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ABSTRACT
In this paper, we address the problem of how automated situation-

awareness can be achieved by learning real-world situations from

ubiquitously generated mobility data. Without semantic input

about the time and space where situations take place, this turns

out to be a fundamental challenging problem. Uncertainties also

introduce technical challenges when data is generated in irregular

time intervals, being mixed with noise, and errors.

Purely relying on temporal pa�erns observable in mobility data,

in this paper, we propose Spaceprint, a fully automated algorithm

for �nding the repetitive pa�ern of similar situations in spaces.

We evaluate this technique by showing how the latent variables

describing the category, and the actual identity of a space can be

discovered from the extracted situation pa�erns. Doing so, we use

di�erent real-world mobility datasets with data about the presence

of mobile entities in a variety of spaces. We also evaluate the

performance of this technique by showing its robustness against

uncertainties.
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1 INTRODUCTION
Many situational-aware decision-support systems rely on the capa-

bility of describing the situation in spaces. Ideally, these descrip-

tions are updated automatically as the situation in a space changes.

Typical examples include automatically identifying a bo�leneck on

a road, or a suspicious activity in an airport. A means for learn-

ing and comparing situations from the abundance of ubiquitously

generated mobility data (GPS coordinates, check-in records, WiFi

detections, etc.) can open the door to many applications that require

such automated situational-awareness. As a �rst step towards this
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goal, in this paper, we investigate how mobility data can represent

the repetitive pa�ern of situations in spaces.

In many cases, a speci�c space with a known category such as

a library, a canteen, or a classroom, will exhibit repetitive visiting

pa�erns characterizing a recurring situation. Such pa�erns e�ec-

tively operate as a spatial �ngerprint of situations. Moreover, we

can expect that similar places will o�en have similar �ngerprints.

Although in many cases these �ngerprints would seem to be static,

it is really the usage of a space that determines its meaning, which

at various occasions may di�er from the location’s original intended

purpose. For example, in special situations an o�ce space is used

for throwing a party or, likewise, an apartment can be rented out as

if it were a hotel room. We argue that to be�er understand or reason

about the situation at hand, it is important to understand to what

extent the situation in a space adheres to its regular �ngerprint,

and otherwise, to what extent it resembles any other well-known

�ngerprints.

In this light, we address the question to what extent we can

automatically measure a location’s �ngerprint of situations from

available mobility data. To realize situation-aware systems that are

generally applicable, we focus on creating these �ngerprints in a

completely unsupervised manner. �is implies that these �nger-

prints should be created from raw mobility data without additional

human input of any kind. �erefore, unlike most previous related

research in mobility data analysis, our method operates without a

feature-engineering phase.

To this end, we study the presence pa�ern of devices by looking

at when and how long they appear in a space. More speci�cally,

we make the following contributions. (1) We propose a feature set

that can generically characterize all possible presence pa�erns in

a space. (2) We use such a feature set to extract the �ngerprint of

the repetitive situations in spaces (Spaceprints) in a fully unsuper-

vised manner. (3) We evaluate the robustness of this �ngerprinting

scheme in the presence of common sources of uncertainty in ubiq-

uitously collected mobility data sets. (4) We validate our method by

showing its classi�cation performance using a WiFi-based detection

data set and a Foursquare check-in dataset.

�e rest of this paper is organized as follows. Related work is

presented in Section 2. We present our problem de�nition and

a sketch of our proposed �ngerprinting framework in Sections 3

and 4, respectively. �e details of our �ngerprinting scheme is

presented in Section 5. �e performance of this scheme is evaluated

in Section 6. A number of remarks conclude this paper in Section 7.

2 RELATEDWORK
�ere are two ways to study the movement of individuals in a space

when dealing with mobility data (referred to as the Lagrangian and
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Eulerian approaches [1]). First, from the perspective of an indi-

vidual, one may ask about the whereabouts of a person: what are

the locations that someone visits? When do those visits take place,

and for how long? �e research in this direction concentrates on

extracting mobility pa�erns that re�ect an individual mobility �n-
gerprint for frequent behavior [8, 10], periodic behavior [9], social

behavior [14], etc.

Second, from the perspective of a speci�c location, one may ask

about the visits to that location: When do they take place? How

long do they last? Which visits happen again? In this case, one

focuses on extracting a spatial mobility �ngerprint. Previous re-

lated research in extracting these spatial �ngerprints have either

focused on improving the individual mobility prediction models

[7, 15] or on bringing sense to raw location coordinates in terms of

meaningful labels. Research in methods to describe the meaning

of locations, primarily concentrates on how accurately trajectories

can be segmented into sections with basic semantics such as stop
and move areas [13], or points of interest [12]. With the prevalence

of context-aware mobile applications which needed more than just

such low-level semantics, further research has been performed to

extract more detailed semantics about spaces interpreted in collo-

quial terms such as home, work, cinema, restaurant, etc. Using a

single person’s frequent trajectory pa�erns, semantics about few

prede�ned places (e.g. home, work) have been extracted in [4, 11].

In a more general case, and when extracting semantics from data

involving a large population of mobile entities, a common approach

has been enriching data with higher level semantics using addi-

tional sources, or using common sense assumptions, for instance,

presence at night for home, presence at working hours for o�ces or

presence in weekends for leisure related locations. Some examples

of additional sources of semantics are verbal terms used by people

in social media such as twi�er [6, 16], and third party geographical

sources [17]. In [3] the authors use a number of selected mobility

features (e.g., crowded hours, number of visitors per month) along

with application usage, and proximity to other devices to label a

group of known spaces. Knowing the semantic labels of spaces

within a region, higher level regional semantics have also been ex-

tracted to label areas such as those used for housing, and businesses
[20].

�e spatial �ngerprints made thus far are either meant for label-

ing location coordinates using engineered features in a supervised

manner or use additional semantic input to enrich data with context

from other sources. �ese approaches are not generic and cannot be

taken further to realize automated situation-awareness in dynami-

cally changing spaces purely using mobility data. To reach this goal,

our approach in spatial �ngerprinting from mobility data is di�er-

ent from all previous research as it performs in a fully unsupervised

manner purely exploiting presence pa�erns in spaces. Speci�cally,

instead of looking for features that characterize spaces based on

their semantic meaning, we look for features that can characterize

periods of time in a space based on its dynamic situation.

3 PROBLEM DEFINITION
We de�ne a model based on data acquired from any system that

allows for the collection of mobility data in terms of presence or

detection of mobile entities in a well-de�ned region of space. A

detection record is a tuple 〈d, s, t〉 with d being the identi�er of the

detected mobile entity, s being the identi�er of the space where the

entity d was detected, and t being the timestamp of the detection.

A variety of mobility-data collection systems can result in such

a dataset. �ese include, for example, WiFi detection of mobile

devices near access points, GPS coordinates discretized in grid

maps, and check-in records collected from location-based social

networks.

Given a set of detection records DT, we are interested in a spa-
tial �ngerprint SP(s) which de�nes the core repeating temporal

presence pa�erns of space s. Assuming that latent variables such

as the unique identity of the space and its semantic category result

in such a �ngerprint, we demand that this scheme exhibit the fol-

lowing: (1) each space has a unique �ngerprint, (2) spaces having

the same category have similar �ngerprints, and (3) spaces having

di�erent categories have di�erent �ngerprints.

4 FRAMEWORK OVERVIEW
Our goal is to de�ne a spatial �ngerprint that summarizes the situ-

ations in a space in terms of repeating presence pa�erns over time.

One might think of creating a time series by measuring a feature

from the detections over equally sized duration windows with a spe-

ci�c resolution, such as the number of detections (feature) during

every hour (resolution) of a day (duration). By averaging the value

of these features over many duration windows (e.g., over 100 days),

the �ngerprint can be extracted. If these features were enough

to �ngerprint a space, with a suitable classi�cation algorithm and

suitable distance function, we would also be able to classify di�er-

ent spaces from one another based on their �ngerprint. However,

there are many unknown factors that require a�ention. �e chal-

lenge in our case is to identify (1) the features, (2) an appropriate

resolution and duration window, and (3) a suitable distance
function. Compared to these three, the choice of a classi�cation

or clustering algorithm is a trivial one. Typically, these challenges

are addressed based on intuition. For instance, we may assume

that a weekly pa�ern governs the visits to a space or that a res-

olution of one hour is enough to provide the necessary level of

detail. �is intuitive approach, however, limits the applicability of

the �ngerprinting scheme. �e proposed �ngerprinting scheme

in this paper addresses these challenges through systematically

�nding appropriate parameter se�ings in an unsupervised manner.

We de�ne a spatial �ngerprint as follows.

De�nition 4.1. (Spatial �ngerprint) �e �ngerprint for the
space s is a triplet SP(s) = 〈V, FD, FR〉, with feature vector
V = [v1, . . . ,vn ], of which each element vi represents the value
of a speci�c feature. FD is the �ngerprint duration, indicating the
total time over which the �ngerprint is con�gured. FR is the �nger-
print resolution, indicating the minimum time interval over which
detections are sampled to extract features. FD is a multiple of FR:
∃r ∈ N : FD = r · FR.

Algorithm 1 summarizes the �ngerprinting framework

Spaceprint proposed in this paper. Let DT denote a set of detections

and tmin(DT) = min{t |〈d, s, t〉 ∈ DT}, i.e., the timestamp of the

�rst detection. Likewise, we have tmax(DT) for the timestamp

of the last detection and τ (DT) = tmax(DT) − tmin(DT) for the

duration of collecting DT. Denote by DT the set of detections
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{〈d, s, t − tmin〉|〈d, s, t〉 ∈ DT}, i.e., the set of same detections, but

now transformed such that the �rst detection starts at time 0.

Finally, we use the notation DT(s) = {〈d, s, t〉|〈d, s, t〉 ∈ DT} to

denote the set of detections by space s.
�e spatial �ngerprint is composed of three components. We

have a separate procedure for extracting each of these components.

We use the procedure �ngerprintParameters for calculating the opti-

mal �ngerprint parameters, being the �ngerprint duration (FD) and

�ngerprint resolution (FR). �e procedure vectorize constructs the

feature vector over a dataset spanning a duration of FD time units

using resolution FR. �e �nal procedure vectorAverage computes

the average over multiple feature vectors. In the following sections,

we will represent how we create the feature vector and determine

the �ngerprint duration and resolution.

Algorithm 1: Spaceprint

Data: DT(s)
Result: SP(s) = 〈V, FD, FR〉
(FD, FR) = �ngerprintParameters(DT(s));
for (i = 0; i < τ (DT(s))/FD; i = i + 1) do

DTi = {〈d, s, t〉 ∈ DT(s)|i · FD ≤ t < (i + 1) · FD};
Vi = vectorize(DTi , FD, FR);

V = vectorAverage(Vi ∈1...τ (DT(s))/FD );
return (V, FD, FR);

5 METHODOLOGY
5.1 Presence patterns
As mentioned before, the most important step in �ngerprinting

spaces is identifying suitable (computable) features that represent

the situation in spaces. Let us consider selecting features that may

be relevant for such purpose and are observable from mobility data.

For example, intuitively one may think of static features such as

opening or closing hours, peak hours, group sizes, number of in-

dividuals, etc. However, features that can de�ne the situation in a

space are numerous and intuitively coming up with a comprehen-

sive set of features that could characterize any thinkable situation

in spaces is practically impossible.

Without any intuitive assumptions about features that de�ne the

situation in a space, the only measurable feature from detections is

related to presence pa�ern of mobile entities. In reality, each space

observes many of these pa�erns formed due to the variety of the

intention of its visitors. For instance, consider the presence pa�ern

of shopkeepers in a shop versus that of their clients. A shopkeeper

enters the shop around opening time and leaves around closing

time. �e clients may appear during opening hours and stay for

some time based on their intention (browsing or shopping). We

assume that the situation in space is re�ected in the overlapping

visits of di�erent groups of mobile entities. To consider this variety,

we de�ne a presence pa�ern such that it re�ects the synchronous
presence of a group of mobile entities during a speci�c pe-
riod of time. Such a pa�ern represents a group of mobile entities

entering a space, staying there for a speci�c amount of time, and

then leaving it at the same time. Entering and leaving a space may

be repeated multiple times as well. Extracting these pa�erns from

a detection dataset can be achieved by counting the number of

mobile entities in a window with a speci�c starting time, tstart , and

duration, τ . As detections are registered in discrete time intervals,

the presence should be detected in all sampling intervals of length

Ts in τ . Correspondingly, we de�ne presence features with the

following template to quantify the intensity of such pa�erns.

De�nition 5.1. (Presence feature) A presence feature
PF (tstart,τ ,Ts ) over a space represents the number of mobile
entities that were detected in all dτ/Ts e consecutive sampling
intervals of lengthTs within a measurement window, starting at time
tstart and lasting for a duration of τ time units.

By ranging over all possible values of the parameters tstart ,τ ,

and Ts , the feature template mentioned above will lead to numer-

ous presence features. Table 1 summarizes the possible range of

these parameters for creating presence features as de�ned in De�-

nition 5.1.

Table 1: �e possible ranges for the parameters of a presence
pattern, given a �ngerprint duration FD and �ngerprint res-
olution FR.

Variable Name Range
tstart {0 ≤ k · FD/FR < FD,k ∈ N}
τ {0 ≤ k · FD/FR < FD − tstart ,k ∈ N}
Ts FR � Ts � FD

�ese parameter ranges are motivated as follows. Assume that

we measure detections at a given location for a speci�c duration of

time, FD, and that the mobile entities are detected at a frequency fp
(and periodTp = 1/fp ). For now, also assume that the �ngerprinting

resolution FR is equal to this period as well (Tp = FR). We later

show how to extract the optimal value for FR which is possibly

bigger thanTp . �e basis of our approach is to sample the number of

mobile entities within a speci�c duration windowW = 〈tstart ,τ 〉
with a sampling frequency fs (with period Ts = 1/fs ). BothW
and fs can vary. �e duration window can have any starting time

and length as long as the window is smaller than FD. �erefore,

we require that τ ≤ FD and tstart + τ < FD. To count the number

of mobile entities, we need to sample detections with a period Ts .

Obviously, as it does not make sense to sample with a speed faster

than the mobile entity’s detection generation speed, we require that

Ts ≥ FR (orTp ). Additionally,Ts cannot be larger than the duration

window, i.e., Ts ≤ τ . Note that the feature vector V can now be

considered as an ordered list of normalized presence features.

5.2 Feature vector
As mentioned before, the presence features can be created by count-

ing mobile entities based on every possible combination of starting

time, stay duration, and sampling period, tstart ,τ ,Ts . Considering

that we have n possible combinations by ranging over these pa-

rameters, we will have an n-dimensional vector composed from

di�erent presence features. Algorithm 2 (vectorize) represents the

way of constructing a feature vector for a given space based on a

collection of mobile entity detections.
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�e input of this algorithm is a set of detections DT(s) for a

speci�c space s. If W is a duration window, we write DT[W ] to

denote the subset of detections that occurred inside W . If Ts is

a sampling period, then [DT]Ts denotes the list of d(tmax(DT) −
tmin(DT))e/Ts buckets, with the ith bucket containing all detections

that occurred during the ith interval of length Ts .

�e essence of vectorize is to count the number of mobile entities

that were detected during an entire duration window, W , when

sampled with the period Ts . We systematically explore every possi-

ble duration window and sampling period for a given �ngerprint

duration FD and resolution FR. �ere are three loops for covering

all possible values for parameters tstart ,τ and Ts . In each iteration,

by counting the mobile entities that appeared in the intersection of

all buckets of [DT[W ]]Ts , a presence feature is created.

Algorithm 2: vectorize

Data: DT, FD, FR
Result: V
V = [];
for (tstart = 0; tstart < FD; tstart = tstart + FR) do

/* iterate over all durations */

for (τ = FR;τ ≤ FD − tstart;τ = τ + FR) do
for (Ts = FR;Ts ≤ τ ;Ts = Ts + FR) do

/* iterate over all sampling periods */

if (τ mod Ts = 0) then
W = 〈tstart ,τ 〉;
u =

⋂([DT[W ]]Ts ); /* get the ID of
mobile entities present in all
buckets of window W */

append(V, count(u)); /* append to V the

total number of mobile entities */

return(V/max(V));

�e complexity of Algorithm 2 presented above is O(( FDFR )
4).

�is complexity comes from the three for loops and an intersection

over all elements of [DT[W ]]Ts . By reusing the results of the inter-

section operation this complexity can be reduced to O(( FDFR )
3). A

meaningful sampling period is the one that can break the duration

window into its integer factors (τ mod Ts = 0). In that case, the

third loop will repeat only for integer multiples of τ , thus reducing

complexity further. It should be noted that both FD and FR are

�xed and do not depend on the size of detection dataset. �erefore,

creating the feature vectors can be performed in a scalable manner.

Figure 1 represents an example feature vector V = [v1, . . . ,vn ]
calculated using Algorithm 2. �is vector is acquired by vectorizing

one week of data with a resolution of a day (i.e., FD = 7 days

and FR = 1 day). It can be readily veri�ed that there are n = 57

elements in V. �e �rst element, v1, corresponds to the number of

mobile entities that were detected during the �rst day: W = 〈0, 1〉,
with resolution Ts = 1. Element v2 counts the mobile entities

that were present during both the �rst and the second day: W =
〈0, 2〉, with sampling period Ts = 1. Likewise, v3 represents mobile

entities during the either �rst or second day, and so on. In this

example, v15 represents a window spanning over the entire week

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Index

Va
lu

e

A feature vector (FD=168 hr, FR=24 hr)

Figure 1: An example representation of a feature vector

(W = 〈0, 7〉) and sampled with the sampling period Ts = 1. It

thus counts the number of mobile entities that were present in

all seven days. Typically, these encompass all static, that is, non-

mobile entities. Also interesting is v16, which represents a duration

window spanning over all seven days (W = 〈0, 7〉), but with a

sampling period Ts = 7 of also the entire week. As such, it counts

the total number of mobile entities who showed up at least once

during the entire week, regardless how long they stayed.

Our goal is to use such feature vectors to compare spaces to

each other based on visiting pa�erns of devices. In doing so, we

need to take into account that the values in a single vector can vary

widely, which is entirely due to the fact that we wish to include

all possible values for duration windows and sampling periods

into a single data structure. As a consequence, we need to avoid

that high values (which are perfectly natural due to our method

of counting) dominate our perspective of di�erence between two

vectors. In order to take these natural di�erences between elements

into account, we choose a distance metric based on the so-called

Canberra Distance [5].

De�nition 5.2. (Feature vector distance function) Given two fea-
ture vectors V and V∗ of equal length n, calculated using the same
pair of �ngerprint parameters FD and FR, their mutual distance is

∆(V,V∗) = 1

n
∑n
i=1

|vi−v∗i |
|vi |+ |v∗i |

5.3 Fingerprint parameters
We now concentrate on �nding appropriate values for the �nger-

print duration FD and the �ngerprint resolution FR. Concerning

the �ngerprint duration, note that we are looking for the period

(in the formal sense) of repetitive or self-similar situation. �ere are

many ways of doing this, for example through Fourier analysis or

computing autocorrelations. In our approach, we look for a series

of consecutive �xed-length windowsW1,W2,W3, . . . such that for

a given set of detections DT, we have a minimal accumulated dis-

tance between all possible pairs of vectorized subsets of detections

DT[Wi ] and DT[Wj ]. Our only variable is the length of all such

windows, and the length that minimizes the accumulated distance

is our �ngerprint duration.

Determining the best �ngerprint resolution is a bit trickier.

�e resolution, as shown in Algorithm 2, determines the minimum

sampling period and directly determines the number of features in

the vector. �erefore, other than increasing the computational costs,

a too detailed FR may also introduce the problem of over-��ing. It
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is desirable to choose the resolution such that all signi�cant di�er-

ences between feature vectors are preserved. �erefore, what we

are looking for is a resolution that maximizes the distance between

two vectorized datasets. �e assumption is that we have already

determined the periodicity FD in a series of detections. By looking

at two consecutive datasets of duration FD, a resolution FR that

maximizes the mutual distance of their vectorized versions e�ec-

tively captures all di�erences that would have also been captured

by a smaller resolution. At the same time, such a resolution will

capture more di�erences than any larger resolution (which would

show a smaller distance between the two vectorized datasets).

Lemma 5.3 tells us that such a distance-maximizing resolution

actually exists.

Lemma 5.3. In case a space has a periodic �ngerprint, there exists
an optimal �ngerprint resolution FR over which the distance between
consecutive feature vectors is maximized.

Proof. We prove that having a constant �ngerprint duration, by

either increasing or decreasing the resolution, the distance between

two features vectors V,V∗ approaches zero. Let δi =
|vi−v∗i |
|vi |+ |v∗i |

.

When we increase the resolution, we will necessarily increase the

length n of a constructed feature vector. As both vi and vj have

positive values, regardless the changes in δi when increasing n, we

will always see that δi ≤ 1, while the number of elements for which

δi > 0 will increase to a �nite number M . �is is due to the fact

that elements acquired with a smaller sampling period (Ts < Tp )

are meant to count the mobile entities that were detected with a

speed much faster than the actual detection speed of mobile entities

and there are hardly any of them. As a consequence,

lim

n→∞
∆(V,V∗) = lim

n→∞
1

n

n∑
i=1

δi ≤ lim

n→∞
1

n
M = 0

Analogously, as the resolution decreases, the length of a feature

vector decreases and will eventually be 1 when FR = FD. A vector

of length one will have only one element, which a�er normalization,

is equal to 1. �erefore,

lim

n→1

∆(V,V∗) = 1

1

|1 − 1|
|1 + 1| = 0

�

Algorithm 3 summarizes the procedure of extracting the �nger-

print parameters.

6 EVALUATION
In this section, we show how Spaceprint feature vectors can be used

for �nding repetitive situation pa�erns in spaces. We also evaluate

the performance of Spaceprint in presence of uncertainties.

Evaluation approach: We expect that the �ngerprint of situ-

ations in a space can re�ect from which and what kind of space

it is extracted. �erefore, we evaluate our method to see how the

latent variables of the semantic category of a space and its unique

identity are re�ected in the �ngerprint of the space. Our evalua-

tions are on the basis of using the feature vectors mentioned before

in unsupervised classi�cation to infer these latent variables. Any

unsupervised classi�cation or clustering algorithm can be used for

Algorithm 3: �ngerprintParameters

Data: DT(s), r (such that FD = r · FR)

Result: FD,FR
for (i = 1; i < τ (DT)/(2r ); i = i + 1) do

m = i · r ;

for (j = 0; j < τ (DT)/m; j = j + 1) do
DTj = {〈d, s, t〉 ∈ DT(s)|j ·m ≤ t < (j + 1) ·m};
Vij= vectorize(DTj ,m, i);

FD= r · arg mini
∑
j,k ∆(Vij ,V

i
k );

for (i = 1; i ≤ FD; i = i + 1) do
if (FD mod i = 0) then

for (j = 0; j < τ (DT)/FD; j = j + 1) do
DTj = {〈d, s, t〉 ∈ DT(s)|j · FD ≤ t < (j + 1) · FD};
Vij= vectorize(DTj , FD, i);

FR= arg maxi
∑
j,k ∆(Vij ,V

i
k );

return(FD,FR)

such purpose. In our experiments we have used K-means clustering

algorithm using our de�ned distance function from De�nition 5.2.

Baseline: To the best of our knowledge, there is no prior work

in classifying or creating situation �ngerprints for spaces purely

based on presence pa�erns. However, a common approach in con-

sidering space-speci�c temporal features, is calculating hourly den-

sities [7, 18]. �erefore, we compare Spaceprint with a density-
based approach as baseline. �e density-based feature vectors are

represented by Vd = [d0, ...,d FD
FR −1
] where each element di rep-

resents the number of mobile entities appearing in the window

W = 〈i · FR, FR〉. �ese vectors are extracted using the same �n-

gerprint parameters (FD, FR).

6.1 Test with synthetic dataset
6.1.1 Synthetic dataset generation. Our goal of using a synthetic

dataset is to test the robustness of the �ngerprinting scheme against

uncertainties, yet in a controlled fashion. We proceed as follows.

Generating virtual spaces: First, a total of NS di�erent virtual
spaces are created with presence pa�erns that are repeated over

FD time units and mobile entities being detected with the same

detection frequency (Tp = 1). A virtual space is characterized

by a tuple 〈P,NP〉 of presence pa�erns P each having size NP .

Complying with the de�nition of presence pa�erns in Section 5.1,

each presence pa�ern represents a group of mobile entities entering

and leaving a space simultaneously. We denote a pa�ern by the

tuple 〈GS,NG, tstart ,τ 〉 where GS is a set of mobile entity IDs of

size NG. Parameter tstart is the start time of the pa�ern, and τ
is its duration. We assume that each mobile entity generates a

detection record at times tstart + k for 0 ≤ k < τ . A virtual space

thus represents an actual space, such as a co�ee corner, a class

room, and so on, for which we assume that a �ngerprint is known.

Generating instances of spaces: From each virtual space, NI
number of instances are generated which will represent the pres-

ence pa�erns of the same space over multiple epochs of length FD
with a modi�ed situation. �ese instances are generated by varying

di�erent sensitivity test parameters as explained later.
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Generating the mobility dataset: Note that each pa�ern im-

plicitly de�nes a set of detections. Each mobile entity d ∈ GS is

assumed to generate detections at times tstart , tstart + 1, . . .. As a

consequence, 〈GS,NG, tstart ,τ 〉 for a space s gives rise to a set of

detections DT(s,GS) = {〈d, s, tstart+k〉|d ∈GS, 0≤k < τ }. We con-

struct a dataset by taking the union of sets DT(s,GS) for pa�erns

generated for s.
Clustering: Each set of detections DT(s) is vectorized using

Algorithm 2 with a precomputed pair of FD and FR and the ac-

curacy of clustering �ngerprint instances to their correct cluster

is presented. For the input K of the K-means algorithm, we use

the number of original �ngerprints as the number of clusters. �e

success of the algorithm in clustering is �nding NS distinct clusters

by mapping the instances of the same space to the same cluster.

6.1.2 Sensitivity test parameters. Our goal is to test the cluster-

ing accuracy of the �ngerprinting technique. �ere are in general

two groups of parameters that a�ect the quality of clustering. �e

�rst group represents the inherent uncertainty present in presence

pa�erns. �at is, in real-world se�ings it is unlikely that a presence

pa�ern repeats itself exactly the same way. �e other group repre-

sents the noise introduced by data-collection instruments, such as,

for example, missing detections due to collision. Below we spec-

ify how we apply the e�ects of these parameters on the synthetic

dataset.

Mobility related sensitivity parameters
• Variable start and duration: We modify the start and

duration of each presence pa�ern by t∗start ∈ N (tstart ,ταts)
and τ ∗ ∈ N (τ ,ταtd) such that t∗start + τ

∗ < FD. N (µ,σ )
represents a normal distribution with mean µ and standard

deviation σ .

• Variable group size: We modify the set of mobile entity

IDs of each presence pa�ern to GS∗ with a new size NG∗ ∈
N (NG,NGαgs).

• New random patterns: For each space, we generate βNP
number of new random pa�erns with the same procedure

that we generated the presence pa�erns.

• Removal of patterns: We randomly removeγNP number

of pa�erns from the original pa�erns and create a mobility

dataset.

Instrument related sensitivity parameters
• Asynchronous detection frequency: In reality, the fre-

quency of detections is very much device dependent. In

order to show the e�ect of asynchronous detections being

sent by mobile entities, we randomly choose ηNG number

of mobile entities from each presence pa�ern and change

their detection period by assigning a random number in

the range [2, 0.5τ ].
• Missing detections: A�er creating the detection dataset

DT(s), we randomly remove ρ percent of mobile entity IDs

for each moment in DT(s). (Recall that detections occur at

discrete moments in time.)

Table 2 represents the parameter ranges used for the tests in

this section. �e results of analysis with the synthetic dataset are

shown in Figure 2. We use detections from a total of 10 di�erent

clusters. In each �gure, we show the accuracy of assigning instances
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Figure 2: Tests with synthetic dataset. SP and DB denote
use of feature vectors extracted based on Spaceprint, and
density-based approach, respectively.

Table 2: �e parameters chosen for generating a synthetic
dataset

Parameter Value
NS 10

NI 100

FD 1440

FR 60

NG,NP ∈ [1, 100], ∈ N
tstart ∈ [1, 1440], ∈ N
τ ∈ [1, 1440 − tstart], ∈ N

αgs,αts,αtd , β ,γ ,η, ρ ∈ [0, 0.9], ∈ Q

to the correct original cluster while varying a speci�c sensitivity

test parameter. We note that with 10 clusters, simply assigning all

instances to one cluster will lead to 10% accuracy. �erefore, an

accuracy less than 10% is meaningless. In order to have a feeling

of how good the accuracy of Spaceprint is, we compare it with

a density-based approach. We extracted the feature vectors for

Spaceprint using Algorithm 2 and an equivalent feature vector

for the density-based approach with the �ngerprint parameters

(FD = 1440, FR = 60). �e features extracted using these two

methods are alternatively used as input to K-means. In the case of

Spaceprint, the distance metric introduced in De�nition 5.2 is used.

For the density-based alternative we use the Euclidean distance.
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�e graphs presented in Figure 2 suggest that using the feature

vectors extracted by Spaceprint results in a higher accuracy than

using density-based feature vectors. Figures 2(a) and (b) show that

the accuracy of Spaceprint is hardly a�ected by the changes in start,

duration, and group size of random pa�erns. It is also seen in Fig-

ure 2(c) that introducing new random pa�erns will not degrade the

accuracy of Spaceprint as the �xed underlying pa�erns are being

re�ected in various elements of the feature vector. By removing

pa�erns that construct the original space from a generated in-

stance of that space, the accuracy of Spaceprint degrades. However,

Spaceprint is still much more robust in response to such changes

than the density-based approach (Figure 2(d)). We see in Figures 2(e)

and (f) that Spaceprint is also more robust to the noise introduced

by instrument-related parameters than the density-based approach.

Although missing detections and variable frequency of detections

will distort parts of the feature vector representing presence pat-

terns with a �ner period, the e�ect of pa�erns will still be present

in elements which represent coarser sampling periods.

6.2 Real datasets
In this section, we apply our �ngerprinting framework on two

datasets collected from real-world public spaces. Both of these

datasets conform to our model in Section 3. However, due to having

di�erent data collection mechanisms, they have subtle di�erences

in terms of sparsity of detections and variety of spaces (summarized

in Table 3). �e �rst dataset is a set of WiFi detections very rich in

terms of the number of detections collected per space but contains

data from a limited number of spaces. �is dataset is collected

by WiFi scanners placed in all co�ee corners at our university

campus for a period of 5 months
1
. �e second one, which is a dataset

of Foursquare [19] check-ins, is very rich in terms of diversity

of spaces while being much sparser in terms of the number of

detections available per location. We chose locations within the

top 100 location categories with data from more than 531 days.

Table 3: Datasets

WiFi DB Foursquare DB
#Spaces 8 10,000

#Categories 1 100

#Mobile entities 700,000 201,132

Duration (days) 150 531

#Detections 95,000,000 24,474,738

#Detections per space per day 79,166 2.3

6.3 Case study with WiFi dataset
In what follows, we demonstrate the procedure of extracting �n-

gerprinting parameters and feature vectors using the WiFi dataset.

6.3.1 Extracting fingerprint parameters. In order to calculate the

feature vectors, it is required that the optimal �ngerprinting pa-

rameters, FD and FR, are extracted for each space separately. We

show how we �nd these values for one of the co�ee corners using

1
Anonymous WiFi scanning can be performed by hashing MAC addresses on the �y

and providing an opt-out option for visitors.
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Figure 3: (a-b) Choosing optimal �ngerprinting duration (c-
d) choosing optimal �ngerprinting resolution

Algorithm 3. Figures 3(a) and (b) illustrate how the optimal �nger-

print duration can be extracted. What is shown in these graphs

is the average pairwise distance of feature vectors calculated by

varying the parameter, FD. It should be noted that the compar-

ison of �ngerprint durations is only fair if it is performed based

on the pairwise distance of vectors of the same length (vectors of

longer length will have more elements equal to zero and therefore,

their distance will be smaller). To have feature vectors of the same

length, we changed the �ngerprinting resolution, FR, based on

the �ngerprint duration such that the size of the resulting feature

vector stays constant. �is is achieved by se�ing
FD
FR to a constant

value. We calculated these distances for vectors of length 17186 and

791 features, respectively. �e optimal �ngerprint duration is the

one that minimizes the distance between two feature vectors, and

thus maximizing similarity. For both graphs shown in Figure 3(a)

and (b), this value is acquired at a duration equivalent to one week

(168 hours). In Figure 3(b), it is also seen that a �ngerprint duration

equivalent to 3 days is the worst �ngerprinting choice, leading to

maximum dissimilarity between vectors.

Figures 3(c) and (d) show how the optimal �ngerprint resolution

can be chosen. �e optimal �ngerprint resolution is the one that

maximizes the distance between feature vectors revealing more

detail about the space. We have looked at the optimal resolution

when the �ngerprint duration is equal to the optimal �ngerprint

duration (1 week time). �e results suggest that a resolution of 4

hours can still reveal the di�erences between feature vectors. As

most of the weekdays are similar, we also looked at the spaces (only

over weekdays) with a �ngerprinting duration of 24 hours. �e

�gures suggest that a resolution of 30 minutes su�ces to reveal the

necessary level of detail when the �ngerprint is only extracted from

weekdays. �is is in fact the minimal resolution that still captures

detections from static devices. Any �ner resolution will result only

in more zero-valued entries in feature vectors. Note that deriving

two optimal resolutions does not contradict Lemma 5.3, as the daily

resolution is extracted only from weekdays.
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Figure 4: Two-dimensional representation of feature vectors
of Spaceprint and density-based approach. Each point repre-
sents one week of data. FD = 168 hours and FR = 1 hour.
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Figure 5: Two-dimensional representation of feature vectors
of Spaceprint and density-based approach. Each point repre-
sents one day of data. FD = 24 hours and FR = 1 hour.

6.3.2 Two-dimensional representation of feature vectors: To fur-

ther see how Spaceprint represents the similarities between the

situation in these co�ee corners, we also visualize the extracted

feature vectors from the whole dataset in Figures 4 and 5. �e fea-

ture vectors extracted have n elements (e.g., with FD = 168 hours

and FR = 1 hour, n = 23355) and can be represented as points in an

n-dimensional coordinate system. In order to represent such points,

we map them to a two-dimensional space using multi-dimensional

scaling [2]. �is method takes a dissimilarity matrix composed of

the pair-wise distance between all vectors. By applying principal

component analysis on such a matrix a coordinate matrix is gen-

erated whose con�guration minimizes a loss function. Using the

dissimilarity matrix calculated based on the distance function from

De�nition 5.2, multi-dimensional scaling can capture the e�ects of

the nonuniform size of the elements in our feature vectors.

�e results are presented in Figures 4 and 5. We compare the re-

sult of vectorizing using Spaceprint and the density-based approach.

In Figure 4, we have vectorized each week of data (FD = 168 hours
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Figure 6: Performance of clustering for FD = 168 hours. SP
and DB denote use of Spaceprint and density-based features.

and FR = 1 hour). As seen, Spaceprint results in a clearer distinction

between points of the same color. In other words, the identity of the

location is re�ected in the similarity between weeks of data from

the same space. In Figure 5, using the parameters FD = 24 hours

and FR = 1 hour, each day is vectorized separately. We also present

the weekdays and weekends in separate graphs. Again, Spaceprint
provides a be�er distinction between the situation in spaces by

placing points representing days in di�erent spaces further from

each other. �is is speci�cally visible in the case of weekends (Fig-

ure 5(c)-(d)). �e data presented here includes occasional changes

in normal presence pa�erns, due to holidays, special events such

as conferences, etc. �erefore, there are naturally outliers, yet the

identity of locations is evident.

6.3.3 Clustering performance (Latent variable of identity). To

further evaluate how such feature vectors can be used to create

a unique �ngerprint for spaces, we cluster them using K-means
algorithm. �e goal is to see if we can distinguish from which
space they have been extracted. Each space in this dataset has a

space id. We cluster feature vectors extracted from 150 days and

look for 8 di�erent clusters representing 8 di�erent space ids. �is

is equivalent of assigning points of the same color (in Figure 5)

to the same cluster. Performance of the clustering task in terms

of Accuracy, Random Index, F-measure, and Normalized Mutual

Information (NMI) is presented in Figure 6. As seen, the results are

in favor of Spaceprint for all of these indicators.

6.4 Case study with the Foursquare dataset
In this section, we perform evaluations on a dataset collected

from Foursquare location-based social network. Each space in

this dataset has a space id and a space category. Taking each

of these two labels as ground truth for determining the clustering

performance, gives us the opportunity to perform two types of eval-

uations. �e �rst one, similar to evaluations on the WiFi dataset,

is to classify feature vectors to know from which space they were

extracted. �e second one, is to classify feature vectors of a group

of spaces to know from what type of space they were collected.

Performance is evaluated based on classi�cation of spaces with

category labels such as home, o�ce, airport, restaurant, Chinese
restaurant, road, etc. (Full list is omi�ed due to lack of space).

6.4.1 Clustering performance (Latent variable of identity). For

the �rst experiment, performance of Spaceprint and density-based
method (SPi and DBi ) is compared based on classi�cation between

K randomly chosen space ids (K ∈ [2, 10]) and feature vectors

extracted from 531 days. �e accuracy of clustering algorithm is
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Figure 7: Tests with Foursquare dataset. SP and DB denote
use of feature vectors extracted based on Spaceprint, and
density-based approach, respectively. Subscripts ”i” and ”c”
refer to classi�cation based on the latent variable of identity
and category, respectively. K is the number of clusters.

calculated on correctly clustering feature vectors of di�erent spaces

based on their original space id.

6.4.2 Clustering performance (Latent variable of category). For

the second experiment, we chose K randomly chosen categories

(K ∈ [2, 10]) and further selected 10 spaces per category. We

similarly extracted the feature vectors from 531 days. �e accuracy

of Spaceprint and density-based method (SPc and DBc ), is compared

based on correctly clustering the feature vectors of a group of spaces

based on their correct category. �e results presented in Figure 7,

are the mean value acquired from 100 runs of experiment per K
with FD = 168 and FR = 1 hour. Generally, regardless of the high

sparsity level of this dataset, comparisons shown in Figure 7 (a)-(d)

are in favor of Spaceprint for both experiments. Higher performance

in terms of NMI shows that even misclassi�cation of spaces based

on category yields more information about the similarity of spaces

in di�erent clusters. An example will be misclassifying a space

with the category label of restaurant to the category of Chinese
restaurant.

7 DISCUSSION AND CONCLUSIONS
In this paper, we presented Spaceprint, a technique for creating

spatial �ngerprints for repetitive situations in public spaces. What

makes Spaceprint unique is its fully automatic operation with mini-

mal input from anyone who operates it. Our evaluations show that

the automated �ngerprinting of spaces is indeed possible, opening

the path to more sophisticated approaches for automated situation-

awareness. We also conclude that Spaceprint is relatively insensitive

to parameters that can degrade the classi�cation accuracy. By au-

tomatically extracting �ngerprint parameters, Spaceprint allows

embedding privacy by design in data collection by anonymizing

(e.g. hashing) data with timely hashes based on �ngerprint dura-

tion parameter such that the accuracy of the spatial �ngerprint

is also not a�ected. In this paper, we looked at the possibility of

�ngerprinting repetitive situations in a single space. Our future

work entails re�ning this method to consider interaction between

multiple spaces in creating these �ngerprints.
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