
Artificial Intelligence 237 (2016) 41–58
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

ASlib: A benchmark library for algorithm selection ✩

Bernd Bischl a, Pascal Kerschke b, Lars Kotthoff d,∗, Marius Lindauer c,
Yuri Malitsky g, Alexandre Fréchette d, Holger Hoos d, Frank Hutter c,
Kevin Leyton-Brown d, Kevin Tierney e, Joaquin Vanschoren f

a LMU Munich, Germany
b University of Münster, Germany
c University of Freiburg, Germany
d University of British Columbia, Vancouver, Canada
e University of Paderborn, Germany
f Eindhoven Institute of Technology, Netherlands
g IBM Research, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 June 2015
Received in revised form 21 December 2015
Accepted 2 April 2016
Available online 8 April 2016

Keywords:
Algorithm selection
Machine learning
Empirical performance estimation

The task of algorithm selection involves choosing an algorithm from a set of algorithms
on a per-instance basis in order to exploit the varying performance of algorithms over a
set of instances. The algorithm selection problem is attracting increasing attention from
researchers and practitioners in AI. Years of fruitful applications in a number of domains
have resulted in a large amount of data, but the community lacks a standard format or
repository for this data. This situation makes it difficult to share and compare different
approaches effectively, as is done in other, more established fields. It also unnecessarily
hinders new researchers who want to work in this area. To address this problem, we
introduce a standardized format for representing algorithm selection scenarios and a
repository that contains a growing number of data sets from the literature. Our format has
been designed to be able to express a wide variety of different scenarios. To demonstrate
the breadth and power of our platform, we describe a study that builds and evaluates
algorithm selection models through a common interface. The results display the potential
of algorithm selection to achieve significant performance improvements across a broad
range of problems and algorithms.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Although NP-complete problems are widely believed to be intractable in the worst case, it is often possible to solve
even very large instances of such problems that arise in practice. This is fortunate, because such problems are ubiquitous in
Artificial Intelligence applications. There has thus emerged a large subfield of AI devoted to the advancement and analysis of
heuristic algorithms for attacking hard computational problems. Indeed, quite surprisingly, this subfield has made consistent

✩ This paper was submitted to the Competition Section of the journal.

* Corresponding author.
E-mail addresses: bernd.bischl@stat.uni-muenchen.de (B. Bischl), kerschke@uni-muenster.de (P. Kerschke), larsko@cs.ubc.ca (L. Kotthoff),

lindauer@cs.uni-freiburg.de (M. Lindauer), yuri.malitsky@gmail.com (Y. Malitsky), afrechet@cs.ubc.ca (A. Fréchette), hoos@cs.ubc.ca (H. Hoos),
fh@cs.uni-freiburg.de (F. Hutter), kevinlb@cs.ubc.ca (K. Leyton-Brown), tierney@dsor.de (K. Tierney), j.vanschoren@tue.nl (J. Vanschoren).
http://dx.doi.org/10.1016/j.artint.2016.04.003
0004-3702/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.artint.2016.04.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:bernd.bischl@stat.uni-muenchen.de
mailto:kerschke@uni-muenster.de
mailto:larsko@cs.ubc.ca
mailto:lindauer@cs.uni-freiburg.de
mailto:yuri.malitsky@gmail.com
mailto:afrechet@cs.ubc.ca
mailto:hoos@cs.ubc.ca
mailto:fh@cs.uni-freiburg.de
mailto:kevinlb@cs.ubc.ca
mailto:tierney@dsor.de
mailto:j.vanschoren@tue.nl
http://dx.doi.org/10.1016/j.artint.2016.04.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2016.04.003&domain=pdf

42 B. Bischl et al. / Artificial Intelligence 237 (2016) 41–58
and substantial progress over the past few decades, with the newest algorithms quickly solving benchmark problems that
were beyond reach until recently. The results of the international SAT competitions provide a paradigmatic example of this
phenomenon. Indeed, the importance of this competition series has gone far beyond documenting the progress achieved by
the SAT community in solving difficult and application-relevant SAT instances—it has been instrumental in driving research
itself, helping the community to coalesce around a shared set of benchmark instances and providing an impartial basis for
determining which new ideas yield the biggest performance gains.

The central premise of events like the SAT competitions is that the research community ought to build, identify and
reward single solvers that achieve strong across-the-board performance. However, this quest appears quixotic: most hard
computational problems admit multiple solution approaches, none of which dominates all alternatives across multiple
problem instances. In particular, this fact has been observed to hold across a wide variety of AI applications, including
propositional satisfiability (SAT) [120], constraint satisfaction (CSP) [79], planning [42,45], and supervised machine learn-
ing [26,104,112]. An alternative is to accept that no single algorithm will offer the best performance on all instances, and
instead aim to identify a portfolio of complementary algorithms and a strategy for choosing between them [85]. To see the
appeal of this idea, consider the results of the sequential application (SAT+UNSAT) track of the 2014 SAT Competition.1 The
best of the 35 submitted solvers, Lingeling ayv [9], solved 77% of the 300 instances. However, if we could somehow
choose the best among these 35 solvers on a per-instance basis, we would be able to solve 92% of the instances.

Research on this algorithm selection problem [85] has demonstrated the practical feasibility of using machine learning for
this task. In fact, although practical algorithm selectors occasionally choose suboptimal algorithms, their performance can get
close to that of an oracle that always makes the best choice. The area began to attract considerable attention when methods
based on algorithm selection began to outperform standalone solvers in SAT competitions [118]. Algorithm selectors have
since come to dominate the state of the art on many other problems, including CSP [79], planning [42], Max-SAT [71],
QBF [83], and ASP [31].

To date, much of the progress in research on algorithm selection has been demonstrated in algorithm competitions origi-
nally intended for non-portfolio-based (“standalone”) solvers. This has given rise to a variety of challenges for the field. First,
benchmarks selected for such competitions tend to emphasize problem instances that are currently hard for existing stan-
dalone algorithms (to drive new research on solving strategies) rather than the wide range of both easy and hard instances
that would be encountered in practice (which would be appropriately targeted by researchers developing algorithm selec-
tors). Relatedly, benchmark sets change from year to year, making it difficult to assess the progress of algorithm selectors
over time. Second, although competitions often require entrants to publish their source code, none require entries based on
algorithm selectors to publish the code used to construct the algorithm selector (e.g., via training a machine learning model)
or to adhere to a consistent input format. Third, overwhelming competition victories by algorithm selectors can make it
more difficult for new standalone solver designs to get the attention they deserve and can thus create resentment among
solver authors. Such concerns have led to a backlash against the participation of portfolio-based solvers in competitions;
for example, starting in 2013 solvers that explicitly combine more than two component algorithms have been excluded
from the SAT competitions. For similar reasons, there is a specific prize for non-portfolio solvers in the learning track of the
International Planning Competition [107].

The natural solution to these challenges is to evaluate algorithm selectors on their own terms rather than trying to shoe-
horn them into competitions intended for standalone solvers. This article, written by a large set of authors active in research
on algorithm selectors, aims to advance this goal by introducing a set of specifications and tools designed to standardize and
facilitate such evaluations. Specifically, we propose a benchmark library, called ASlib, tailored to the cross-domain evaluation
of algorithm selection techniques. In Section 3, we provide a summary of the data format specification used in ASlib that
covers a wide variety of foreseeable evaluations. To date, we have instantiated this specification with benchmarks from six
different problem domains, which we describe in Section 4. However, we intend for ASlib to grow and evolve over time.
Thus, our article is accompanied by an online repository (http :/ /aslib .net), which accepts submissions from any researcher.
Indeed, we already included scenarios that have been submitted by contributors outside the core group of ASlib maintainers.

Our system automatically checks newly submitted datasets to verify that they adhere to the specifications and then
provides an overview of the data, including the results of some straightforward algorithm selection approaches based on
regression, clustering and classification. We provide some examples of these automatically-generated overviews and bench-
mark results in Sections 5 and 6. All code used to parse the format files, explore the algorithm selection scenarios and
run benchmark machine learning models on them is publicly available in a new R package dubbed aslib.2 In Section 7, we
discuss two recent examples of competition settings using ASlib, along with their advantages and disadvantages.

Overall, our main objective in creating ASlib is the same as that of an algorithm competition: to allow researchers to
compare their algorithms systematically and fairly, without having to replicate someone else’s system or to personally collect
raw data. We hope that it will help the community to obtain an unbiased understanding of the strengths and weaknesses
of different methodologies and thus to improve the current state of the art in per-instance algorithm selection.

1 http :/ /www.satcompetition .org /2014 /results .shtml.
2 This package is currently hosted at https :/ /github .com /coseal /aslib-r. We will submit it to the official R package server CRAN alongside the final version

of this article.

http://aslib.net
http://www.satcompetition.org/2014/results.shtml
https://github.com/coseal/aslib-r

B. Bischl et al. / Artificial Intelligence 237 (2016) 41–58 43
2. Background

Rice [85] was the first to formalize the idea of selecting among different algorithms on a per-instance basis. While he
referred to the problem simply as algorithm selection, we prefer the more precise term per-instance algorithm selection, to
avoid confusion with the (simpler) task of selecting one of several given algorithms to optimize performance on a given set
or distribution of instances.

Definition 1 (Per-instance algorithm selection problem). Given

• a set I of problem instances drawn from a distribution D,
• a space of algorithms A, and
• a performance measure m : I ×A →R,

the per-instance algorithm selection problem is to find a mapping s : I → A that optimizes Ei∼Dm(i, s(i)), i.e., the expected
performance measure for instances i distributed according to D, achieved by running the selected algorithm s(i) for in-
stance i.

In practice, the mapping s is often implemented by using so-called instance features, i.e., characterizations of the in-
stances i ∈ I . These instance features are then mapped to an algorithm using machine learning techniques. However, the
computation of instance features incurs additional costs, which have to be considered in the performance measure m.

There are many ways of tackling per-instance algorithm selection and related problems. Almost all contemporary ap-
proaches use machine learning to build predictors of the behavior of given algorithms as a function of instance features.
This general strategy may involve a single learned model or a complex combination of several, which, given a new problem
instance to solve, is used to decide which algorithm or which combination of algorithms to choose.

2.1. What to select and when

It is perhaps most natural to select a single algorithm for solving a given problem instance. This approach is, e.g., used
in the SATzilla [77,118], ArgoSmArT [75], SALSA [22] and Eureka [19] systems. Its main disadvantage is that there is no
way of mitigating a poor selection—the system cannot recover if the algorithm it chose for a problem instance exhibits poor
performance.

Alternatively, we can seek a schedule that determines an ordering and time budget according to which we run all or a
subset of the algorithms in the portfolio; usually, this schedule is chosen in a way that reflects the expected performance
of the given algorithms (see, e.g., [44,45,56,79,83]). Under some of these approaches, the computation of the schedule is
treated as an optimization problem that aims to maximize, e.g., the number of problem instances solved within a timeout.
For stochastic algorithms, the further question of whether and when to restart an algorithm arises, opening the possibility
of schedules that contain only a single algorithm, restarted several times (see, e.g., [18,28,37,99]). Instead of performing
algorithm selection only once before starting to solve a problem, selection can also be carried out repeatedly while the
instance is being solved, taking into account information revealed during the algorithm run. Such methods monitor the
execution of the chosen algorithm(s) and take remedial action if performance deviates from what is expected [29,67,72], or
perform selection repeatedly for subproblems of the given instance [5,64,65,90].

2.2. How to select

The kinds of decisions the selection process is asked to produce drive the choice of machine learning models that
perform the selection. If only a single algorithm should be run, we can train a classification model that makes exactly that
prediction. This renders algorithm selection conceptually quite simple—only a single machine learning model needs to be
trained and run to determine which algorithm to choose (see, e.g., [33,39,73]).

There are alternatives to using a classification model to select a single algorithm to be run on a given instance, such
as using regression models to predict the performance of each algorithm in the portfolio. This regression approach was
adopted by several systems [74,77,87,92,118]. Other approaches include the use of clustering techniques to partition problem
instances in feature space and make decisions for each partition separately [57,97], hierarchical models that make a series
of decisions [46,116], cost-sensitive support vector machines [15] and cost-sensitive decision forests [119].

2.3. Selection enablers

In order to make their decisions, algorithm selection systems need information about the problem instance to solve
and the performance of the algorithms in the given portfolio. The extraction of this information—the features used by the
machine learning techniques used for selection—incurs overhead not required when only a single algorithm is used for all
instances regardless of instance characteristics. It is therefore desirable to extract information as cheaply as possible, thus
ensuring that the performance benefits of using algorithm selection are not outweighed by this overhead.

44 B. Bischl et al. / Artificial Intelligence 237 (2016) 41–58
Some approaches use only past performance of the algorithms in the portfolio as a basis for selecting the one(s) to be run
on a given problem instance [29,92,98]. This approach has the benefit that the required data can be collected with minimal
overhead as algorithms are executed. It can work well if the performance of the algorithms is similar on broad ranges of
problem instances. However, when this assumption is not satisfied (as is often the case), more informative features are
needed.

Turning to richer instance-specific features, commonly used features include the number of variables of a problem in-
stance and properties of the variable domains (e.g., the list of possible assignments in constraint problems, the number of
clauses in SAT, the number of goals in planning). Deeper analysis can involve properties of graph representations derived
from the input instance (such as the constraint graph [33,68]) or properties of encodings into different problems (such as
SAT features for SAT-encoded planning problems [25]).

In addition, features can be extracted from short runs of one or more solvers on the given problem instance. Examples
of such probing features include the number of search nodes explored within a certain time, the fraction of partial solutions
that are disallowed by a certain constraint or clause, the average depth reached before backtracking is required, or char-
acteristics of local minima found quickly using local search. Probing features are usually more expensive to compute than
the features that can be obtained from shallow analysis of the instance specification, but they can also be more powerful
and have thus been used by many authors (see, e.g., [54,78,79,82,118]). For continuous blackbox optimization, algorithm
selection can be performed based on Exploratory Landscape Analysis [15,60,74]. The approach defines a set of numerical
features (of different complexities and computational costs) to describe the landscapes of such optimization problems. Ex-
amples range from simple features that describe the distribution of sampled objective values to more expensive probing
features based on local search.

Finally, in the area of meta-learning (learning about the performance of machine learning algorithms; for an overview,
see, e.g, [17]), these features are known as meta-features. They include statistical and information-theoretical measures (e.g.,
variable entropy), landmarkers (measurements of the performance of fast algorithms [80]), sampling landmarkers (similar
to probing features) and model-based meta-features [111]. These meta-features, and the past performance measurements of
many machine learning algorithms, are available from the online machine learning platform OpenML [113]. In contrast to
ASlib, however, OpenML is not designed to allow cross-domain evaluation of algorithm selection techniques.

2.4. Algorithm selection and algorithm configuration

A problem closely related to algorithm selection is the algorithm configuration problem: given a parameterized algo-
rithm A, a set of problem instances I and a performance measure m, find a parameter setting of A that optimizes m
on I (see [52] for a formal definition). While algorithm selection operates on finite (usually small) sets of algorithms,
algorithm configuration operates on the combinatorial space of an algorithm’s parameter settings. General algorithm con-
figuration methods, such as ParamILS [52], GGA [4], I/F-Race [11], and SMAC [50], have yielded substantial performance
improvements (sometimes orders of magnitude speedups) of state-of-the-art algorithms for several benchmarks, including
SAT-based formal verification [47], mixed integer programming [49], AI planning [88,109], the combined selection and hy-
perparameter optimization of machine learning algorithms [104], and joint architecture and hyperparameter search in deep
learning [23]. Algorithm configuration and selection are complementary since configuration can identify algorithms with
peak performance for homogeneous benchmarks and selection can then choose from among these specialized algorithms.
Consequently, several possibilities exist for combining algorithm configuration and selection [3,27,48,57,71,89,117,119]. The
algorithm configuration counterpart of ASlib is AClib [53] (http :/ /aclib .net). In contrast to ASlib, it is infeasible in AClib to
store performance data for all possible parameter configurations, which often number more than 1050. Therefore, an exper-
iment on AClib includes new (expensive) runs of the target algorithms with different configurations and hence, experiments
on AClib are a lot more costly than experiments on ASlib, where no new algorithm runs are necessary.3 Furthermore, in con-
trast to AClib, ASlib does not include the actual instances and binaries of the algorithms. Therefore, ASlib does not provide
a way to generate new performance data, as is required in AClib as a consequence of the need to assess the performance
of new target algorithm configurations arising within the configuration process. However, ASlib and AClib can be combined
by generating actual performance data based on the resources in AClib and then creating an ASlib scenario which selects
between different solver configurations on a per-instance basis.

A full coverage of the wide literature on algorithm selection is beyond the scope of this article, but we refer the interested
reader to recent survey articles on the topic [63,91,93,108].

3. Summary of format specification

We propose a data format specification for algorithm selection scenarios, i.e., instances of the per-instance algorithm
selection problem. This format and the resulting data repository allow a fair and convenient scientific evaluation and com-
parison of algorithm selectors.

3 In algorithm configuration, this need for expensive runs indeed causes a problem for research. One way of mitigating it is offered by fast-to-evaluate
surrogate algorithm configuration benchmarks [24].

http://aclib.net

B. Bischl et al. / Artificial Intelligence 237 (2016) 41–58 45
Fig. 1. Algorithm selection workflow.

The format specification assumes a generic approach to algorithm selection, depicted in Fig. 1. The general approach is
as follows.

1. A vector of instance features f (i) ∈F of i is computed. Feature computation may occur in several stages, each of which
produces a group of (one or more) features. Furthermore, later stages may depend on the results of earlier ones. Each
feature group incurs a cost, e.g., runtime. If no features are required, the cost is 0 (this occurs, e.g., for variants of
algorithm selection that compute static schedules).

2. A machine learning technique s selects an algorithm a ∈ A based on the feature vector from Step 1.
3. The selected algorithm a is applied to i.
4. Performance measure m is evaluated, taking into account feature computation costs and the performance of the selected

algorithm.
5. Some algorithm selectors do not select a single algorithm, but compute a schedule of several algorithms: they apply a

to i for a resource budget r ∈ R (e.g., CPU time), evaluate the performance metric, evaluate a stopping criterion, and
repeat as necessary, taking observations made during the run of a into account.4

The purpose of our library is to provide all information necessary for performing algorithm selection experiments using
the given scenario data. The user does not need to actually run algorithms on instances, as all performance data is already
precomputed. This drastically reduces the time required for executing studies, i.e., the runtime of studies is now dominated
by the time required for learning s and not by applying algorithms to instances (e.g., solving SAT problems). It also means
that results are perfectly reproducible; for example, the runtimes of algorithms do not depend on the hardware used; rather,
they can be simply looked up in the performance data for a scenario.

Table 1 shows the basic structure of a scenario definition in ASlib; the complete specification with all details can be
found in an accompanying technical report [12] and on our online platform.

4. Algorithm selection scenarios provided in ASlib release 2.0

The set of algorithm selection scenarios in release version 2.0 of our library, shown in Table 2, has been assembled to
represent a diverse set of selection problem settings that covers a wide range of problem domains, types of algorithms,
features and problem instances. Our scenarios include both problems that have been broadly studied in the context of
algorithm selection techniques (such as SAT and CSP), as well as more recent ones (such as the container pre-marshalling
problem). Most of our scenarios were taken from publications that report performance improvements through algorithm
selection and consist of algorithms where the virtual best solver (VBS)5 is significantly better than the single best solver.6

Therefore, these are problems on which it makes sense to seek performance improvements via algorithm selection. All
scenarios are available on our online platform (http :/ /www.aslib .net/).

We now briefly describe the scenarios we included and what makes them interesting.

4.1. SAT: propositional satisfiability

The propositional satisfiability problem (SAT) is a classic NP-complete problem that consists of determining the existence
of an assignment of values to variables of a Boolean formula such that the formula is true. It is widely studied, with many

4 In principle, the workflow can be arbitrarily more complex, e.g., alternating between computing further features and running selected algorithms.
5 The VBS is defined as a solver that perfectly selects the best solver from A on a per-instance basis.
6 The single best solver has the best performance averaged across all instances.

http://www.aslib.net/

46 B. Bischl et al. / Artificial Intelligence 237 (2016) 41–58
Table 1
Overview of a scenario in the ASlib format.

Mandatory Data

• The meta information file is a global description file containing general information about the scenario, including the name of the scenario,
performance measures, algorithms, features and limitations of computational resources.

• The algorithm performance file contains performance measurements with possible repetitions and completion status of the algorithm runs. The
performance metric can be arbitrary, e.g., runtime, solution quality, accuracy or loss.

• The instance feature file contains the feature vectors for all instances. Another file contains technical information about errors encountered or
instances solved during feature computation.

• The cross-validation file describes how to split the instance set into training and test sets to apply a standard machine learning approach to
obtain an unbiased estimate of the performance of an algorithm selector.

• A human-readable README file explains the origin and meaning of the scenario, as well as the process of data generation.

Optional Data

• The feature costs file contains the costs of the feature groups, i.e., sets of features computed together.
• The ground truth file specifies information on the instances and their respective solutions (e.g., SAT or UNSAT).
• The literature references file in BibTeX format includes information on the context in which the data set was generated and previous studies in

which it was used.

Table 2
Overview of algorithm selection scenarios in the ASLib with the number of instances #I , number of algorithms #A, number of features #F , number of
feature processing groups #Fg and availability of feature costs.

Scenario #I #A #F #Fg Costs Literature

SAT11-HAND 296 15 115 10 � [118]
SAT11-INDU 300 18 115 10 � [118]
SAT11-RAND 600 9 115 10 � [118]
SAT12-ALL 1614 31 115 10 � [121]
SAT12-HAND 767 31 115 10 � [121]
SAT12-INDU 1167 31 115 10 � [121]
SAT12-RAND 1362 31 115 10 � [121]
SAT15-INDU 300 28 54 1 × –
QBF-2011 1368 5 46 1 × [83]
QBF-2014 1254 14 46 1 × –
MAXSAT12-PMS 876 6 37 1 � [71]
MAXSAT15-PMS-INDU 601 29 37 1 × –
CSP-2010 2024 2 17 1 × [33]
CSP-MZN-2013 4642 11 155 2 � [2]
PROTEUS-2014 4021 22 198 4 � [46]
ASP-POTASSCO 1294 11 138 5 � [43]
PREMAR-ASTAR-2015 527 4 22 3 × [105]

applications including formal verification [81], scheduling [20], planning [59] and graph coloring [110]. Our SAT data mainly
stems from different iterations of the SAT competition,7 which is split into three tracks: industrial (INDU), crafted (HAND),
and random (RAND).

The SAT scenarios are characterized by a high level of maturity and diversity in terms of their solvers, features and
instances. Each SAT scenario involves a highly diverse set of solvers, many of which have been developed for several years.
In addition, the set of SAT features is probably the best-studied feature set among our scenarios; it includes both static and
probing features that are organized into as many as ten different feature groups. The instance sets used in our various SAT
scenarios range from randomly-generated ones to real-world instances submitted by industry.

4.2. QBF: quantified Boolean formula

A quantified Boolean formula (QBF) is a formula in propositional logic with universal or existential quantifiers on each
variable in the formula. A QBF solver finds a set of variable assignments that makes the formula true or proves that no such
set can exist. This is a PSPACE-complete problem for which solvers exhibit a wide range of performance characteristics. Our
QBF-2011 data set comes from the QBF Solver Evaluation 20108 and consists of instances from the main, small hard, 2QBF
and random tracks. Our QBF-2014 data set comes from the application track of the QBF Gallery 2014.9 The instance features
were computed using the AQME system and are described in more detail by Pulina et al. [83]. The solvers for QBF-2011

7 http :/ /www.satcompetition .org/.
8 http :/ /www.qbflib .org /index _eval .php.
9 http :/ /qbf .satisfiability.org /gallery/.

http://www.satcompetition.org/
http://www.qbflib.org/index_eval.php
http://qbf.satisfiability.org/gallery/

B. Bischl et al. / Artificial Intelligence 237 (2016) 41–58 47
come from the AQME system as well, whereas the solvers for QBF-2014 are the ones submitted to the application track of
the QBF Gallery.

4.3. MAXSAT: maximum satisfiability

MaxSAT is the optimization version of the previously introduced SAT problem, and aims to find a variable assignment
that maximizes the number of satisfied clauses. The MaxSAT problem representation can be used to effectively encode
a number of real-world problems, such as FPGA routing [115], and software package installation [6], among others, as
it permits reasoning about both optimality and feasibility. The particular scenarios focus on the partial MaxSAT (PMS)
problem [10].

The MAXSAT12-PMS scenario is composed of a collection of random, crafted and industrial instances from the 2012
MaxSAT Evaluation [7]. The techniques used to solve the various instances in this scenario are very complementary to each
other, leading to a substantial performance gap between the single best and the virtual best solver. Furthermore, because
there are only six solvers with very different performance characteristics, algorithm selection approaches must be very
accurate in their choices, as any mistake is heavily penalized.

The more recent MAXSAT15-PMS-INDU was built on the performance data of the industrial track on partial MAXSAT
problems from the 2015 MAXSAT Evaluation.10 With 29 algorithms, it provides a larger set of solvers than MAXSAT12-PMS.
However, there are different parameterizations of the same solvers, e.g., four different variants of ahms, such that there are
some subsets of strongly correlated solvers. The performance gap between the single best and virtual best solver is larger
in MAXSAT12-PMS than in MAXSAT15-PMS-INDU.

4.4. CSP: constraint solving

The Constraint Satisfaction Problem (CSP; [100]) is concerned with finding solutions to constraint satisfaction problems—
a task that is NP-complete. Learning in the context of constraint solving is a technique by which previously unknown
constraints that are implied by the problem specification are uncovered during search and subsequently used to speed up
the solving process.

The scenario CSP-2010 contains only two solvers: one that employs lazy learning [33,35] and one that does not [34].
The data set is heavily biased towards the non-learning solver, such that the baseline (the single best solver) is very good
already. Improving on this is a challenging task and harder than in many of the other scenarios. Furthermore, both solvers
share a common core, which results in a scenario that directly evaluates the efficacy of a specific technique in different
contexts.

The more recent scenario CSP-MZN-2013 provides a larger set of instances, algorithms and instance features. Instances
and algorithms come from the MiniZinc challenge 2012 and the International Constraint Solver Competitions (ICSC) in 2009.
Specifically, the instances come from the MiniZinc 1.6 benchmark suite and the algorithms in the scenario participated in
the MiniZinc Challenge 2012. Algorithms, instances and instance features are described in more detail in [1,2].

Our final CSP scenario PROTEUS comes from [46] and includes an extremely diverse mix of well-known CSP solvers
alongside competition-winning SAT solvers that have to solve (converted) XCSP instances.11 The SAT solvers can accept
different conversions of the CSP problem into SAT (see, e.g., [66,101,102]), which in our format are provided as separate
algorithms. This scenario is the only one in which solvers are tested with varying “views” of the same problem. The features
of this scenario are also unique in that they include both the SAT and CSP features for a given instance. This potentially
provides additional information to the selection approach that would normally not be available for solving CSPs. An al-
gorithm selection system has a very high degree of flexibility here and may choose to perform only part of the possible
conversions, thereby reducing the set of solvers and features, but also reducing the overhead of performing the conversions
and feature computations. There are also synergies between feature computation and algorithm runs that can be exploited,
e.g., if the same conversion is used for feature computation and to run the chosen algorithm then the cost of performing
the conversion is only incurred once. In other cases, where features are computed on one representation and another one
is solved, conversion costs are incurred both during feature computation and the running of the algorithm.

4.5. ASP: answer set programming

Answer Set Programming (ASP, [8,30]) is a form of declarative programming with roots in knowledge representation,
non-monotonic reasoning and constraint solving. In contrast to many other constraint solving domains (e.g., the satisfia-
bility problem), ASP provides a rich yet simple declarative modeling language in which problems up to �p

3 (disjunctive
optimization problems) can be expressed. ASP has proven to be efficiently applicable to many real-world applications, e.g.,
product configuration [95], decision support for NASA shuttle controllers [76], synthesis of multiprocessor systems [55] and
industrial team building [38].

10 http :/ /www.maxsat .udl .cat /15 /results /index .html.
11 The XCSP instances are taken from http :/ /www.cril .univ-artois .fr /~lecoutre /benchmarks .html as described in [46].

http://www.maxsat.udl.cat/15/results/index.html
http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

48 B. Bischl et al. / Artificial Intelligence 237 (2016) 41–58
In contrast to the other scenarios, the algorithms in the scenario ASP-POTASSCO were automatically constructed by an
adapted version of Hydra [117], i.e., the set of algorithms consists of complementary configurations of the solver clasp [32].
The instance features were generated by a light-weight version of clasp, including static and probing features organized into
feature groups; they were previously used in the algorithm selector claspfolio [31,43].

4.6. PREMAR-ASTAR-2015: container pre-marshalling

The container pre-marshalling problem (CPMP) is an NP-hard container stacking problem from the container terminals
literature [96]. We constructed an algorithm selection scenario from two recent A* and IDA* approaches for solving the
CPMP presented in [106], using instances from the literature. The scenario is described in detail in [105].

The pre-marshalling scenario differs from other scenarios in that the set of algorithms is highly homogeneous. All of the
algorithms are parameterizations of a single symmetry breaking heuristic, either using the A* or IDA* search techniques,
which stands in sharp contrast to the diversity of solvers present in most other scenarios. The scenario represents a real-
world, time-sensitive problem from the operations research literature, where algorithm selection techniques can have a large
impact.

5. Automated exploratory data analysis

The online platform for our benchmark repository offers not only the scenario data files themselves. It also provides many
tables and figures that summarize them. These pages are automatically generated and currently consist (among others) of
the following parts:

• an overview table that lists, for example, the number of instances, algorithms and features for all available scenarios,
similar to Table 2;

• a summary of the algorithms’ performance and run status data;
• a summary of the feature values, as well as the run status and costs of the feature groups;
• benchmark results for standard machine learning models for each scenario; see Section 6.

Presenting this additional data offers the following advantages:

• Researchers can quickly understand which scenarios are available and select those best suited to their needs.
• Data can quickly be sanity-checked. It is common that data collection errors occur when scenario data is gathered and

submitted for the first time.
• Interesting or challenging properties of the data sets become visible, providing the researcher with a quick and infor-

mative first impression.

The platform’s summary page for the algorithms starts with a table listing summary statistics regarding their perfor-
mance (e.g., mean values and standard variations) and run status (e.g., how many runs were successful). We also indicate
whether one algorithm is dominated by another, i.e., an algorithm a1 dominates another algorithm a2 if and only if a1 has
performance at least equal to that of a2 on all instances, and a1 outperforms a2 on at least one instance. This is useful,
because there is no reason to include a dominated algorithm in a portfolio. Various visualizations, such as box plots, scatter
plot matrices, correlation plots and density plots enable further inspection of the performance distribution and correlation
between algorithms, allowing the reader to better understand the strengths and weaknesses of each algorithm. All of our
plots can be configured to use log scales, which often improves visual understanding of heavy-tailed distributions (e.g.,
runtime distributions of hard combinatorial solvers [36]).

Fig. 2 shows boxplots and cumulative distribution functions for the algorithms in the QBF-2011 scenario as an example.
The boxplots summarize the runtimes of an algorithm by drawing a box between the 25%- and 75%-quantile of the sample,
i.e., the smallest values that are greater or equal to 25% and 75% of the runtimes. In addition, each box contains a line show-
ing the median runtime, as well as so-called whiskers, i.e., lines that connect the box with runtimes that are within 150%
of the interquartile range (the length of the box) below the 25%- or above the 75%-quantile, respectively. Observations with
even more extreme runtimes are considered to be outliers and are depicted by a single point per outlier. The cumulative
distribution function plots on the other hand show runtimes on all instances for the algorithm. Each point within the plot
consists of the observed runtime on the x-axis and the corresponding cumulative density, i.e., the percentage of instances
that were solved at this or a smaller runtime, on the y-axis.

Such plots show the location of the mean, distribution spread, density multimodality and other properties of the distri-
bution. In addition, they reveal how long it took an algorithm to solve the given instances. For example, for the QBF-2011
scenario in Fig. 2, one can see that the algorithm quantor finds a solution very quickly on a few instances, i.e., it solves
approximately 5% of the instances in less than a second. However, if it does not succeed quickly, it often does not succeed
at all—it solved less than 30% of all the instances. In contrast, sSolve usually needs longer to find a solution, but by the time
it does, it is one of the best algorithms. Such behavior can indicate that the algorithm requires a ‘warm-up’ stage, which
should be considered when deploying it.

B. Bischl et al. / Artificial Intelligence 237 (2016) 41–58 49
Fig. 2. Algorithm performance distributions of the QBF-2011 scenario: Boxplots (left) and cumulative distribution functions (right); both on a log scale.

Fig. 3. Pairwise correlations among algorithms of the QBF-2011 scenario: Scatter plot matrix on a log scale (left) and correlation matrix (right). (The reader
is referred to the web version of this article for the color version of this figure.)

The left panel of Fig. 3 shows pairwise scatterplots of the QBF-2011 scenario, allowing an easy comparison of algorithm
pairs on all instances from a given scenario. Each point represents a problem instance within the scenario, and from the
location of the point cloud one can see whether an algorithm is dominant over the majority of instances, or whether
relative performance strongly varies across instances. The first case can be identified by a cloud that is located either in the
upper-left or lower-right corner of a single scatterplot. In such a case, the dominated algorithm could be discarded from
the portfolio. However, if this type of dominance relationship is not present, there is the potential to realize performance
improvements by means of per-instance algorithm selection.

Because detecting correlation in algorithm performance is also of interest when analyzing the strengths and weaknesses
of a given portfolio-based solver [120], we also present a correlation matrix, cf. Fig. 3 (right panel). Algorithms that have
a (high) positive correlation are more likely to be redundant in a portfolio, whereas pairs with a (high) negative correla-
tion are more likely to complement each other. We calculate Spearman’s correlation coefficient between ranks. Blue boxes
represent positive correlation, red boxes represent negative correlation, and shading indicates the strength of correlation.
The algorithms are also clustered according to these values (using Ward’s method [114]) and then sorted, such that similar
algorithms appear together in blocks. This type of clustering allows the identification of algorithms with highly correlated
performance.

Fig. 4 shows the correlation between algorithms for the SAT12-ALL scenario. The plot reveals four groups of algorithms
(minisatpsm to restartsat, sattimep to tnm, marchrw and the three mphaseSAT-algorithms) with high correlations within each

50 B. Bischl et al. / Artificial Intelligence 237 (2016) 41–58
Fig. 4. Algorithm correlations on the SAT12-ALL scenario. (The reader is referred to the web version of this article for the color version of this figure.)

Table 3
Feature group summary for the SAT12-RAND scenario. The second column shows how many features depend on another feature group to be computed
first. Percentages of runstatus events are followed by summary statistics for group costs.

Feature group # Runstatus [%] Cost [s]

ok . . . crash min mean max missing [%]

Pre 115 100.00 . . . 0.00 0.00 0.06 1.31 0.00
Basic 14 100.00 . . . 0.00 0.00 0.00 0.07 0.00
KLB 20 100.00 . . . 0.00 0.00 0.18 6.09 0.00
CG 10 62.63 . . . 37.37 0.02 8.79 20.28 0.00
DIAMETER 5 100.00 . . . 0.00 0.00 0.60 2.11 0.00
cl 18 100.00 . . . 0.00 0.01 1.99 2.02 0.00
sp 18 100.00 . . . 0.00 0.01 0.33 3.05 0.00
ls_saps 11 100.00 . . . 0.00 1.36 2.12 2.51 0.00
ls_gsat 11 100.00 . . . 0.00 2.03 2.29 3.03 0.00
lobjois 2 100.00 . . . 0.00 2.00 2.00 2.27 0.00

group. It may be desirable to include just a single representative from each group, reducing the size of the entire portfolio
from 31 to four algorithms.

As we do with algorithm runs, we characterize the features by giving summary statistics of the feature values, the run
status and the cost of the feature groups. Table 3 shows the summary of the feature groups for the SAT12-RAND scenario. In
this scenario, all 115 features have the feature group “Pre” as a requirement. While this preprocessing group succeeded in
all cases, one other group did not: the feature group “CG” (which computes clause graph features) failed in 37.37% of cases
due to exceeding time or memory limits, and even for instances where it succeeded, it was quite expensive (8.79 seconds
on average). Such information is useful to understand the behavior of the features: how risky is it to compute a feature
group, and how much time must one invest in order to obtain the corresponding features?

We also check whether instances occur with exactly the same feature values, indicating that the experimenter might
have erroneously run on the same instance twice.

All of the above tables and figures and many more were generated by our online platform, and are also accessible
through the R package aslib. The functions are highly configurable and customizable. We plan to extend our data analysis
with additional techniques, such as more measures of algorithm performance [94].

B. Bischl et al. / Artificial Intelligence 237 (2016) 41–58 51
Table 4
Machine learning algorithms and their parameter ranges used for our study.

Technical name Algorithm and parameter ranges Reference

Classification
ksvm support vector machine

C ∈ [2−12, 212], γ ∈ [2−12, 212]
[58]

randomForest random forest
ntree ∈ [10, 200], mtry ∈ [1, 30]

[69]

rpart recursive partitioning tree, CART [103]

Regression
lm linear regression [84]
randomForest random forest

ntree ∈ [10, 200], mtry ∈ [1, 30]
[69]

rpart recursive partitioning tree, CART [103]

Clustering
XMeans extended k-means clustering [40]

6. Study of algorithm selection techniques

In this section, we present an exploratory benchmark study that gives an indication of the diversity of our benchmarks.
First, we evaluate the performance of algorithm selectors on our scenarios. We then perform a subset selection study
to identify the important algorithms and instance features in each of the scenarios. We make no claim that the presented
experimental settings are exhaustive or that we achieve state-of-the-art algorithm selection performance; rather, we provide
results that can be used as a baseline comparison for other approaches. These results, and our framework in general, allow
us to study which algorithm selection approaches work well for which of our scenarios.

We use the LLAMA toolkit [62], version 0.9.1, in combination with the aslib package12 to run the algorithm selection
study. LLAMA is an R [84] package that facilitates many common algorithm selection approaches. In particular, it enables
access to classification, regression, and clustering models for algorithm selection—the three main approaches we use in our
study. We use the mlr R package [14] as an interface to the machine learning models provided by other R packages. We
parallelize all of our benchmark experiments through the BatchExperiments [13] R package.

In this paper, we only present aggregated benchmark results, but the interested reader can access full benchmark results
at http :/ /aslib .net. Our study is fully reproducible as the complete code to generate these results is part of the aslib package.

We use the subset of feature groups that are recommended by the authors of the respective scenario, called default
feature set. For the feature subset selection study, we have used all feature groups. Detailed and continuously updated
information (e.g., the names of the feature processing groups we selected and their average costs) is provided on the ASlib
website.

6.1. Experimental setup

We consider three approaches to algorithm selection that have been studied extensively in the literature (cf. Section 2.2):

• classification applies a multi-class classifier to directly predict the best performing algorithm of the k possible algo-
rithms;

• regression predicts each algorithm’s performance via a regression model and then chooses the one with the best pre-
dicted performance;

• clustering groups problem instances in feature space, then determines the cost-optimal solver for each cluster and finally
assigns to each new instance the solver associated with the instance’s predicted cluster.

The specific machine learning algorithms we employed for our study are shown in Table 4. They include representatives
of each of the three major approaches above.

The linear model we employ is the best-studied regression method. In its most basic version, it models the data using
the linear function f (x) = βT x +β0; parameters are obtained by minimizing squared loss. The trees constructed by the CART
algorithm, which can handle both classification and regression problem, are grown in a top-down manner and divide the
training data into rectangular regions by axis-parallel splits at each interior node. Splits are selected by considering label
impurity reduction measured by an impurity function, based, e.g., on the Gini index for classification or squared loss for
regression. Leaf nodes associate the best, but constant, label with their feature region for prediction. Random forests form
an ensemble of ntree simpler trees by bootstrapping multiple data sets from the original one and then fitting a tree for
each. Predictions are made through majority voting for classification and averaging for regression. Furthermore, ensemble

12 https :/ /github .com /coseal /aslib-r.

http://aslib.net
https://github.com/coseal/aslib-r

52 B. Bischl et al. / Artificial Intelligence 237 (2016) 41–58
members are decorrelated by randomly selecting only a few candidate features for each split point (controlled by parameter
mtry) in a tree and maximally growing trees without any early stopping or pruning. Support Vector Machines perform
linear classification in a transformed feature space by maximizing the margin between the positive and negative examples.
Parameter C controls the trade-off between the size of the margin and classification loss. The feature mapping is implicitly
built into the algorithm by substituting the regular inner product of the Euclidean space with a so-called kernel. Parameter
γ is a property of the radial basis function kernel used here. The XMeans clustering algorithm is the only unsupervised
learning algorithm we study. It is an extension of the well known k-means method to adaptively select the number of
clusters. k-means starts with k random cluster centroids, assigns each point to the nearest centroid, and then iteratively
recomputes the cluster centroids and cluster assignments until convergence. For further details on all methods the reader is
referred to the standard literature [41] and for XMeans to [21].

We tuned the hyperparameters of ksvm and randomForest (classification and regression) within the listed parameter
ranges, using random search with 250 iterations and a nested cross validation (with three internal folds) to ensure unbiased
performance results. All other parameters were left at their default values. For the clustering algorithm, we set the (maxi-
mum) number of clusters to 30 after some preliminary experiments; the exact number of clusters is determined internally
by XMeans.

6.2. Data preprocessing

We removed constant-valued (and therefore irrelevant) features and imputed missing feature values as the mean over
all non-missing values of the feature.13 For the clustering methods, we normalized the range of each feature to the interval
[−1, 1]. The scenarios we consider in this article contain only continuous features. The other machine learning methods that
require normalized data perform this internally (for example the SVMs). Missing performance values were imputed using
the timeout value of the scenario.

For each problem instance, we calculated the total feature computation cost as the sum of the costs of all feature groups,
in the order specified in the definition of the scenario. If the problem instance was solved during feature computation (e.g.,
using SLS-probing features [118]), we only considered the cost of the feature groups up to the one that solved it. Further-
more, we set the runtime for all algorithms to zero for instances solved during feature computation. If the instance was
not solved during feature computation, we added the feature costs computed in this way to the runtimes of the individual
algorithms on the respective instances (c(f i) + t(i, a)). Given these new runtimes, we checked whether the specified timeout
was now exceeded and set the run status of any corresponding algorithm accordingly. Preprocessing runtimes to include
feature computation time in this way allows us to focus on an algorithm selection system’s overall performance, and avoids
overstating the fraction of instances that would be solved within a time budget in cases where features are expensive to
compute.

Each scenario specifies a partition into 10 folds for cross-validation to ensure consistent evaluation across different
methods. We used this partition in our study.

6.3. Evaluation

We evaluated different algorithm selection models using three different measures:

• the fraction of all instances solved within the timeout;
• the penalized average runtime with a penalty factor of 10, i.e., a timeout counts as 10 times the timeout;
• the average misclassification penalty, which, for a given instance, is the difference between the performance of the

selected algorithm and the performance of the best algorithm.

The performance of each algorithm selection model was compared to the virtual best solver (VBS) and the single best
solver. The virtual best solver selects the best solver from A for each instance (∀i ∈ I : arg maxa∈A m(i, a)). Note that the
misclassification penalty for VBS is zero by definition. The single best solver is the actual solver that has the overall best
performance on the data set (arg maxa∈A

∑
i∈I m(i, a)). Specifically, we consider the solver with the best PAR10 score over

all problem instances in a scenario.

6.4. Results

Fig. 5 presents a summary of the results of our study. In most cases, the algorithm selection approaches performed better
than the single best solver. We expected this, as most of our data sets come from publications that advocate algorithm
selection systems.

Nevertheless, there were significant differences between the scenarios. While almost all algorithm selection approaches
outperformed the single best algorithm, there are some scenarios that seem to be much harder for algorithm selection. In
particular, on the SAT12-INDU scenario, three approaches were not able to achieve a performance improvement.

13 For the CSP-MZN-2013 scenario, we also removed the gc_circuit feature, which is almost constant.

B. Bischl et al. / Artificial Intelligence 237 (2016) 41–58 53
Fig. 5. Summary of the results of our study. We show how much of the gap between the single best and the virtual best solver in terms of PAR10 score was
closed by each model. That is, a value of 0 corresponds to the single best solver and a value of 1 to the virtual best. Negative values indicate performance
worse than the single best solver. Within each data set, the best model is annotated with an asterisk. The shading emphasizes that comparison: green cells
correspond to values close to 1 (i.e., close to the virtual best solver), whereas red shows the models with bad performance. White shading indicates values
close to 0, i.e. the model has the same performance as the single best algorithm. The arithmetic mean for each model type across all scenarios is given
in parentheses after the model name. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Random regression forests stood out quite clearly as the best overall approach, achieving the best performance on 13
of the 17 datasets. This is in line with recent results showing the strong performance of this model for algorithm runtime
prediction [54]. The results are also consistent with those of the original papers introducing the datasets.

XMeans performed worst on average. On some scenarios, it performed well, in particular SAT11-RAND, MAXSAT12-PMS,
and PROTEUS-2014. However, on SAT12-ALL, SAT12-INDU, and SAT15-INDU XMeans performed worse than the single best
solver. The default subset of instance features appears to be unfavorable for XMeans on industrial SAT instances.

6.5. Algorithm and feature subset selection

To provide further insight into our algorithm selection scenarios, we applied forward selection [61] to the algorithms
and features to determine whether smaller subsets still achieve comparable performance. We performed forward search
independently for algorithms and features for each scenario. Forward selection is an iterative selection algorithm whose
the first iteration starts with an empty set of algorithms and features; in each subsequent iteration, it greedily adds the
algorithm or feature to the set which most improves the cross-validated score (PAR10) of the predictor. The selection process
terminates when the score does not improve by at least ε. We set ε = 1, which roughly corresponds to an improvement of
1 second per instance. In all other aspects, the experimental setup was the same as described before.

We used random regression forests,14 as it was the best overall approach so far. We note that the selection results use
standard cross validation rather than the nested version, which may result in overconfident performance estimates for the
selected subsets [16]. We accept this caveat since our goal here is to study the ranking of the features and the size of the
selected sets, and a more complex, nested approach would have resulted in multiple selected sets.

Tables 5 and 6 present the results of forward selection for algorithms and features on all scenarios. Usually, the number
of selected features is very small compared to the complete feature set. This is consistent with the observations of Roberts
and Howe [86] and Hutter et al. [51] who found in their experiments that only a few instance features are necessary
to reliably predict the runtime of their algorithms. For example, on SAT12-RAND, the only three features selected were a
balance feature concerning the ratio of positive and negative occurrences of each variable in each clause and two features
based on survey propagation.

14 We used random forests with default parameters, as the tuning was done for the set of features specified by the scenario authors and the full set of
solvers.

54 B. Bischl et al. / Artificial Intelligence 237 (2016) 41–58
Table 5
PAR10 scores for the set of all algorithms and the reduced set, along with the number of all algorithms and the size of the reduced
portfolio.

Scenario PAR10 full set Number PAR10 reduced set

SAT11-HAND 16943.49 15 → 8 15919.09
SAT11-INDU 13246.70 18 → 4 12127.05
SAT11-RAND 10253.09 9 → 4 10180.39
SAT12-ALL 971.45 31 → 11 979.17
SAT12-HAND 4303.81 31 → 10 4187.13
SAT12-INDU 2763.37 31 → 7 2775.61
SAT12-RAND 3241.42 31 → 2 3153.48
SAT15-INDU 3845.52 28 → 6 3604.57
QBF-2011 9232.49 5 → 4 9198.01
QBF-2014 2090.02 14 → 8 2040.33
MAXSAT12-PMS 3370.22 6 → 3 3299.15
MAXSAT15-PMS-INDU 1752.57 29 → 7 1479.31
CSP-2010 6541.20 2 → 2 6516.57
CSP-MZN-2013 4204.58 11 → 9 4168.35
PROTEUS-2014 5905.71 22 → 8 5725.50
ASP-POTASSCO 525.55 11 → 5 509.61
PREMAR-ASTAR-2015 5154.40 4 → 3 4954.45

Table 6
PAR10 scores for the set of all features, the default feature set and the reduced set, along with the number of all features and the size of the reduced
feature set.

Scenario Full set Default set Number Reduced set

SAT11-HAND 17249.59 16943.49 113 → 6 15743.04
SAT11-INDU 13111.61 13246.70 112 → 4 10951.00
SAT11-RAND 10496.39 10253.09 112 → 3 9854.11
SAT12-ALL 994.25 971.45 113 → 9 815.37
SAT12-HAND 4298.00 4303.81 113 → 6 4092.58
SAT12-INDU 2881.97 2763.37 113 → 6 2506.25
SAT12-RAND 3196.28 3241.42 113 → 3 3088.72
SAT15-INDU 3970.56 3845.52 51 → 3 3620.06
QBF-2011 9229.99 9232.49 46 → 5 8995.62
QBF-2014 2102.79 2090.02 46 → 4 2032.50
MAXSAT12-PMS 3321.22 3370.22 30 → 4 3296.52
MAXSAT15-PMS-INDU 1696.69 1752.57 29 → 5 1520.77
CSP-2010 6514.37 6541.20 69 → 3 6415.23
CSP-MZN-2013 4192.82 4204.58 115 → 5 4119.36
PROTEUS-2014 6120.13 5905.71 193 → 6 5700.05
ASP-POTASSCO 516.47 525.55 134 → 4 472.84
PREMAR-ASTAR-2015 5289.96 5154.40 22 → 3 4619.49

The number of algorithms after forward selection is also substantially reduced on most scenarios. On the SAT scenarios,
we expected to see this because the scenarios consider a huge set of SAT solvers that were not pre-selected in any way.
Xu et al. [120] showed that many SAT solvers are strongly correlated and make only very small contributions to the VBS,
a finding that is corroborated by our results (see Fig. 4 in Section 5). For example, on the SAT12-RAND scenario, only two
solvers were selected: sparrow and eagleup. We did not expect the set of algorithms to be reduced on the ASP-POTASSCO
scenario, as the portfolio was automatically constructed using algorithm configuration to obtain a set of complementary
parameter settings that are particularly amenable to portfolios; nevertheless only 5 of 11 configurations were chosen by the
forward selection.

Our results indicate that in real-world settings, selecting the most predictive features and the solvers that make the
highest contributions can be important. More detailed and continuously updated results can be found on the ASlib website.

7. Competitions on ASlib

As described before and illustrated in Section 6, we designed ASlib to enable easy and fair comparison of different
algorithm selection approaches. The next step to get unbiased performance comparisons of algorithm selectors is to organize
competitions based on ASlib. In this section, we will briefly describe two exemplary competition settings based on ASlib.

On-going evaluation on ASlib. In the on-going evaluation on ASlib,15 every participant can simply submit his/her performance
for each scenario (using the provided cross validation splits) and the source code of their algorithm selector. The latter will

15 The most recent results of the on-going evaluation can be found on the ASlib homepage aslib.net.

http://aslib.net

B. Bischl et al. / Artificial Intelligence 237 (2016) 41–58 55
only be used to verify the results in case of doubt. The results (i.e., (penalized) average performance on each scenario) will
be added in an overview table and the system will be linked.

In this setting, every system that can read the ASlib format can easily participate and no deadlines for submission are
required. Therefore, the newest systems and results can always be added on-the-fly such that the on-going evaluation always
reflects the most recent known state-of-the-art systems and their performances. Disadvantages of this setting are:

1. the different participants use different amounts of computational resources to compute the results—for example, two
well-performing systems in the on-going evaluation are SATzilla [118] and AutoFolio [70] but it is also well-known that
these two systems use a lot more computation resources (several CPU days) than other systems;

2. since the test and training data are published, the system will tend to overfit the scenarios if we will not regularly
provide new scenarios to reveal such overfitting.

ICON challenge on algorithm selection. The ICON Challenge on Algorithm Selection16 provided a comparative evaluation of
state-of-the-art algorithm selection systems. The winner of the challenge was the zilla system [121]. In this competition,
the algorithm selectors needed to be submitted before a fixed deadline and each system was executed on the organizers’
hardware with some limitations (e.g., at most 12 CPU hours for training on one scenario). Although the used scenarios were
also already published before (i.e., ASlib version 1.0.1), the organizers did not reveal the training-test splits to avoid overly
strong overfitting on these scenarios. Furthermore, the ICON challenge assessed the performance of the algorithm selectors
based on 3 different performance metrics (i.e., average number of solved instances, PAR10, and misclassification penalty
(MCP)) which revealed some strengths and weaknesses of algorithm selectors, e.g., systems that used an algorithm schedule
had better performance on solved instances and PAR10, but wasted some time with respect to MCP.

8. Summary

We have introduced ASlib, a benchmark library for algorithm selection, a rapidly growing field of research with substan-
tial impact on various sub-communities in artificial intelligence. ASlib facilitates research on algorithm selection methods
by providing a common set of benchmarks and tools for working with these. Similar to solver competitions, it enables
principled comparative empirical performance assessment. It also considerably lowers the otherwise rather high barrier
for researchers to work on algorithm selection, since anyone using the benchmark scenarios we provide does not have
to perform actual runs of the solvers contained in them. Since our library provides performance data for the solvers and
problem instances included in each selection scenario, using ASlib also substantially reduces the computational burden of
performance assessments. Otherwise, these data would have to be produced, at considerable computational cost, by anyone
working with that scenario. We carefully selected the set of scenarios included in release version 2.0 of ASlib to challenge
algorithm selection methods in various ways and thus provide a solid basis for developing and assessing such methods.

Release version 2.0 of the library contains 17 algorithm selection scenarios from six different areas with a focus on
(but not a limitation to) constraint satisfaction problems. We discussed the format of new algorithm selection scenarios
and showed examples of the automated exploratory data analysis that will run for each new scenario submitted to our
online platform http :/ /aslib .net/. Finally, exploratory studies with various algorithm selection approaches demonstrated the
performance that algorithm selection systems can achieve on our scenarios.

Acknowledgements

We thank the creators of the algorithms and instance distributions used in our various algorithm selection scenarios.
The performance of algorithm selection systems depends critically upon the ingenuity and tireless efforts of domain experts
who continue to invent novel solver strategies.

FH and ML are supported by the DFG (German Research Foundation) under Emmy Noether grant HU 1900/2-1. KLB, AF
and LK were supported by an NSERC E.W.R. Steacie Fellowship; in addition, all of these, along with HH, were supported
under the NSERC Discovery Grant Program. Part of this research was supported by a Microsoft Azure for Research grant.

References

[1] R. Amadini, M. Gabbrielli, J. Mauro, An enhanced features extractor for a portfolio of constraint solvers, in: Symposium on Applied Computing, SAC
2014, Gyeongju, Republic of Korea – March 24–28, 2014, pp. 1357–1359.

[2] R. Amadini, M. Gabbrielli, J. Mauro, SUNNY: a lazy portfolio approach for constraint solving, Theory Pract. Log. Program. 14 (2014) 509–524.
[3] C. Ansótegui, Y. Malitsky, M. Sellmann, MaxSAT by improved instance-specific algorithm configuration, in: Proceedings of the Twenty-Eighth National

Conference on Artificial Intelligence, 2014, pp. 2594–2600.
[4] C. Ansótegui, M. Sellmann, K. Tierney, A gender-based genetic algorithm for the automatic configuration of algorithms, in: Proceedings of the Fifteenth

International Conference on Principles and Practice of Constraint Programming (CP’09), 2009, pp. 142–157.
[5] A. Arbelaez, Y. Hamadi, M. Sebag, Continuous search in constraint programming, in: Proceedings of the Twenty-Second IEEE International Conference

on Tools with Artificial Intelligence, 2010, pp. 53–60.

16 http :/ /challenge .icon-fet .eu/.

http://aslib.net/
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib416D6164696E69474D313461s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib416D6164696E69474D313461s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib416D6164696E69474D3134s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib495341432B2Bs1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib495341432B2Bs1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib616E736F746567756967656E6465722D626173656432303039s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib616E736F746567756967656E6465722D626173656432303039s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib617262656C61657A636F6E74696E756F757332303130s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib617262656C61657A636F6E74696E756F757332303130s1
http://challenge.icon-fet.eu/

56 B. Bischl et al. / Artificial Intelligence 237 (2016) 41–58
[6] J. Argelich, D.L. Berre, I. Lynce, J. Marques-Silva, P. Rapicault, Solving Linux upgradeability problems using Boolean optimization, in: Proceedings of the
International Workshop on Logics for Component Configuration, 2010, pp. 11–22.

[7] J. Argelich, C. Li, F. Manyà, J. Planes, Seventh MaxSAT evaluation, http://www.maxsat.udl.cat/12/, 2012.
[8] C. Baral, Knowledge Representation, Reasoning and Declarative Problem Solving, Cambridge University Press, 2003.
[9] A. Biere, Yet another local search solver and Lingeling and friends entering the SAT competition 2014, in: Proceedings of SAT Competition 2014:

Solver and Benchmark Descriptions, 2014, pp. 39–40.
[10] A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, IOS Press,

2009.
[11] M. Birattari, Z. Yuan, P. Balaprakash, T. Stützle, F-race and iterated F-race: an overview, in: Empirical Methods for the Analysis of Optimization

Algorithms, Springer, 2010.
[12] B. Bischl, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Fréchette, H. Hoos, F. Hutter, P. Kerschke, K. Leyton-Brown, J. Vanschoren, Algorithm selection format

specification, Technical report, available at: http://www.aslib.net/, 2014.
[13] B. Bischl, M. Lang, O. Mersmann, J. Rahnenführer, C. Weihs, BatchJobs and BatchExperiments: abstraction mechanisms for using R in batch environ-

ments, J. Stat. Softw. 64 (2015) 1–25.
[14] B. Bischl, M. Lang, J. Richter, J. Bossek, L. Judt, T. Kuehn, E. Studerus, L. Kotthoff, Z. Jones, mlr: machine learning in R, R package version 2.7,

https://github.com/mlr-org/mlr, 2015.
[15] B. Bischl, O. Mersmann, H. Trautmann, M. Preuss, Algorithm selection based on exploratory landscape analysis and cost-sensitive learning, in: Pro-

ceedings of the Fourteenth Annual Conference on Genetic and Evolutionary Computation, 2012, pp. 313–320.
[16] B. Bischl, O. Mersmann, H. Trautmann, C. Weihs, Resampling methods for meta-model validation with recommendations for evolutionary computation,

Evol. Comput. 20 (2012) 249–275.
[17] P. Brazdil, C. Giraud-Carrier, C. Soares, R. Vilalta, Metalearning: Applications to Data Mining, 1st ed., Springer, 2008.
[18] V.A. Cicirello, S.F. Smith, The max k-armed bandit: a new model of exploration applied to search heuristic selection, in: Proceedings of the Twentieth

National Conference on Artificial Intelligence, AAAI Press, 2005, pp. 1355–1361.
[19] D.J. Cook, R.C. Varnell, Maximizing the benefits of parallel search using machine learning, in: Proceedings of the Fourteenth National Conference on

Artificial Intelligence, AAAI Press, 1997, pp. 559–564.
[20] J.M. Crawford, A.B. Baker, Experimental results on the application of satisfiability algorithms to scheduling problems, in: Proceedings of the Twelfth

National Conference on Artificial Intelligence, 1994, pp. 1092–1097.
[21] A.M. Dan Pelleg, X-means: extending k-means with efficient estimation of the number of clusters, in: Proceedings of the Seventeenth International

Conference on Machine Learning, Morgan Kaufmann, San Francisco, 2000, pp. 727–734.
[22] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, R.C. Whaley, K. Yelick, Self-adapting linear algebra algorithms and software, Proc.

IEEE 93 (2005) 293–312.
[23] T. Domhan, J.T. Springenberg, F. Hutter, Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning

curves, in: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI), 2015.
[24] K. Eggensperger, F. Hutter, H.H. Hoos, K. Leyton-Brown, Efficient benchmarking of hyperparameter optimizers via surrogates, in: Proceedings of the

Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.
[25] C. Fawcett, M. Vallati, F. Hutter, J. Hoffmann, H. Hoos, K. Leyton-Brown, Improved features for runtime prediction of domain-independent planners,

in: Proceedings of the International Conference on Automated Planning and Scheduling, 2014.
[26] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, F. Hutter, Efficient and robust automated machine learning, in: Advances in Neural

Information Processing Systems, vol. 28, 2015, pp. 2944–2952.
[27] M. Feurer, J.T. Springenberg, F. Hutter, Initializing Bayesian hyperparameter optimization via meta-learning, in: B. Bonet, S. Koenig (Eds.), Proceedings

of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25–30, 2015, Austin, Texas, USA, AAAI Press, 2015, pp. 1128–1135.
[28] M. Gagliolo, J. Schmidhuber, Learning restart strategies, in: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence

(IJCAI), 2007, pp. 792–797.
[29] M. Gagliolo, V. Zhumatiy, J. Schmidhuber, Adaptive online time allocation to search algorithms, in: Proceedings of European Conference on Machine

Learning, Springer, 2004, pp. 134–143.
[30] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Answer Set Solving in Practice, Synthesis Lectures on Artificial Intelligence and Machine Learning,

Morgan and Claypool Publishers, 2012.
[31] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M.T. Schneider, S. Ziller, A portfolio solver for answer set programming: preliminary report, in:

Eleventh International Conference on Logic Programming and Nonmonotonic Reasoning, Springer, 2011, pp. 352–357.
[32] M. Gebser, B. Kaufmann, T. Schaub, Multi-threaded ASP solving with clasp, Theory Pract. Log. Program. 12 (2012) 525–545.
[33] I. Gent, C. Jefferson, L. Kotthoff, I. Miguel, N. Moore, P. Nightingale, K. Petrie, Learning when to use lazy learning in constraint solving, in: Proceedings

of the Nineteenth European Conference on Artificial Intelligence, IOS Press, 2010, pp. 873–878.
[34] I.P. Gent, C.A. Jefferson, I. Miguel, MINION: a fast, scalable, constraint solver, in: Proceedings of the European Conference on Artificial Intelligence,

2006, pp. 98–102.
[35] I.P. Gent, I. Miguel, N.C.A. Moore, Lazy explanations for constraint propagators, in: Proceedings of the Twelfth International Symposium on Practical

Aspects of Declarative Languages, 2010, pp. 217–233.
[36] C. Gomes, B. Selman, N. Crato, H. Kautz, Heavy-tailed phenomena in satisfiability and constraint satisfaction problems, J. Autom. Reason. 24 (2000)

67–100.
[37] C.P. Gomes, B. Selman, Algorithm portfolios, Artif. Intell. 126 (2001) 43–62.
[38] G. Grasso, S. Iiritano, N. Leone, V. Lio, F. Ricca, F. Scalise, An ASP-based system for team-building in the Gioia–Tauro seaport, in: Proceedings of the

Twelfth International Symposium on Practical Aspects of Declarative Languages, 2010, pp. 40–42.
[39] A. Guerri, M. Milano, Learning techniques for automatic algorithm portfolio selection, in: Proceedings of the Sixteenth European Conference on

Artificial Intelligence, IOS Press, 2004, pp. 475–479.
[40] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The WEKA data mining software: an update, ACM SIGKDD Explor. Newsl. 11

(2009) 10–18.
[41] T.J. Hastie, R.J. Tibshirani, J.H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics,

Springer, New York, 2009.
[42] M. Helmert, G. Röger, E. Karpas, Fast downward stone soup: a baseline for building planner portfolios, in: Proceedings of the Workshop on Planning

and Learning at the Twenty-First International Conference on Automated Planning and Scheduling, 2011, pp. 28–35.
[43] H. Hoos, M. Lindauer, T. Schaub, Claspfolio 2: advances in algorithm selection for answer set programming, Theory Pract. Log. Program. (2014)

569–585.
[44] H.H. Hoos, R. Kaminski, M. Lindauer, T. Schaub, aspeed: solver scheduling via answer set programming, Theory Pract. Log. Program. (2014) 1–26.
[45] A.E. Howe, E. Dahlman, C. Hansen, M. Scheetz, A. von Mayrhauser, Exploiting competitive planner performance, in: Proceedings of the Fifth European

Conference on Planning, Springer, 1999, pp. 62–72.

http://refhub.elsevier.com/S0004-3702(16)30038-8/bib417242654C794D6152613130s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib417242654C794D6152613130s1
http://www.maxsat.udl.cat/12/
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib626172616C303261s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6C696E67656C696E67s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6C696E67656C696E67s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib53415448616E64626F6F6Bs1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib53415448616E64626F6F6Bs1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4269724574416C3130s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4269724574416C3130s1
http://www.aslib.net/
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib42697363686C3230313531s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib42697363686C3230313531s1
https://github.com/mlr-org/mlr
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib42697363686C3230313232s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib42697363686C3230313232s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib42697363686C3230313233s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib42697363686C3230313233s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4272617A64696C6D6574616C6561726E696E6732303038s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6369636972656C6C6F6D617832303035s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6369636972656C6C6F6D617832303035s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib636F6F6B6D6178696D697A696E6731393937s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib636F6F6B6D6178696D697A696E6731393937s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib63726177666F7264313939346578706572696D656E74s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib63726177666F7264313939346578706572696D656E74s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib50656C6C656732303030s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib50656C6C656732303030s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib64656D6D656C73656C662D6164617074696E6732303035s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib64656D6D656C73656C662D6164617074696E6732303035s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib646F6D68616E2D696A636169313561s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib646F6D68616E2D696A636169313561s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib456767656E7370657267657232303135s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib456767656E7370657267657232303135s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6661776365747432303134696D70726F766564s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6661776365747432303134696D70726F766564s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6665757265722D6E697073313561s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6665757265722D6E697073313561s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6665757265722D61616169313561s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6665757265722D61616169313561s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6761676C696F6C6F6C6561726E696E67726573746172747374726174656769657332303037s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6761676C696F6C6F6C6561726E696E67726573746172747374726174656769657332303037s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6761676C696F6C6F616461707469766532303034s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6761676C696F6C6F616461707469766532303034s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib67656B616B617363313261s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib67656B616B617363313261s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib676562736572706F7274666F6C696F32303131s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib676562736572706F7274666F6C696F32303131s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib67656B617363313262s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib67656E746C6561726E696E6732303130s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib67656E746C6561726E696E6732303130s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib67656E746D696E696F6E32303036s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib67656E746D696E696F6E32303036s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib67656E746C617A7932303130s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib67656E746C617A7932303130s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib476F6D657353434B3030s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib476F6D657353434B3030s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib676F6D6573616C676F726974686D32303031s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib677269696C656C6972697363313061s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib677269696C656C6972697363313061s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6775657272696C6561726E696E6732303034s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6775657272696C6561726E696E6732303034s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib68616C6C77656B6132303039s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib68616C6C77656B6132303039s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib48617374696532303039s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib48617374696532303039s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib68656C6D6572746661737432303131s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib68656C6D6572746661737432303131s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib686F6C697363313461s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib686F6C697363313461s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib686F6F7361737065656432303134s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib686F77656578706C6F6974696E6731393939s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib686F77656578706C6F6974696E6731393939s1

B. Bischl et al. / Artificial Intelligence 237 (2016) 41–58 57
[46] B. Hurley, L. Kotthoff, Y. Malitsky, B. O’Sullivan, Proteus: a hierarchical portfolio of solvers and transformations, in: Proceedings of the Eleventh Inter-
national Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 2014, pp. 301–317.

[47] F. Hutter, D. Babić, H.H. Hoos, A.J. Hu, Boosting verification by automatic tuning of decision procedures, in: Formal Methods in Computer Aided
Design, IEEE Computer Society, 2007, pp. 27–34.

[48] F. Hutter, Y. Hamadi, H.H. Hoos, K. Leyton-Brown, Performance prediction and automated tuning of randomized and parametric algorithms, in: Pro-
ceedings of the Twelfth International Conference on Principles and Practice of Constraint Programming, 2006, pp. 213–228.

[49] F. Hutter, H.H. Hoos, K. Leyton-Brown, Automated configuration of mixed integer programming solvers, in: Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, 2010, pp. 186–202.

[50] F. Hutter, H.H. Hoos, K. Leyton-Brown, Sequential model-based optimization for general algorithm configuration, in: Proceedings of the International
Conference on Learning and Intelligent Optimization, 2011, pp. 507–523.

[51] F. Hutter, H.H. Hoos, K. Leyton-Brown, Identifying key algorithm parameters and instance features using forward selection, in: LION 7, 2013.
[52] F. Hutter, H.H. Hoos, K. Leyton-Brown, T. Stützle, ParamILS: an automatic algorithm configuration framework, J. Artif. Intell. Res. 36 (2009) 267–306.
[53] F. Hutter, M. López-Ibáñez, C. Fawcett, M. Lindauer, H. Hoos, K. Leyton-Brown, T. Stützle, Aclib: a benchmark library for algorithm configuration, in:

Proceedings of the International Conference on Learning and Intelligent Optimization, 2014, pp. 36–40.
[54] F. Hutter, L. Xu, H.H. Hoos, K. Leyton-Brown, Algorithm runtime prediction: methods & evaluation, Artif. Intell. 206 (2014) 79–111.
[55] H. Ishebabi, P. Mahr, C. Bobda, M. Gebser, T. Schaub, Answer set vs. integer linear programming for automatic synthesis of multiprocessor systems

from real-time parallel programs, Int. J. Reconfigurable Comput. (2009).
[56] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann, Algorithm selection and scheduling, in: Proceedings of the International Confer-

ence on Principles and Practice of Constraint Programming, in: Lecture Notes in Computer Science, vol. 6876, Springer, 2011, pp. 454–469.
[57] S. Kadioglu, Y. Malitsky, M. Sellmann, K. Tierney, ISAC – instance-specific algorithm configuration, in: Proceedings of Nineteenth European Conference

on Artificial Intelligence, IOS Press, 2010, pp. 751–756.
[58] A. Karatzoglou, A. Smola, K. Hornik, A. Zeileis, kernlab – an S4 package for kernel methods in R, J. Stat. Softw. 11 (2004) 1–20.
[59] H. Kautz, B. Selman, Unifying SAT-based and graph-based planning, in: Proceedings of the Sixteenth International Joint Conference on Artificial

Intelligence, Morgan Kaufmann, 1999, pp. 318–325.
[60] P. Kerschke, M. Preuss, C. Hernández, O. Schütze, J.Q. Sun, C. Grimme, G. Rudolph, B. Bischl, H. Trautmann, Cell mapping techniques for exploratory

landscape analysis, in: Proceedings of the EVOLVE 2014: A Bridge Between Probability, Set Oriented Numerics, and Evolutionary Computation,
Springer, 2014, pp. 115–131.

[61] R. Kohavi, G.H. John, Wrappers for feature subset selection, Artif. Intell. 97 (1997) 273–324.
[62] L. Kotthoff, LLAMA: leveraging learning to automatically manage algorithms, Technical report, 2013, arXiv:1306.1031.
[63] L. Kotthoff, Algorithm selection for combinatorial search problems: a survey, AI Mag. 35 (2014) 48–60.
[64] M. Lagoudakis, M. Littman, Algorithm selection using reinforcement learning, in: Proceedings of the Seventeenth International Conference on Machine

Learning, 2000, pp. 511–518.
[65] M. Lagoudakis, M. Littman, Learning to select branching rules in the DPLL procedure for satisfiability, in: Proceedings of the International Conference

on Satisfiability, 2001, pp. 344–359.
[66] D. Le Berre, I. Lynce, CSP2SAT4J: a simple CSP to SAT translator, in: Proceedings of the Second International CSP Solver Competition, 2008, pp. 43–54.
[67] R. Leite, P. Brazdil, J. Vanschoren, Selecting classification algorithms with active testing, in: Machine Learning and Data Mining in Pattern Recognition,

Springer, 2012, pp. 117–131.
[68] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, Y. Shoham, A portfolio approach to algorithm selection, in: Proceedings of the Eighteenth

International Joint Conference on Artificial Intelligence, Morgan Kaufmann, 2003, pp. 1542–1543.
[69] A. Liaw, M. Wiener, Classification and regression by randomForest, R News 2 (2002) 18–22.
[70] M. Lindauer, H. Hoos, F. Hutter, T. Schaub, Autofolio: an automatically configured algorithm selector, J. Artif. Intell. 53 (2015) 745–778.
[71] Y. Malitsky, D. Mehta, B. O’Sullivan, Evolving instance specific algorithm configuration, in: The Sixth Annual Symposium on Combinatorial Search,

2013.
[72] Y. Malitsky, B. O’Sullivan, A. Previti, J. Marques-Silva, A portfolio approach to enumerating minimal correction subsets for satisfiability problems,

in: Proceedings of the Eleventh International Conference on Integration of Artificial Intelligence and Operations Research Techniques in Constraint
Programming, 2014.

[73] Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann, Non-model-based algorithm portfolios for SAT, in: Proceedings of the Fourteenth International
Conference on Theory and Applications of Satisfiability Testing, Springer, 2011, pp. 369–370.

[74] O. Mersmann, B. Bischl, H. Trautmann, M. Wagner, J. Bossek, F. Neumann, A novel feature-based approach to characterize algorithm performance for
the traveling salesperson problem, Ann. Math. Artif. Intell. (2013) 1–32.

[75] M. Nikolić, F. Marić, P. Janičić, Instance-based selection of policies for SAT solvers, in: Proceedings of the Twelfth International Conference on Theory
and Applications of Satisfiability Testing, Springer, 2009, pp. 326–340.

[76] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, M. Barry, An A-Prolog decision support system for the Space Shuttle, in: Proceedings of the Third
International Symposium on Practical Aspects of Declarative Languages, Springer, 2001, pp. 169–183.

[77] E. Nudelman, K. Leyton-Brown, G. Andrew, C. Gomes, J. McFadden, B. Selman, Y. Shoham, Satzilla 0.9, 2003.
[78] E. Nudelman, K. Leyton-Brown, H.H. Hoos, A. Devkar, Y. Shoham, Understanding random SAT: beyond the clauses-to-variables ratio, in: Principles and

Practice of Constraint Programming – CP 2004, Springer, 2004, pp. 438–452.
[79] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, B. O’Sullivan, Using case-based reasoning in an algorithm portfolio for constraint solving, in: Proceed-

ings of the Nineteenth Irish Conference on Artificial Intelligence and Cognitive Science, 2008.
[80] B. Pfahringer, H. Bensusan, C. Giraud-Carrier, Meta-learning by landmarking various learning algorithms, in: Proceedings of the Seventeenth Interna-

tional Conference on Machine Learning, 2000, pp. 743–750.
[81] M.R. Prasad, A. Biere, A. Gupta, A survey of recent advances in SAT-based formal verification, Int. J. Softw. Tools Technol. Transf. 7 (2005) 156–173.
[82] L. Pulina, A. Tacchella, A multi-engine solver for quantified Boolean formulas, in: Proceedings of the Thirteenth International Conference on Principles

and Practice of Constraint Programming, Springer, 2007, pp. 574–589.
[83] L. Pulina, A. Tacchella, A self-adaptive multi-engine solver for quantified Boolean formulas, Constraints 14 (2009) 80–116.
[84] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2014,

http://www.R-project.org/.
[85] J.R. Rice, The algorithm selection problem, Adv. Comput. 15 (1976) 65–118.
[86] M. Roberts, A. Howe, Learning from planner performance, Artif. Intell. J. 173 (2009) 536–561.
[87] M. Roberts, A.E. Howe, Learned models of performance for many planners, in: Proceedings of the Workshop on AI Planning and Learning at the

Seventeenth International Conference on Automated Planning and Scheduling, 2007.
[88] M. Roberts, A.E. Howe, B. Wilson, M. desJardins, What makes planners predictable?, in: ICAPS, 2008, pp. 288–295.
[89] A. Sabharwal, H. Samulowitz, M. Sellmann, Y. Malitsky, Boosting sequential solver portfolios: knowledge sharing and accuracy prediction, in: LION 7,

2013.

http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6875726C657970726F7465757332303134s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6875726C657970726F7465757332303134s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib487574426162486F6F48753037s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib487574426162486F6F48753037s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib687574746572706572666F726D616E636532303036s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib687574746572706572666F726D616E636532303036s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib487574486F6F4C657931302D6D6970636F6E666967s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib487574486F6F4C657931302D6D6970636F6E666967s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib487574486F6F4C657931312D534D4143s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib487574486F6F4C657931312D534D4143s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6875747465726964656E74696679696E6732303133s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib687574746572706172616D696C7332303039s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4875744574416C313441436C6962s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4875744574416C313441436C6962s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib68757474657232303134616C676F726974686Ds1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib69736D61626F67657363303961s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib69736D61626F67657363303961s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6B6164696F676C75616C676F726974686D32303131s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6B6164696F676C75616C676F726974686D32303131s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6B6164696F676C756973616332303130s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6B6164696F676C756973616332303130s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6B73766Ds1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6B6175747A31393939756E696679696E67s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6B6175747A31393939756E696679696E67s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4B65727363686B6532303134s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4B65727363686B6532303134s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4B65727363686B6532303134s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4B6F686176693937s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6B6F7474686F66666C6C616D6132303133s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6B6F7474686F6666616C676F726974686D32303134s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4C414731s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4C414731s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4C414732s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4C414732s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib64616E69656C73696D706C65637370746F736174s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4C6569746542563132s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4C6569746542563132s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6C6579746F6E32303033706F7274666F6C696Fs1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6C6579746F6E32303033706F7274666F6C696Fs1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib7266s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6C696E64617565722D6A616972313561s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6D616C6974736B7965766F6C76696E6732303133s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6D616C6974736B7965766F6C76696E6732303133s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4D5553706F7274666F6C696Fs1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4D5553706F7274666F6C696Fs1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4D5553706F7274666F6C696Fs1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6D616C6974736B796E6F6E2D6D6F64656C2D626173656432303131s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6D616C6974736B796E6F6E2D6D6F64656C2D626173656432303131s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4D6572736D616E6E32303133s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib4D6572736D616E6E32303133s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6E696B6F6C69696E7374616E63652D626173656432303039s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6E696B6F6C69696E7374616E63652D626173656432303039s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6E6F6261676577616261303161s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6E6F6261676577616261303161s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib5361747A696C6C613033s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6E7564656C6D616E756E6465727374616E64696E6732303034s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6E7564656C6D616E756E6465727374616E64696E6732303034s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib63706879647261s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib63706879647261s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib5066616872696E6765723230303070353533s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib5066616872696E6765723230303070353533s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib70726173616432303035737572766579s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib70756C696E616D756C74692D656E67696E6532303037s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib70756C696E616D756C74692D656E67696E6532303037s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib70756C696E6173656C662D616461707469766532303039s1
http://www.R-project.org/
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib72696365616C676F726974686D31393736s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib526F6265727473483039s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib726F62657274736C6561726E656432303037s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib726F62657274736C6561726E656432303037s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib726F62657274737768617432303038s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib73616268617277616C626F6F7374696E6732303133s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib73616268617277616C626F6F7374696E6732303133s1

58 B. Bischl et al. / Artificial Intelligence 237 (2016) 41–58
[90] H. Samulowitz, R. Memisevic, Learning to solve QBF, in: Proceedings of the Twenty-Second National Conference on Artificial Intelligence, AAAI Press,
2007, pp. 255–260.

[91] F. Serban, J. Vanschoren, J.U. Kietz, A. Bernstein, A survey of intelligent assistants for data analysis, ACM Comput. Surv. 45 (2013) 1–35.
[92] B. Silverthorn, R. Miikkulainen, Latent class models for algorithm portfolio methods, in: Proceedings of the Twenty-Fourth AAAI Conference on

Artificial Intelligence, 2010, pp. 167–172.
[93] K.A. Smith-Miles, Cross-disciplinary perspectives on meta-learning for algorithm selection, ACM Comput. Surv. 41 (2008) 6:1–6:25.
[94] K.A. Smith-Miles, D. Baatar, B.J. Wreford, R. Lewis, Towards objective measures of algorithm performance across instance space, Comput. Oper. Res.

45 (2014) 12–24.
[95] T. Soininen, I. Niemelä, Developing a declarative rule language for applications in product configuration, in: Proceedings of the First International

Workshop on Practical Aspects of Declarative Languages, Springer, 1999, pp. 305–319.
[96] R. Stahlbock, S. Voß, Operations research at container terminals: a literature update, OR Spektrum 30 (2008) 1–52.
[97] K. Stergiou, Heuristics for dynamically adapting propagation in constraint satisfaction problems, AI Commun. 22 (2009) 125–141.
[98] M.J. Streeter, D. Golovin, S.F. Smith, Combining multiple heuristics online, in: Proceedings of the Twenty-Second National Conference on Artificial

Intelligence, AAAI Press, 2007, pp. 1197–1203.
[99] M.J. Streeter, D. Golovin, S.F. Smith, Restart schedules for ensembles of problem instances, in: Proceedings of the Twenty-Second National Conference

on Artificial Intelligence, AAAI Press, 2007, pp. 1204–1210.
[100] P.J. Stuckey, T. Feydy, A. Schutt, G. Tack, J. Fischer, The MiniZinc challenge 2008–2013, AI Mag. 35 (2014) 55–60.
[101] N. Tamura, T. Tanjo, M. Banbara, System description of a SAT-based CSP solver sugar, in: Proceedings of the Third International CSP Solver Competition,

2008, pp. 71–75.
[102] T. Tanjo, N. Tamura, M. Banbara, Azucar: a SAT-based CSP solver using compact order encoding, in: Theory and Applications of Satisfiability Testing –

SAT 2012, Springer, 2012, pp. 456–462.
[103] T. Therneau, B. Atkinson, B. Ripley, rpart: recursive partitioning and regression trees, http://CRAN.R-project.org/package=rpart, 2014, R package version

4.1-8.
[104] C. Thornton, F. Hutter, H. Hoos, K. Leyton-Brown, Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms, in:

Proceedings of the Nineteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2013, pp. 847–855.
[105] K. Tierney, Y. Malitsky, An algorithm selection benchmark of the container pre-marshalling problem, in: C. Dhaenens, L. Jourdan, M.E. Marmion (Eds.),

Learning and Intelligent Optimization, Springer International Publishing, 2015, pp. 17–22.
[106] K. Tierney, D. Pacino, S. Voß, Solving the pre-marshalling problem to optimality with A* and IDA*, Technical Report Working Paper #1401, Decision

Support & Optimization Lab, University of Paderborn, 2014.
[107] M. Vallati, L. Chrpa, M. Grzes, T.L. McCluskey, M. Roberts, S. Sanner, The 2014 international planning competition: progress and trends, AI Mag. 36

(2015) 90–98.
[108] M. Vallati, L. Chrpa, D. Kitchin, Portfolio-based planning: state of the art, common practice and open challenges, AI Commun. 28 (2015) 717–733.
[109] M. Vallati, C. Fawcett, A. Gerevini, H.H. Hoos, A. Saetti, Automatic generation of efficient domain-optimized planners from generic parametrized

planners, in: International Symposium on Combinatorial Search (SoCS), 2013.
[110] A. Van Gelder, Another look at graph coloring via propositional satisfiability, Discrete Appl. Math. 156 (2008) 230–243.
[111] J. Vanschoren, Understanding machine learning performance with experiment databases, Ph.D. thesis, University of Leuven, 2010.
[112] J. Vanschoren, H. Blockeel, B. Pfahringer, G. Holmes, Experiment databases. A new way to share, organize and learn from experiments, Mach. Learn.

87 (2012) 127–158.
[113] J. Vanschoren, J.N. van Rijn, B. Bischl, L. Torgo, OpenML: networked science in machine learning, ACM SIGKDD Explor. Newsl. 15 (2013) 49–60.
[114] J. Ward, Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc. 22 (1963) 236–244.
[115] H. Xu, R. Rutenbar, K. Sakallah, Sub-SAT: a formulation for relaxed Boolean satisfiability with applications in routing, in: IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 2003, pp. 814–820.
[116] L. Xu, H.H. Hoos, K. Leyton-Brown, Hierarchical hardness models for SAT, in: Proceedings of the Thirteenth International Conference on Principles and

Practice of Constraint Programming, Springer, 2007, pp. 696–711.
[117] L. Xu, H.H. Hoos, K. Leyton-Brown, Hydra: automatically configuring algorithms for portfolio-based selection, in: Proceedings of the Twenty-Fourth

AAAI Conference on Artificial Intelligence, AAAI Press, 2010, pp. 210–216.
[118] L. Xu, F. Hutter, H.H. Hoos, K. Leyton-Brown, SATzilla: portfolio-based algorithm selection for SAT, J. Artif. Intell. Res. 32 (2008) 565–606.
[119] L. Xu, F. Hutter, H.H. Hoos, K. Leyton-Brown, Hydra-MIP: automated algorithm configuration and selection for mixed integer programming, in: Pro-

ceedings of the RCRA Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion at the Twenty-Second
International Joint Conference on Artificial Intelligence, 2011.

[120] L. Xu, F. Hutter, H.H. Hoos, K. Leyton-Brown, Evaluating component solver contributions to portfolio-based algorithm selectors, in: Proceedings of the
Fifteenth International Conference on Theory and Applications of Satisfiability Testing, Springer, 2012, pp. 228–241.

[121] L. Xu, F. Hutter, J. Shen, H.H. Hoos, K. Leyton-Brown, Satzilla2012: improved algorithm selection based on cost-sensitive classification models, in:
Proceedings of SAT Challenge 2012: Solver and Benchmark Descriptions, 2012, pp. 55–58.

http://refhub.elsevier.com/S0004-3702(16)30038-8/bib73616D756C6F7769747A6C6561726E696E6732303037s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib73616D756C6F7769747A6C6561726E696E6732303037s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib53657262616E32303133s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib73696C76657274686F726E6C6174656E7432303130s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib73696C76657274686F726E6C6174656E7432303130s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib736D6974682D6D696C657363726F73732D6469736369706C696E61727932303039s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib536D6974684D696C6573323031343132s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib536D6974684D696C6573323031343132s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib736F696E6965393961s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib736F696E6965393961s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib5374566F3038s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib7374657267696F756865757269737469637332303039s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib7374726565746572636F6D62696E696E6732303037s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib7374726565746572636F6D62696E696E6732303037s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib73747265657465727265737461727432303037s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib73747265657465727265737461727432303037s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib537475636B6579465354463134s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib74616D7572617375676172s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib74616D7572617375676172s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib74616E6A6F617A75636172s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib74616E6A6F617A75636172s1
http://CRAN.R-project.org/package=rpart
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib54686F487574486F6F4C657931332D4175746F57454B41s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib54686F487574486F6F4C657931332D4175746F57454B41s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib546931347472s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib546931347472s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib54695061566F31347472s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib54695061566F31347472s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib56616C6C61746943474D52533135s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib56616C6C61746943474D52533135s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib56616C6C617469434B3135s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib56616C6C61746931332D534F4353s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib56616C6C61746931332D534F4353s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib76616E32303038616E6F74686572s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib56616E7363686F72656E32303130s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib56616E7363686F72656E32303132s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib56616E7363686F72656E32303132s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib6F70656E6D6C32303133s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib776172643633s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib5875527553613033s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib5875527553613033s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib787568696572617263686963616C32303037s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib787568696572617263686963616C32303037s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib7875687964726132303130s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib7875687964726132303130s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib78757361747A696C6C6132303038s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib787568796472612D6D697032303131s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib787568796472612D6D697032303131s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib787568796472612D6D697032303131s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib7875323031326576616C756174696E67s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib7875323031326576616C756174696E67s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib7875323031327361747A696C6C6132303132s1
http://refhub.elsevier.com/S0004-3702(16)30038-8/bib7875323031327361747A696C6C6132303132s1

	ASlib: A benchmark library for algorithm selection
	1 Introduction
	2 Background
	2.1 What to select and when
	2.2 How to select
	2.3 Selection enablers
	2.4 Algorithm selection and algorithm conﬁguration

	3 Summary of format speciﬁcation
	4 Algorithm selection scenarios provided in ASlib release 2.0
	4.1 SAT: propositional satisﬁability
	4.2 QBF: quantiﬁed Boolean formula
	4.3 MAXSAT: maximum satisﬁability
	4.4 CSP: constraint solving
	4.5 ASP: answer set programming
	4.6 PREMAR-ASTAR-2015: container pre-marshalling

	5 Automated exploratory data analysis
	6 Study of algorithm selection techniques
	6.1 Experimental setup
	6.2 Data preprocessing
	6.3 Evaluation
	6.4 Results
	6.5 Algorithm and feature subset selection

	7 Competitions on ASlib
	8 Summary
	Acknowledgements
	References

