in the literature.

1 Our use of the term ablation follows that of Aghaeepour and Hoos (2013) and loosely echoes its meaning
in medicine, where it refers to the surgical removal of organs, organ parts or tissues. We ablate (i.e., remove)
changes in the settings of algorithm parameters to better understand the contribution of those changes to
observed differences in algorithm performance.
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Chiarandini and Goegebeur (2010) present a thorough investigation of experimen-
tal design for analysing optimization algorithms, using linear mixed-effects models.
Their analysis only includes parameter configuration spaces of low size and dimen-
sion, with fewer than 50 possible configurations. It is unclear whether this approach
scales to larger configuration spaces (the scenarios considered in our study com-
prise up to 1.90 × 1047 possible configurations). Nannen and Eiben (2007) uses an
entropy-based approach with evolutionary algorithms to perform parameter relevance
estimation, but this approach alsomakes a smoothness assumption about the parameter
response surface which eliminate categorical parameters from consideration, as well
as an assumption that there will be few parameters (on the order of 10) in the problem.

Gunawan et al. (2011) use a design of experiments (DOE) approach to automated
algorithm configuration, a component of which is an initial factorial experiment design
which attempts to rank parameters by importance in order to screen out “unimportant”
parameters before performing configuration on the reduced configuration space. For
scenarios with k parameters and n instances, this initial 2k experiment design requires
n · 2k observations, which is unfortunately infeasible for algorithms with large con-
figuration spaces (involving often more than 50 parameters). Finally, Bartz-Beielstein
(2006) uses sequential parameter optimization (SPO) to estimate 1- and 2-parameter
effects, as well as providing interactive contour plots in the configuration space. This
approach also has difficulties with the discrete configuration spaces induced by the
categorical parameters encountered in many algorithm configuration scenarios. As
these techniques each have difficulties with the high dimensionality and/or the dis-
crete nature of the configuration spaces of typical highly-parameterised algorithms,
an approach overcoming both has high utility for algorithm developers.

Very recently, Hutter et al. have been using model-based techniques to investigate
the problems of parameter importance and parameter interaction directly, using for-
ward selection (Hutter et al. 2013) and functional ANOVA(Hutter et al. 2014). Both
approaches require an initial data-gathering step to obtain algorithm performance data,
which is then partitioned into training and test sets. In (Hutter et al. 2013), this data was
obtained by sampling 1,000 –10,000 pairs of configurations and instances uniformly
at random, while in (Hutter et al. 2014) several experiments were performed using
10,000 randomly sampled runs, the algorithm runs performed during executions of
the SMAC configurator (13,452–454,336 additional runs), as well as a combination
of both.

In the forward selection approach by Hutter et al. (2013), this performance data
is used to iteratively build a regression model by greedily adding, at each iteration,
the parameter or instance feature which results in a model with the lowest root mean
squared error on the validation set. Hutter et al. (2014), on the other hand, introduced
an efficient technique for applying functional ANOVA to random forest models. This
variance decomposition takes a random forest model constructed from the precom-
puted data, and expresses the performance variation in terms of components, with one
component for every subset of parameters of size up to k (for small k). These two
contributions differ from our own in several fundamental ways.

The current version of the forward selection approach constructs models wholly or
partially based on thousands of configurations sampled uniformly at random from the
configuration space. The CPU time required to obtain this data, as well as the time
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required to build the models themselves, can be significant. The CPU time require-
ments for model construction are especially significant for forward selection, which
typically requires the construction of thousands of models.

More importantly, this random sampling of configurations means that many of the
configurations used to build the model are from parts of the configuration space that
are unlikely to contain high quality configurations. Furthermore, both methods have
so far been used only to measure parameter importance globally on expectation across
the entire configuration space or, for functional ANOVA, to broad sets of samples
restricted to: (1) configurations with better performance than the default configura-
tion, or (2) configurations in the top 25% in terms of performance. The importance
values derived from those experiments are still global measures, and can be averages
across many regions of very different high-performance configurations. There is no
guarantee that these importancemeasures apply to any individual algorithm configura-
tion, specifically to any high-performance configuration and the local neighbourhoods
around such configurations. Finally, the functional ANOVAwork relies on the assump-
tion that accurate models of algorithm performance can be obtained at a reasonable
computational cost. This appears to be the case for the experiments reported byHutter
et al. (2014), but there is no guarantee that on other scenarios, models with similar
parameter importance accuracy can be practically obtained. Our approach does not
require model construction, and is therefore not constrained by this assumption.

The most important distinguishing factor between our work presented here and
these earlier studies lies in the fact that we aim to explain the importance of differences
between two algorithm configurations that are of interest to an algorithm developer
and user—for example, between the default configuration and one produced by apply-
ing an automated algorithm configuration tool, such as ParamILS. Using ablation
analysis, we can quantify the performance losses (or gains) along the “ablation path”
(see Sect. 3.3) from one configuration to another. This allows algorithm developers or
users to find a minimal set of parameter modifications from a given default configura-
tion, while maintaining most or all of the performance gains achieved by automated
algorithm configuration. We see this approach as complementary to the recent model-
based techniques of Hutter et al. (2013, 2014), as the local information provided by
our approach can strengthen and validate (or invalidate) the results obtained with those
techniques. We also believe that there are ways to combine the two lines of work (see
Sect. 9).

There is an interesting conceptual connection between our ablation approach and
that of path relinking, a general-purpose method for combining the diversification
and intensification stages in heuristic search (Glover 1994, 1997; Glover and Laguna
1997). Search strategies based on path relinking typically maintain a population of
solutions and create new candidate solutions by constructing paths in the search space
between existing solutions in the population. Each point in the search space lying on
these paths is a potential solution, oftenwith properties similar to the start or end points
of the path. For further information on the history and application of path relinking,
we refer the interested reader to two surveys byGlover et al. (2000, 2003).

Our ablation analysis approach can be seen as an application of path relinking in
the configuration space of a given parameterised algorithm, as we are constructing
specific paths between a source and target configuration (as such, to the best of our
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Algorithm 1: ablationAnalysis
(A, θsource, θtarget, I,m

)

Input: Parameterised algorithm A, two parameter configurations ofA, θsource and θtarget,
benchmark instance set I , performance metric m (to be minimised)

Output: An ordered list (θ0, θ1, θ2, θ3, . . . , θl ) of configurations ofA chosen during each round of
ablation. θ0 = θsource and θl = θtarget

θ ← θsource
remParameters ← set of parameters of A with different values in θsource and θtarget
ablationRoundsBest ← (θsource)

while remParameters �= ∅ do
A′ ← set of algorithms with configurations obtained from θ via flipping 1 parameter in
remParameters to the value in θtarget, ignoring configurations that are prohibited in the
configuration space or that are equal to θ due to parameter conditionality.
θ ′ ← determineBest

(A′, I,m
)

remParameters ← set of parameters of A with different values in θ ′ and θtarget
ablationRoundsBest ← ablationRoundsBest + (

θ ′)

θ ← θ ′
end
return ablationRoundsBest

knowledge, we are describing the first application of ideas from path relinking in the
context of algorithm configuration). However, ablation analysis pursues a different
goal from path relinking: While the latter is used to identify candidate configurations
during search, the former aims to identify individual parameter settings responsible
for the performance of a given target algorithm. As we demonstrate in Sect. 6, ablation
analysis can also be used to find configurations that generalise well to different types of
problem instances solvable by a given target algorithm, and this application of ablation
analysis is even more closely related to path relinking.

3 Ablation analysis

Given a parameterised algorithm A with d parameters and configuration space Θ ,
along with a source and target configuration (θsource, θtarget ∈ Θ) of that algorithm; a
set of training benchmark instances I , ideally sampled from a distribution as close as
possible to the typical instances that A is executed on in practice; and a performance
metricm (e.g., penalised average runtime ormean solution quality, although any scalar
measure of performance is supported), our ablation analysis procedure proceeds as
follows. We first compute the set of parameters whose values differ between θsource
and θtarget. Then, beginning from θsource, we proceed through a series of rounds: in
each round, we use a subprocedure determineBest to choose a configuration from the
set of all configurations obtained by flipping one parameter in the current configuration
to its value in θtarget. Algorithm1 further outlines the details of this procedure.

In each round of ablation, i.e., in each iteration of the while-loop in Algorithm1,
the procedure determineBest

(A′, I,m
)
selects the configuration in A′ with the

best performance on I w.r.t. m. In the case where the source configuration has bet-
ter performance on I than the target configuration, each configuration selected by
determineBest

(A′, I,m
)
will be the one with minimum loss compared to the con-
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figuration θ from the previous round. Conversely, when θtarget has better performance
than θsource on I , the configuration selected by determineBest will be that with
maximum gain over the previous θ . Some parameterised algorithms have conditional
parameters, i.e., parameters that only exist (or whose values only affect algorithm
performance) if one or more other parameters (parents) are set to specific values. Con-
figurations obtained by modifying the values of inactive conditional parameters are
ignored in our procedure, as these configurations are by definition identical to the con-
figuration fromwhich theywere produced. Thismeans thatmodification of conditional
parameters may be delayed until late in the ablation process if the corresponding par-
ent parameters have little effect on algorithm performance. Similar delayed effects can
occur in the presence of other complex interactions between subsets of parameters,
for example if parameters p1, p2, . . . , pk must all be modified before performance
will improve. However, the presence of these interactions will often be identifiable
after performing ablation analysis, as a section of “flat” performance followed by a
significant performance improvement. We discuss these issues further in Sect. 5 and
explore a potential solution in Sect. 7.

In the experiments we present in Sect. 4, we perform ablation analysis in both
directions for every pair of configurations. By performing ablation in the direction
of minimum loss, we can gauge the relative extent (by number of parameter mod-
ifications) of the local area around θsource with roughly equal performance. In the
direction of maximum gain, we find the minimal number of parameter modifications
required to achieve roughly equal performance to θtarget. As a greedy approach (not
unlike forward selection), ablation in either direction may produce suboptimal results
at any distance except 1 from θsource. In light of this, performing the analysis in two
directions provides additional robustness. In the following, we describe two variants of
determineBest

(A′, I,m
)
: a naïve brute-force method (Algorithm2), which is easy

to implement but slow, and a greatly accelerated version based on a racing method
(Algorithm3).

3.1 Brute-force ablation

Our brute-force implementation of determineBest
(A′, I,m

)
, detailed in Algo-

rithm2, involves performing a full empirical performance evaluation for every config-
uration inA′, by running each configuration inA′ on every instance in I and recording
the performance as determined by the metric m. These scalar performance values are
then suitably aggregated; in our experiments we use the mean, but the median and
other statistics are also valid and supported choices. We keep track of the configu-
ration θ ′ ∈ A′ with the best measured performance, and return it as the result of
determineBestBruteForce.

Given that one parameter is eliminated from consideration in every round, ablation
on instance set I with p differing parameters between θsource and θtarget using this
brute-force approach will require up to |I | · p · (p + 1) /2 individual runs of algorithm
A. (In the presence of conditional parameters, more than one parameter can be elimi-
nated in one round of ablation if an inactive parameter is set to its default value in the
target configuration.) Therefore, this procedure can be extremely time-consuming in
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Algorithm 2: determineBestBruteForce
(A′, I,m

)

Input: The set of candidate algorithm configurationsA′, benchmark instance set I , performance
metric m (to be minimised)

Output: θ ′ ∈ A′, the configuration in A′ deemed to have the best performance

θ ′ ← nil
bestPerformance ← ∞
for θ ∈ A′ do

runData ← ∅
for i ∈ I do

runData ← runData ∪ evaluateConfiguration (θ, i,m)

end
performance ← aggregateRunData (runData)

if performance < bestPerformance then
θ ′ ← θ

bestPerformance ← performance
end

end
return θ ′

the presence of high runtime cutoffs or large instance sets. Consider a typical case of
ablation between a source and target configuration with 25 differing parameters, and
an instance set I with 1,000 benchmark instances. Over the course of ablation using
the brute-force method, 325,000 algorithm runs will be performed. Even with a mean
CPU time of only 30 s per run ofA for any instance from I for all configurations con-
sidered in the analysis, this implies an overall runtime requirement of 9,750,000 CPU
seconds or 112 CPU days. We note that while, by parallelizing runs across a cluster
of machines (as we do in our experiments), this does not necessarily render ablation
using this method completely impractical, it represents a formidable computational
burden. Clearly, a more efficient ablation procedure would be highly desirable.

3.2 Acceleration via racing

Based on early work for solving the model selection problem in memory-based super-
vised learning (Maron and Moore 1994), F-Race is a prominent racing method for
algorithm selection (Birattari et al. 2002). Given a benchmark instance set and per-
formance metric, F-Race takes a set of candidate algorithms (or configurations of a
parameterised algorithm) and iterates between gathering performance data by run-
ning the candidate algorithms on benchmark instances, and eliminating candidates
once there is enough statistical evidence to justify removing them. The algorithms
remaining at the end of the procedure are the winners of the race.

As outlined in Algorithm3, we apply F-Race to determine the best configurations
in each round of ablation analysis, adhering very closely to the statistical frame-
work described by Birattari et al. (2002). In this context, F-Race starts with a set
of candidate configurations containing all configurations in A′ and subsequently
performs a sequence of stages. In stage k, the remaining candidate configurations
candidateConfigurations = {θ1, θ2, . . . , θn} are evaluated on a new instance ik ∈ I ,
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Algorithm 3: determineBestRacing
(A′, I,m

)

Input: The set of candidate algorithm configurationsA′, benchmark instance set I , performance
metric m (to be minimised)

Parameters: MIN_STAGES and MAX_STAGES, configurable constants containing the minimum
and maximum number of racing stages

Output: θ ′ ∈ A′, the configuration in A′ deemed to have the best performance

MAX_STAGES ← min (MAX_STAGES, |I |)
candidateConfigurations ← A′
instanceList ← (i | i ∈ I )
results ← [ ]
stage ← 1
while |candidateConfigurations| > 1 and stage ≤ MAX_STAGES do

i ← instanceList [stage]
results [stage] ← [ ]
for θ ∈ candidateConfigurations do

results [stage] [θ ] ← evaluateConfiguration (θ, i,m)

end
if stage ≥ MIN_STAGES then

(F , p, ranks, sumsOfSquaredRanks) ← FriedmanTest (results)

/* F is the Friedman test statistic, p the test p-value, ranks
contains the ranks of configurations in each block, and
sumsOfSquaredRanks is sum of squared ranks for each
θ ∈ candidateConfigurations */

if p < 0.05 then
bestRankSum ← minθ sumsOfSquaredRanks [θ ]
θbest ← arg minθ sumsOfSquaredRanks [θ ]
toEliminate ← ∅
for θ ∈ candidateConfigurations \ {θbest } do

if modifiedTTest (θ, ranks, bestRankSum) then
toEliminate ← toEliminate ∪ {θ}

end
end
candidateConfigurations ← candidateConfigurations \ toEliminate

end
end
stage ← stage + 1

end
θ ′ ← nil
bestPerformance ← ∞
for θ ∈ candidateConfigurations do

runData ← ∅
for s = 1 . . . stage do

runData ← runData ∪ results [s] [θ ]
end
performance ← aggregateRunData (runData)

if performance < bestPerformance then
θ ′ ← θ

bestPerformance ← performance
end

end
return θ ′
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and the results are then combined with the results of the previous stages for each
configuration. These results are organised into k blocks, with the j th block contain-
ing the n performance metric values resulting from running the configurations in
candidateConfigurations on instance i j .

On these blocks, a Friedman two-way analysis of variance by ranks, also known
as the Friedman test, is performed (Conover 1999). In order to prevent early rejec-
tion of configurations, this test is only performed after a given number of stages
(MIN_STAGES) have been performed. We follow the convention of the F-Race
authours and set this parameter to five stages. If the null hypothesis of this test is
rejected, we can conclude that at least one configuration in candidateConfigurations
has statistically significantly better performance than at least one other configuration.
In this case, we proceed to pairwise testing to identify which configurations should be
removed from the candidate list candidateConfigurations. We use the same pairwise
test here as described by Birattari et al. for F-Race, by comparing the configuration
with the best sum of ranks across all blocks with the other n − 1 configurations
in candidateConfigurations using a modified t-test with n − 1 degrees of free-
dom(Birattari et al. 2002). After culling any configurations deemed to be statistically
significantly worse, we proceed to the next stage of the race. The race terminates when
only one configuration remains, or when a specified maximum number of stages have
been performed (MAX_STAGES). In the latter case, the configuration with the best
aggregate performance (according to m) across all stages is selected as the winner.
(Further details on the statistical tests used in this procedure can be found inBirattari
et al. (2002); Conover (1999).)

To measure the speed-ups of this racing approach to ablation analysis compared to
the brute-force approach described earlier, we performed experiments using two of the
scenarios described in Sect. 4. Using our spear and cplex scenarios, we performed
ablation analysis from the solver default to the configuration obtained from ParamILS
using three ablation analysis approaches. The brute-force approach required approxi-
mately 5 CPU days for the spear scenario, and 32 CPU days for the cplexscenario.
Using our racing approach with MAX_STAGES set to the size of the benchmark set
I reduced these requirements to just over 1 CPU day for spear, and 10.7 CPU days
for cplex. By limiting MAX_STAGES to to 200 (rather than |I | = 302 for spear
and 1,000 for cplex), we achieved further reductions to 4.6 CPU days for cplex. We
also note that every algorithm run inside a single stage of our racing approach can be
performed in parallel, resulting in further reductions in the wall-clock time required.
Our implementation approach can take advantage of the now-ubiquitous multiple
cores on a single machine, and can also be distributed across a compute cluster for
even greater wall-clock performance. The result is a reasonable computing expense
on modern hardware for typical configuration scenarios. Table1 gives a summary of
these performance gains.

Determining the optimal value for the MAX_STAGES parameter is not straight-
forward, but in general it can be expected to depend on the number of instances in
the given set of benchmark instances for which algorithm performance is highly cor-
related. We determined our conservative choice of 200 by subsampling runs from the
full instance sets and choosing the lowest value that did not change the distribution of
runtime over the resulting set in any substantial way for any of our scenarios.

123



Analysing differences between algorithm 441

Table 1 Results from performing ablation analysis on two scenarios with three ablation variants: the brute
force approach, racing with the maximum number of rounds equal to the number of instances, and racing
with the maximum number of rounds equal to 200

Scenario spear swv cplex corlat

Runs CPU time (s) Runs CPU time (s)

Brute force 70,366 472,686.17 212,000 2,801,674.25

Racing (max #rounds = |I |) 43,982 107,418.36 115,665 921,487.05

Racing (max #rounds = 200) 28,544 108,036.14 51,349 399,092.70

The spear and cplex scenarios themselves are identical to those described in detail in Sect. 4. For both
racing rows, we note that a full empirical analysis was performed on the chosen benchmark instances after
each racing round in order to calculate the performance of every configuration on the ablation path. Run
counts and CPU times for racing alone are approximately half of the reported values

While it is possible that racing will return different ablation results than the brute-
force approach, we do not consider this to be a problem, since the brute-force approach
is also not guaranteed to compute the optimal path between two configurations. Fur-
thermore, in all of our experiments, the brute-force and racing results were closely
aligned. We additionally tested how close our racing approach comes to the optimal
parameter choice, by performing complete evaluations of the 1-neighbourhood of con-
figurations around the default for each of our five scenarios. These neighbourhoods
consist of those configurations obtained by modifying a single parameter from its
value in the source configuration to its value in the target configuration. In all cases,
the most important parameter selected by our racing approach for each scenario is the
same as the best parameter in the 1-neighbourhood around the source configuration.
The results for the lpg solver on our depots scenario are given in Table2.

3.3 Ablation paths

We call the path of configurations (θ0, . . . , θl) obtained between θsource and θtarget
computed by our ablation procedure along with the respective performance values on
set I (or an independent test set of instances similar to those in I ) an ablation path.
These paths can take several qualitatively different forms, depending on the relative
performance of θsource and θtarget, and on characteristics of the response surface that
captures the functional dependency of the performance ofA on its parameter settings.
Figure1 illustrates these cases; each point represents the performance of one of the
configurations θi , from θsource on the left-hand side to θtarget on the right. Figure1a
illustrates one extreme case, where θsource and θtarget differ in performance on I and
all parameters are of equal importance. A case at the opposite extreme (not shown)
would be if the performance difference between θsource and θtarget was fully explained
by the modification of a single parameter.

A more realistic case lies between these extremes, with the modification of a small
number of parameters explaining most of the difference in performance between
θsource and θtarget (Fig. 1b). Fig. 1c, d show two additional cases that may occur when
the source and target configurations have roughly equal performance on I . In1c,
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Table 2 Depots training and
test set performance obtained
when evaluating every parameter
configuration in the
1-neighbourhood of the LPG
default configuration

Parameter modified Training set
performance

Test set
performance

default 30.499 22.140

cri_intermediate_levels 1.548 1.574

walkplan 14.923 15.633

triomemory 29.124 26.216

tabu_fct 29.225 23.607

tabu_length 29.293 24.958

donot_try_suspected_actions 30.497 24.798

dynoiseTabLen 30.587 24.937

dynoisecoefnum 30.622 23.588

tabu_act 30.624 24.959

no_cut 30.642 26.323

vicinato 31.964 22.238

maxnoise 33.387 24.963

inc_re 38.475 31.776

numrestart 39.073 29.187

static_noise 45.005 39.559

extended_effects_evaluation 49.412 51.042

numtry 70.004 51.778

weight_mutex_in_relaxed_plan 71.346 61.178

noise 132.844 121.984

noise_incr 175.963 148.953

ri_list 402.606 371.674

depots configured 0.642 0.637

θsource and θtarget are connected by a path of configurations that all have the same
performance; this could arise in a situation where both lie on a large plateau of the
response surface. However, it is also possible that the two configurations lie in sepa-
rate basins of the response surface, such that a “saddle” of worse performance must be
surmounted along the ablation path from θsource to θtarget, as illustrated in 1d. 2. We
note that the results from all of our experiments performing ablation from algorithm
defaults to configurations obtained from automated configurators fall into case1b.

4 Experiment design

In order to empirically evaluate our ablation methods, we performed experiments
on five scenarios using state-of-the-art solvers for sat, mip and AI planning. We
implemented the brute-force and racing-based ablation methods as plugins for HAL,

2 The ablation path illustrated in Fig. 1d resembles the folding pathways observed in biopolymers like
RNA that have to overcome a thermodynamic barrier in order to change from one low-energy structure to
another (Reidys 2011).
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Fig. 1 Ablation paths can take several qualitatively different forms, illustrated by these (idealised) runtime
examples. Lower values indicate better performance (for details, see text)

a Java-based platform for distributed experiment execution and datamanagement (Nell
et al. 2011). All runs were performed using machines in the Compute-Calcul Canada /
Westgrid Orcinus cluster, each equipped with two Intel Xeon X5650 6-core 2.66Ghz
processors, 12MB of cache and 24GB of RAM, running CentOS 5 Linux. For each
target algorithm run, we used a single core and enforced a maximum of 2GB (spear
and cplex) or 6GB (lpg) of RAM.

Following standard machine learning practice, each of our benchmark instance sets
was partitioned (by the creators of those sets) into mutually exclusive training and
test sets. This partition is typically achieved through the use of a randomized instance
generator to sample a desired instance distribution, uniformly at random, to create
a set of unique instances which are subsequently divided into the training and test
set (again uniformly at random, or using stratified sampling in the case of multiple
generator settings).

Using the existing ParamILS plugin forHAL 1.1.6, we performed 10 independent
runs of ParamILS for each scenario, with each configurator run allocated 48 CPU
hours of total runtime. In each case,weminimised penalised average runtime (PAR10),
a standard performancemetric for configuration and empirical analysis; under PAR10,
each run that terminates successfully was assigned a score equal to the CPU time used,
and runs that crash or do not produce a valid solution on a given instance were assigned
a score of 10 times the runtime cutoff (this heavily penalised these cases to attempt
to enforce good instance set coverage.) Of the 10 configurations produced in our
ParamILS runs, we selected the one with the best PAR10 performance on the full
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training set for that scenario. (This corresponds to one of the standard protocols for
using ParamILS.)

We then performed two ablation experiments using our racing-based ablation pro-
cedure on the training set for each scenario, with the maximum number of rounds
set to 200. Ablation was performed in two directions, first from the default to the
optimised configuration obtained through automated configuration using maximum
gain, and then from the optimised configuration to the default using minimum loss.
Each configuration on the resulting ablation paths for each scenario was subsequently
evaluated using the independent test set for that scenario. (Performing ablation directly
on test sets produced very similar results.)
SAT using SPEAR. The SAT problem, or sat, is the prototypical N P-hard problem
with important real-world application, including circuit design as well as hardware
and software verification. sat has also beenwidely studied in the context of automated
algorithm configurationHutter et al. (2007b, 2009, 2011). We chose to analyze the
industrial sat solver spear 1.2.1, winner of one category of the 2007 Satisfiability
Modulo Theories Competition (Hutter et al. 2007a); spear has 26 configurable para-
meters, creating a space of 8.34 × 1017 configurations. spear has also been used in
two recent investigations of parameter importance using forward selection (Hutter et
al. 2013) and functional ANOVA(Hutter et al. 2014). We analyzed the performance
of spear on the swv software verification instance set used in several previous inves-
tigations. This set, consisting of 604 software verification conditions produced by an
automated static checker, is partitioned into a training set (used for configuration and
ablation analysis) and test set (used for evaluation of the ablation paths) consisting
of 302 instances each. Following previous work, we used a 300 CPU-second runtime
cutoff for automated configuration and all analysis runs.
MIP using CPLEX. MIP is another widely-studied problemwithmany prominent real-
world applications. IBM ILOG cplex is one of the most widely usedmip solvers, both
in academia and industry, and has a highly-parameterised configuration space con-
taining 76 configurable parameters that directly impact solver performance (a total of
1.90×1047 configurations). Automated configuration of cplex has proven successful
in past work (Hutter et al. 2010, 2011), and cplex has also been used in the same
parameter importance investigations as mentioned for spear. We chose to use cplex
12.1 and the corlat instance set for this scenario (Gomes et al. 2008); corlat is a
set of computational sustainability mip instances based on real data used for wildlife
corridor construction for grizzly bears in the Northern Rockies region. This set has
been used in previous work on algorithm configuration and on parameter importance;
it is partitioned into a training and test set containing 1,000 instances each. A 300
CPU-second runtime cutoff was used for all runs.
AI Planning using LPG. The design and automated configuration of highly-
parameterised solvers has recently proven successful in the AI planning commu-
nity, contributing to both the winner and runner-up in the Learning Track of the 7th
International Planning Competition (IPC-2011) (Vallati et al. 2011, 2013). Highly-
parameterised general-purpose planners represent ideal candidate scenarios for study-
ing parameter importance, because intuitively, the benefits to be gained by exploiting
the structure and differences between various planning domains suggest that high-
performance configurations will vary widely between such domains. We chose to
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investigate the configuration space of lpg td-1.0, a state-of-the-art local search based
planner, and a key component in the winner of the IPC-2011 Learning Track. lpg has
66 configurable parameters, with a total of 9.11 × 1036 possible configurations. We
analyzed lpg’s performance on three planning domains: depots, satellite, and zeno-
travel. These three domains have been used in previous planning competitions, as
well as in previous work on automated configuration for planning. Each instance set
contains disjoint 2000-instance training and test sets generated using the same para-
meter settings of a randomised instance generator. Consistent with previous work, a
60 CPU-second runtime cutoff was used for configuration, while a 300 CPU-second
cutoff was used for all test-set evaluation and ablation analysis runs.

5 Ablation between default and optimized configurations

Tables3 and 4 show the training and test set performance, respectively, for the
default configurations and automatically optimised configurations in all five scenarios
considered; as expected, and consistent with previously published results for these
solvers, we observed 3- to 422-fold speedups after configuration.

Table5 details the design space size for each of the three solvers used in our empir-
ical analysis, as well as the number of parameters that were changed from the default
in each of our five scenarios. Interestingly, nearly every spear parameter was changed
from the default, while for the cplex and lpg scenarios, approximately one-third to
one-half of the parameters were modified.

Figure2 details the full ablation paths using up to 200 rounds of racing, for the
spear, cplex and lpg scenarios. Table6 contains the training and test set performance
of cplex at each point of the ablation paths in Fig. 2b, along with [10, 90%] bootstrap
confidence intervals for PAR10 score on the test set. Corresponding tables for our other
four scenarios are given in Online Resource 1. In all cases, we present the ablation

Table 3 Training set performance results for all 5 of our scenarios, for both the default configurations and
those obtained from ParamILS

Solver Instance set Training set performance (PAR10, s)

q25 q50 q75 Mean

spear default swv 0.122 0.528 23.649 573.649

spear configured swv 0.122 0.592 1.279 1.359

cplex default corlat 0.101 3.563 90.596 556.531

cplex configured corlat 0.110 1.220 5.812 5.511

lpg default depots 0.551 1.086 8.182 43.245

lpg configured depots 0.220 0.318 0.510 0.671

lpg default satellite 15.232 17.580 20.595 17.962

lpg configured satellite 4.827 5.645 6.404 5.662

lpg default zenotravel 20.092 26.377 34.642 29.671

lpg configured zenotravel 1.414 1.826 2.490 2.065

Runtime cutoffs in all cases were 300 CPU seconds
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Table 4 Test set performance results for all 5 of our scenarios, for both the default configurations and those
obtained from ParamILS

Solver Instance set Test set performance (PAR10, s)

q25 q50 q75 Mean

spear default swv 0.102 0.499 11.392 569.645

spear configured swv 0.079 0.531 1.114 1.321

cplex default corlat 0.097 3.551 70.602 471.722

cplex configured corlat 0.112 1.238 5.650 5.411

lpg default depots 0.535 1.055 7.194 38.097

lpg configured depots 0.220 0.324 0.511 0.658

lpg default satellite 15.173 17.575 20.514 17.940

lpg configured satellite 4.943 5.760 6.529 5.783

lpg default zenotravel 19.792 26.026 34.929 29.361

lpg configured zenotravel 1.407 1.841 2.556 2.092

Runtime cutoffs in all cases were 300 CPU seconds

Table 5 Design space size and number of parameters changed from the default configuration byParamILS
for all 5 scenarios

Solver Instance set Design space size # parameters # changed from default

spear swv 8.34 × 1017 26 21

cplex corlat 1.90 × 1047 76 20

lpg depots 9.11 × 1036 66 22

lpg satellite 9.11 × 1036 66 35

lpg zenotravel 9.11 × 1036 66 33

Note that the number of parameters changed from the default represents an upper bound on the number of
ablation rounds, as conditional parameters can cause fewer rounds to be required if they are inactive in the
source configuration and active with their default values in the target configuration

paths using the default configuration as the source and the ParamILS configuration
as the target. The ablation paths in the reverse direction are qualitatively similar, with
small deviations due to parameter conditionality in the case of our cplex and lpg
scenarios.

Figure2a illustrates the mean PAR10 score on the swv test set for every configu-
ration along the path found through racing-accelerated ablation analysis of spear on
the swv training set. Expressing the performance gain from a single ablation round
as a percentage of the total gain between θsource and θtarget, 99.92% of the perfor-
mance gain between the default configuration and the optimised configuration can be
achieved by modifying the value of a single parameter, sp-var-dec-heur. This para-
meter controls the choice of the variable decision heuristic used by spear, which is
known to be an important parameter in most state-of-the-art sat solvers. Furthermore,
if we modify only four parameters (sp-var-dec-heur, sp-rand-var-dec-scaling, sp-res-
cutoff-cls, and sp-first-restart) from their default values, we obtain a configuration
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(e)

(c) (d)

(b)(a)

Fig. 2 Ablation paths determined using racing with up to 200 rounds on the training sets of the five
configuration scenarios, with each configuration on the ablation path evaluated using the corresponding test
set. The horizontal lines indicate the PAR10 scores of the default (source) and automatically-configured
(target) configurations on the test set for each scenario

with slightly better performance on the test set than the target configuration obtained
with ParamILS. In contrast, Hutter et al. (2014) noted in their functional ANOVA
work that sp-var-dec-heur was important, but only 76% of the improvement over the
default could be attributed to single-parameter effects in their model. We hypothesize
that sp-var-dec-heur is much more important in high-performance parts of the spear
configuration space, a bias that is not taken into account by the empirical performance
models used by Hutter et al.

Similarly, Fig. 2b shows the performance of configurations on the path found
through racing-accelerated ablation analysis of cplex on thecorlat training set, eval-
uatedon the test set.Here, 87.64%of the performancegain resulted frommodifying the
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Table 6 Parameters chosen and resulting PAR10 performance on both the training and test sets for ablation
analysis accelerated by racing (maximum of 200 rounds) for cplex on the corlat training set

Round Parameter Performance Test bootstrap CI

Training Test [10, 90%]

default - 556.531 471.722 [429.845, 515.609]

1 mip_cuts_covers 90.776 63.067 [47.885, 78.801]

2 mip_strategy_heuristicfreq 16.599 21.385 [14.206, 29.822]

3 simplex_dgradient 8.080 7.368 [6.563, 8.205]

4 simplex_tolerances_markowitz 10.345 12.763 [7.103, 18.718]

5 mip_limits_aggforcut 6.900 6.120 [5.475, 6.798]

6 mip_strategy_variableselect 8.974 8.012 [4.800, 11.432]

7 simplex_pgradient 5.799 8.037 [4.815, 11.477]

8 mip_strategy_fpheur 8.699 5.155 [4.647, 5.687]

9 lpmethod 8.700 5.151 [4.654, 5.679]

10 barrier_crossover 8.662 5.146 [4.654, 5.671]

11 preprocessing_symmetry 8.696 5.140 [4.641, 5.657]

12 sifting_algorithm 8.695 5.145 [4.635, 5.672]

13 barrier_limits_growth 8.678 5.137 [4.638, 5.660]

14 mip_limits_gomorycand 8.704 5.143 [4.641, 5.670]

15 mip_limits_cutsfactor 5.639 5.115 [4.635, 5.614]

16 mip_cuts_gubcovers 5.672 5.132 [4.650, 5.633]

17 mip_cuts_gomory 5.447 5.236 [4.727, 5.760]

18 preprocessing_repeatpresolve 5.608 5.433 [4.948, 5.938]

19 mip_strategy_presolvenode 5.766 5.288 [4.830, 5.769]

20 mip_cuts_mircut 5.511 5.411 [4.923, 5.922]

configured - 5.511 5.411 [4.923, 5.922]

Ablation was performed using the cplex default configuration as the source, and the configuration produced
by ParamILS as the target. The “Test bootstrap CI” column indicates the [10, 90%] confidence interval of
PAR10 performance, using 10,000 bootstrap samples of our test set data for each configuration

value of a single parameter,mip_cuts_covers,which controlswhether or not to generate
cover cuts. 99.58% of the gain can be achieved bymodifying just three cplex parame-
ters (mip_cuts_covers, mip_strategy_heuristicfreq and simplex_dgradient). We note
that the parameter simplex_dgradient was not in the top 10 important parameters iden-
tified for this scenario by Hutter et al. (2014), although 6 of the 10 most important
cplex parameters as identified by their functional ANOVAapproachwere not changed
from their default values in our experiments (this effect was also noted by Hutter
et al.).

Finally, Fig. 2c, d and e illustrate the performance along the ablation paths for
each of the three lpg scenarios: depots, satellite and zenotravel. For the depots and
satellite scenarios, the top three parameters were the same. Modifying the value
of cri_intermediate_levels resulted in 97.7 and 84.55% of the target configuration
performance over the default, respectively. Furthermore, modifying the values of
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three parameters (cri_intermediate_levels, vicinato (the neighbourhood choice), and
hpar_cut_neighb) resulted in 99.22% of the performance gain for the depots scenario.

For the zenotravel scenario (Fig, 2e), we observed different choices for the two
most important parameters, depending on the direction in which ablation was per-
formed. Modifying triomemory and fast_best_action_evaluation from their default
values resulted in 85.99% of the overall performance gain over the default, while
modifying vicinato and hpar_cut_neighb (similar to the other two lpg scenarios)
resulted in 88.09% of the total performance gain. Four parameter modifications (vic-
inato, hpar_cut_neighb, triomemory, and noise) accounted for 97.8% of the total
performance gain.

It is interesting to note that there is a conditional parameter interaction between
hpar_cut_neighb and vicinato, as hpar_cut_neighb is only active when vicinato takes
certain values. In our experiments,modifying vicinatooften did not produce large gains
in performance by itself, but allowed for modification of hpar_cut_neighb, which in
turn resulted in large performance improvements. The effect of conditional parameters
can also be seen in the “late” performance improvements in the three lpg scenarios in
the direction of maximum gain.

6 Extended uses of ablation

So far, we have focussed on results from straightforward applications of ablation analy-
sis. However, ablation analysis can also be used to find configurations that generalise
better than the default configuration to new domains (i.e., problem instance classes)
of interest, or to obtain information about the topology of the algorithm configuration
space around and between high-performance configurations. As mentioned in Sect. 2,
these extended uses of ablation analysis strongly echo ideas from path relinking.

In several of these experiments, we focussed on our three lpg scenarios, since these
allowed us to investigate generalisation of performance between different classes of
instances (here: planning domains).

Generalisation to other domains. After spending hours of CPU time to produce an
algorithm configuration that is highly-optimised for a specific problem instance set,
it would be ideal if a user could somehow use that configuration to find a different
configurationwith better performance than the default on a different, previously unseen
problem instance set. To investigate the potential for ablation analysis to produce such
configurations, we performed three sets of experiments, in order to investigate how
configurations “near” the lpg default (along ablation paths toward a chosenParamILS
configuration) perform on scenarios other than the one used to determine the original
ablation paths. Table7 illustrates the results of these experiments. For depots and
satellite, configurations that are a small number of ablation rounds away from the
default perform substantially better than the default configuration itself (2.5- to 6.1-
fold speedups), before the ablation path hits more specialised configurations that do
not generalise as well to new domains. We do not see the same effect in the zenotravel
domain, where the ablation path does improve in quality before getting worse, but
fails to exceed at any point the performance of the default configuration.
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Table 7 Performance analysis
of the lpg default, configurations
obtained from ParamILS, and
the first 4 flips of ablation, for all
3 lpg scenarios, on the depots,
satellite and zenotravel test sets

Configuration Test set performance (PAR10)

Depots Satellite Zenotravel

default 38.097 17.940 29.361

depots ablation flip 1 1.520 7.275 1114.835

depots ablation flip 2 1.390 7.260 908.578

depots ablation flip 3 1.261 7.279 896.241

depots ablation flip 4 1.037 7.234 894.766

depots configured 0.658 7.617 1028.118

satellite ablation flip 1 10.413 7.577 1467.274

satellite ablation flip 2 6.194 7.141 1468.614

satellite ablation flip 3 224.976 6.997 870.385

satellite ablation flip 4 223.590 6.997 867.646

satellite configured 2643.840 5.783 2478.914

zenotravel ablation flip 1 11.983 17.358 8.258

zenotravel ablation flip 2 11.790 17.381 5.912

zenotravel ablation flip 3 368.500 16.323 4.369

zenotravel ablation flip 4 1720.010 10.102 3.713

zenotravel configured 2807.531 7.952 2.092

Ablation paths between high-quality configurations. Next, we investigated whether
ablation analysis could be used to better understand the topology of the search space
between high-quality configurations for each of our five scenarios. If the configura-
tions found on ablation paths between two high-quality configurations do not differ
in performance from the source and target, we might expect the existence of a large
plateau of high-quality configurations in the search space. Conversely, if the config-
urations lying on such ablation paths have worse performance than the source and
target, we have reason to believe that the source and target may lie in different basins
of the parameter response surface.

We examined the ablation paths between two high-quality configurations for each
of our five scenarios, defined as the best and second-best configurations found by
ParamILS, evaluated on the training set. We used our racing approach, with the
maximum number of rounds again set to 200. Figure3 gives a visual summary of
these paths, while Table8 contains the test set PAR10 performance and [10, 90%]
bootstrap confidence intervals of each configuration along the ablation path for the
spear scenario. Tables containing the data for our other four scenarios can be found
in Online Resource 1.

We see that for spear, there appears to be at least one ridge of poor-quality con-
figurations that must be surmounted in order to move from the source to the target
configuration. In all of the other four scenarios, no such ridge is present, and every
configuration along the ablation paths share the quality of the source/target configu-
rations. We note that as ablation analysis is a greedy process, the occurrence of such
ridges on the ablation paths does not strictly imply the existence of barriers that must
be overcome by all paths between the source and target configurations. However, in
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(a)

(e)

(d)(c)

(b)

Fig. 3 Ablation paths determined using racingwith up to 200 rounds on the test sets of the five configuration
scenarios. Ablation was performed from the best ParamILS incumbent to the second-best incumbent on
each scenario. The horizontal lines indicate the PAR10 scores of the default (source) and automatically-
configured (target) configurations

the cases where no such ridges are present in the ablation paths, at least one path of
equal performance between the source and target configurations is guaranteed to exist.

Ablation between high-quality configurations for different domains. Next, we investi-
gated the use of ablation paths between high-performance configurations for different
domains, to see how different configurations “needed” to be before high performance
was achieved on a domain different from that for which theywere originally optimised.
(We note that this question is closely related to the problem of transfer learning.) We
performed ablation analysis experiments between the chosen ParamILS configura-
tions for two of the lpg scenarios, evaluated using the test set from one of those
scenarios. Fig. 4a, b show the ablation paths between the depots and satellite configu-
rations, evaluated on the depots and satellite test sets respectively. Similarly, Fig. 4c,
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Table 8 Parameters chosen and resulting test set performance for ablation analysis accelerated by racing
(maximum of 200 rounds) for spear on swv test set, using the best ParamILS configuration as the source
and the second-best ParamILS configuration as the target

Round Parameter Performance Test bootstrap CI
[10, 90%]

best - 1.321 [1.055, 1.617]

1 sp-res-cutoff-lits 1.899 [1.058, 2.824]

2 sp-learned-clauses-inc 11.104 [1.056, 21.274]

3 sp-max-res-lit-inc 1.734 [1.391, 2.096]

4 sp-phase-dec-heur 1.316 [1.084, 1.564]

5 sp-max-res-runs 1.310 [1.060, 1.579]

6 sp-restart-inc 1.501 [1.083, 1.971]

7 sp-variable-decay 1.404 [1.137, 1.683]

8 sp-clause-decay 1.397 [1.134, 1.667]

9 sp-rand-var-dec-freq 11.892 [1.641, 22.305]

10 sp-learned-size-factor 11.934 [1.709, 22.464]

11 sp-rand-phase-dec-freq 1.1474 [0.906, 1.412]

12 sp-use-pure-literal-rule 1.504 [1.101, 1.937]

13 sp-clause-activity-inc 1.455 [1.072, 1.867]

14 sp-clause-del-heur 1.481 [1.090, 1.913]

15 sp-update-dec-queue 1.488 [1.087, 1.920]

16 sp-learned-clause-sort-heur 11.327 [1.173, 21.641]

17 sp-res-cutoff-cls 11.390 [1.239, 21.752]

18 sp-rand-var-dec-scaling 93.552 [54.900,132.696]

19 sp-first-restart 2.256 [1.499, 3.113]

second-best - 2.256 [1.499, 3.113]

The “Test bootstrap CI” column indicates the [10, 90%] confidence interval of PAR10 performance, using
10000 bootstrap samples of our test set data for each configuration

d show the resulting paths for ablation between the depots and zenotravel configura-
tions, and Fig. 4e, f show the paths for ablation between the satellite and zenotravel
configurations. Tables containing the performance of each configuration along these
paths, for each scenario, can be found in Online Resource 1.

We also performed additional ablation experiments between the configurations
obtained from ParamILS for each pair of lpg scenarios, evaluated using the test set
of the third scenario. This set of experiments further tests the use of ablation paths to
find configurations that generalise well to previously unseen problem instance sets.
The results of these experiments are shown visually in Fig. 5, and tables detailing
the performance of each configuration along these ablation paths are given in Online
Resource 1.

For the ablation from the depots configuration to the satellite configuration, both
the source and target configurations are significantly worse than the default on the
zenotravel test set. However, there are configurations along the resulting ablation path
with better performance than the default.
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(a)

(c)

(e)

(b)

(d)

(f)

Fig. 4 Ablation paths determined using racing with up to 200 rounds on the test sets of the three lpg
scenarios. Ablation was performed from the best ParamILS incumbent on domain A to the best incumbent
on domain B on each scenario, evaluated on domain A and B. The horizontal lines indicate the PAR10
scores of the default (blue) and the domain A/B incumbents (grey) (Color figure online)

For the ablation from the depots configuration to the zenotravel configuration, both
the source and target configurations are better than the default, but we again see
improvement along the ablation path. In fact, many of the configurations along the
ablation path are better than the satellite ParamILS configuration, evaluated on the
satellite test set.

Finally, for the ablation from the satellite configuration to the zenotravel config-
uration evaluated on depots, again we see that the source and target configurations
are orders of magnitude worse than the default configuration. As with the other two
experiments, the configurations along the ablation path have better performance on
the depots test set than either the source or target configuration, although none reach
the performance of the default configuration.
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(a) (b)

(c)
Fig. 5 Ablation paths determined using racing with up to 200 rounds on the test sets of the three lpg
scenarios. Ablation was performed from the best ParamILS incumbent on domain A to the best incumbent
on domain B on each scenario, evaluated on domain C. The horizontal lines indicate the PAR10 scores of
the default (blue), the domain A/B incumbents (grey), and the performance of the ParamILS configuration
for domain C (lowest blue) (Color figure online)

7 Support for conditional parameters

As we outlined in Sect. 3, algorithm configuration spaces often contain conditional
parameters, i.e., those parameters whose value only have an effect on algorithm per-
formance if one or more parent parameters are set to specific values. If the parent
parameters have been set to the required values, we say that the conditional parame-
ter is active. In each round of the ablation analysis approach given in Algorithm1,
the set of candidate configurations A′ is constructed by only considering configura-
tions obtained by changing the value of one active parameter to its value in the target
configuration. This active parameter requirement can cause an important conditional
parameter to appear much later in the ablation path than it should, as all of its parent
parameters must be modified in earlier ablation rounds, and those parent parameters
may have minimal or no effect on algorithm performance. We observed this behaviour
in all three of our lpg scenarios, where the conditional hpar_cut_neighb parameter
was inactive until its parent vicinato parameter wasmodified, often later in the ablation
process.

In order to improve the performance of ablation analysis on such scenarios, we
extended our approach to allow the modification of more than one parameter in each
ablation round. During the construction ofA′, rather than ignoring each inactive para-
meter we include the configuration obtained by modifying the value of that parameter
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Algorithm 4: ablationWithConditionalSupport
(A, θsource, θtarget, I,m

)

Input: Parameterised algorithm A, two parameter configurations ofA, θsource and θtarget,
benchmark instance set I , performance metric m (to be minimised)

Output: An ordered list (θ0, θ1, θ2, θ3, . . . , θl ) of configurations ofA chosen during each round of
ablation. θ0 = θsource and θl = θtarget

θ ← θsource
remParameters ← set of parameters of A with different values in θsource and θtarget
ablationRoundsBest ← (θsource)

while remParameters �= ∅ do
A′ ← set of algorithms with configurations obtained from θ via flipping 1 parameter in
remParameters, along with all ancestor parameters whose modification is required to
make that parameter active, to the value in θtarget, ignoring configurations that are prohibited
in the configuration space.
θ ′ ← determineBest

(A′, I,m
)

remParameters ← set of parameters of A with different values in θ ′ and θtarget
ablationRoundsBest ← ablationRoundsBest + (

θ ′)

θ ← θ ′
end
return ablationRoundsBest

together with all of the ancestor parameters whose modification is required to make
that parameter active. Pseudocode for this modification is given in Algorithm4, and
we note that the required change from Algorithm1 only affects the construction of
A′. In particular, no modifications were necessary to either of our determineBest ()
implementations.

To evaluate this modified approach, we repeated the experiments on our three lpg
scenarios detailed in Sects. 4 and 5. The performance of the configurations along the
resulting ablation paths are illustrated in Fig. 6a, b and c, while the corresponding data
tables are contained in Online Resource 1.

For the depots and satellite scenarios, the conditional parameter hpar_cut_neighb
and its parent vicinato now appear as the second configuration on the ablation path,
rather than the last and middle positions seen in our previous experiments. For the
zenotravel scenario, this effect is even greater as vicinato and hpar_cut_neighb are
now selected as the very first parameters on the ablation path, rather than their for-
mer position close to the end, where they appeared in our earlier results. In all three
scenarios we now see that all of the performance gains appear in the first several con-
figurations along the ablation path, rather than the long plateau of performance before
a late improvement seen in Fig. 2c, d and e. This allows for a more straightforward
estimate of parameter importance, and users only interested in the first k important
parameters (or with limited CPU budgets) have the option of truncating the ablation
analysis process after k rounds.

8 Future work

This work can be extended in various directions, and we believe the primary opportu-
nity for improvement and extension is the investigation of alternatives and improve-
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(c)

(b)(a)

Fig. 6 Ablation paths determined using our extended support for conditional parameters and the racing
variant with up to 200 rounds, on the training sets of our three lpg scenarios. Each configuration on the
ablation paths was evaluated using the corresponding test set for each scenario. The horizontal lines indicate
the PAR10 scores of the default (source) and automatically-configured (target) configurations on those test
sets

ments to our racing-based ablation approach. For example, we have observed that in
later ablation rounds, F-Race quickly eliminates all candidate configurations except
for a small number of configurations with very similar performance. In these cases, the
maximum number of racing rounds are used for these remaining configurations. We
also observed a related case where the F-Race was quickly reduced to two candidate
configurations, where the p-value of the Friedman test was sufficient to proceed to
pairwise elimination, but the p-value of the subsequent t-test was insufficient to elimi-
nate the configuration with worse performance. Although this is consistent with what
is known in terms of the impact of violated normality assumptions on the power of tests
involving the t-statistic, it would be beneficial to investigate further as a solution to this
problem could substantially reduce the number of algorithm runs required. Possible
candidates would be to use a non-parametric test instead, possibly in combination with
multiple-testing correction (see Styles and Hoos (2013)).

Another avenue for further work is to make support for complex parameter inter-
dependencies more flexible, for example by extending the approach in Sect. 7 to allow
sets of parameters without conditional relationships to be modified in the same abla-
tion round, as indicated by the end-user or by automated methods during the ablation
process.

Finally, we believe that our approach and the model-based techniques discussed in
Sect. 2 are complementary and can be combined, e.g., by building functional ANOVA
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models using configurations sampled along ablation paths or from the localised region
between the two input configurations.

9 Conclusions

In this work, we have introduced a new procedure, ablation analysis, which allows
developers of highly-parameterised algorithms to ascertain which of their parame-
ters contribute most to performance differences between two algorithm configura-
tions. Using ablation analysis, it is possible to determine which modifications of a
given default configuration were truly necessary to achieve improved performance,
and which modifications can essentially be considered spurious side effects of an
automated (or manual) configuration process.

We validated our approach in an experimental study using fivewell-studied configu-
ration scenarios from SAT,MIP andAI planning, with 26–76 configurable parameters.
We showed that a variant of our approach accelerated by a racing method required
25% of the CPU time needed by the brute-force variant, while achieving qualitatively
similar results. In all of these scenarios, we found that 95–99% of the performance
improvements achieved by automated configuration of the given, highly-parametric
solver could be obtained with the modification of only 1–4 parameters, a small frac-
tion of total number of parameters for each algorithm. In two cases, we found that
modification of a single parameter could achieve 99.92 and 87.64% of the perfor-
mance gain between the default configuration and one found by ParamILS. Similar
results have been reported for the global impact of parameters previously (e.g., by
Hutter et al. (2014)), but we show that this is true locally for high-performance config-
urations, and in some cases the locally-important parameters are different from those
that are important globally. Overall, we believe that our ablation analysis approach
can be of great use to help algorithm developers and end users understand more about
which algorithm parameters (and therefore algorithm subsystems and behaviours) are
most responsible for high performance on problem instances of interest. The imple-
mentation of our approach has additional been made available for other researchers to
use, please see the project page 3 for more details.
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