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ABSTRACT
One of the numerous applications of wearable computers is
providing safety in occupations where heat-related injuries
are prevalent. Core temperature, as a measurement that can-
not be measured by on-body sensors is a variable that is
specifically interesting for realizing such applications. In the
context of the design of a sensor-shirt that can be used for
firefighters, in this paper we study the importance of different
types of sensor measurements and their placement for pre-
dicting core temperature. We propose a model for inferring
the dangerous states of core temperature. Our evaluation re-
sults show that our model can to a great extent predict haz-
ardous situations caused by heat accumulation.
Author Keywords
Wearable computing; data mining; machine learning;
ambulatory physiological monitoring.
ACM Classification Keywords
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INTRODUCTION
Heat stress may cause a person’s body temperature to rise
above the hyperthermic threshold of 37.8-38.3◦C. Prolonged
and/or severe hyperthermia may result in disability or even
mortality. This situation is a common casualty among peo-
ple with occupational heat exposure such as firefighters,
mineworkers, and any other type of profession which involves
operations in high temperatures, radiant heat sources, high
humidity, direct physical contact with hot objects, protective
clothing, or strenuous physical activities.

Heat stress is directly detectable by measuring a person’s
core body temperature. Common ways of measuring core
temperature are, however, oftentimes invasive as in swallow-
ing core temperature pills (intestinal), or using rectal probes.
Such measurement methods are not practical for use on an
occupational basis. For instance, temperature pills need to be
swallowed at least two hours before measurements are valid
and restrict the user to go into an electromagnetic field as long
as the pill resides inside the body. Having the possibility of
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measuring many types of physiological parameters, wearable
sensors may provide the potential of estimating core tem-
perature from other measurements. However, it remains an
open question which sensors can or should be used for such
measurements, and how measurements are to be combined
to come to accurate estimations. Difficulties are aggravated
when requiring that sensing should take place in an unintru-
sive fashion.

In this paper, we explore accurate estimation of core body
temperature through highly unintrusive wearable sensors. In
particular, we concentrate on developing a model that takes an
existing dataset containing input from multiple on-body and
environmental sensors and ask ourselves: (1) which sensor
measurements are important for accurate temperature estima-
tions, and (2) how machine learning techniques can be used
to create a model which can capture the hazards of heat expo-
sure. While previous research has focused on accurate esti-
mation of core temperature, our main contribution is showing
that although accurate estimation of core temperature may not
be easily feasible, a limited number of well-placed on-body
sensors can be effectively used to obtain an accurate classi-
fication of hazardous and non-hazardous core temperatures.
This is crucial for developing specific garments with built-in
sensors for people operating in hazardous environments, such
as firefighters.

We organize the rest of this paper as follows. In the following
section we will first introduce the related work. In Section 3
we discuss our research methodology in developing a model.
In Section 4, we subsequently evaluate our proposed solution.
We come to conclusions in Section 5.

RELATED WORK
The application of wearable technologies targeting the risks
of occupational heat exposure has recently gained attention.
There are in general two groups of researchers who have fo-
cused on dealing with such risks. The first group has focused
on designing wearables that can measure physiological pa-
rameters that are relevant for heat-related injuries. The focus
of such research is in providing a wearable infrastructure that
can measure and transmit certain biometrics without further
analysis of the data [5, 8, 9].

The other group of researchers have focused on the impor-
tant problem of estimating core temperature and physiolog-
ical strain. For instance, derivative body temperatures have



been studied as an estimate for core temperature [10]. In ad-
dition, indicators based on internal and external factors (phys-
iological strain and heat stress indices) have been proposed to
estimate the thermal load on the body [3, 7]. All in all, the
results of this research generally suggests that correct esti-
mation of core temperature (especially, in a non-controlled
setting) is a challenging problem [11]. When such estima-
tion is needed to be done from rawearables, the challenge be-
comes even bigger. To the best of our knowledge, there is lit-
tle research proposing solutions for estimating core tempera-
ture from non-invasive physiological parameters provided by
wearable computers [2,4]. The work most in-line with ours is
the one proposed in [4]. The authors have proposed a model
for estimating heat-stress risk without considering the impor-
tance of each of these sensor measurements. They use the
mean skin temperature on various spots as a proxy for core
temperature. Nevertheless, none of the previous studies have
considered the use of different non-invasive sensors, consid-
ering both the operational restrictions, and their placement, as
well as, an accurate inference model. These are all essential
requirements for designing a sensor-shirt to be used in critical
situations.

RESEARCH METHOD
Our main goal is to predict the occurrence of health risks
due to heat stress. As core temperature is not easy to mea-
sure directly with sensors, we study the possibility of pre-
dicting it through sensors embedded in a shirt. A standard
approach for doing so consists of two steps. 1) Feature se-
lection: to study the importance of a set of sensor measure-
ments and their placement in correct estimation of the core
temperature. 2) Model development based on the selected
measurements: to correctly predict core temperature. In this
case, a number of algorithms are used to create a model and
the algorithm which provides better results in terms of dif-
ferent performance metrics is chosen. In order to perform
the above-mentioned, we use an available multi-parameter
dataset provided by [1] which is collected during a firefight-
ing training. This dataset contains time-series data of 12 male
subjects who have performed different activities both in nor-
mal (20 ◦C) and extreme thermal conditions (40 ◦C). Sev-
eral parameters are present in the dataset such as heart rate
(HR), temperature in different body parts, rectal core temper-
ature, phase change material (PCmaterial), activity type, and
the cooling type.

Feature selection: What sensors to choose from?
By performing feature selection on the dataset, we will be
able to select the minimal-optimal model. This means that
we can decide on the placement of sensors on the shirt such
that we have a better estimate of core temperature but also
such that the choice of features (which leads to the choice of
sensors) is practical with respect to the design of a sensor-
shirt. Before feature selection, a large number of outliers,
such as core and aural temperatures below 35 ◦C, are removed
from the dataset.

Looking at the correlation coefficients, presented in Figure 1,
we see that the aural temperature is the temperature which
is mostly correlated with core temperature followed by heart
rate, thigh and calf temperatures. The correlation coefficients

in this manner only represent the linear relationship between
two variables. Therefore, we also rank features using a re-
cursive feature selection algorithm in terms of their impor-
tance in the prediction of core temperature. Using a feature
selection algorithm, many models are trained with different
subsets of the model and the best set of features is chosen.
The overall of features is presented in Figure 2. For this
purpose we have used an implementation based on Random
Forest Algorithm which adds random features and remod-
els [6]. As seen in Figure 2, none of the features have been
found as unimportant. The most important feature within
these features in prediction of core temperature are the candi-
date’s identity, and aural temperature. The duration of activity
(Deltat) appears to be the least important. Studying the results
of the above feature ranking, looking at the correlation coeffi-
cients, and considering the practical consideration of design-
ing a sensor shirt, we select the partial set of features com-
posed of; trial type, PCmaterial temperature, activity, chest
temperature, and HR. The most important features in the pre-
diction of core temperature which are aural temperature and
the candidates identity are not considered. The reason is that
the aural temperature cannot be practically measured using a
shirt. Considering the candidate’s identity will lead to develp-
ing personalized models for heat stress which is desirable in
terms of accuracy. However, we ignore this option as it im-
plies training the model for each individual who is going to
use a sensor shirt.

The result of the prediction with a complete and partial set of
features using a random forest algorithm is presented in Fig-
ure 3. We see that there is a considerable difference between
predictions with the complete set of features and the partial
set. Nevertheless, in the following section we show how this
partial set can also be used in creating an accurate model for
avoiding the hazardous situations.

Model development: Why predicting core temperature is
not an option?
Having knowledge about core temperature, the heat-stress
risk can be estimated. Therefore, the most obvious solution in
estimating heat stress risk is correct estimation of core tem-
perature. In this section, we show why such an approach
does not work. In order to test the viability of this idea we
formulate a problem to estimate core temperature from a set
of other measurable features and we compare different algo-
rithms in solving this problem. The only requirement that
these algorithms need to satisfy is having the possibility of
predicting a numeric output (rather than a categorical out-
put). In other words, they should be regression-based rather
than classfication-based. Among many different possible al-
gorithms, we have chosen the following:

Bayesian networks, which are well-known models for allow-
ing domain expert knowledge as input. To use such input as
well, we chose this algorithm. We used the hill climbing al-
gorithm to learn the model structure and the parameters of
the continuous variables are learnt by Gaussian distribution
on the discovered model structure. Domain knowledge was
further used to refine the model.



Figure 1: Scatter plots and correlation coefficients of the features.

Figure 2: Ranking of different features in prediction of core
temperature.

Neural networks, which are less intuitive for domain ex-
perts to understand but sometimes lead to better models than
Bayesian networks.

Multi-linear regression, which is strong in capturing linear
relationships. As seen in the scatterplots before, there is a
considerable linear relationship between variables. There-
fore, we also use linear regression to predict the core tem-
perature from the partial set of variables.

We compare the performance of these algorithms in terms of
the error metrics mentioned below which are used for evalu-
ating regression problems. In what follows, at represents the
actual value and ft the forecasted value, respectively:

Root Mean Squared Error (RMSE), provides the sample
standard deviation of the difference between the predicted
and observed values. RMSE =

√∑n
t=1(ft − at)2/n

Figure 3: Prediction of core temperature form complete and
partial set of features.

Mean Absolute Error (MAE), shows how close forecasts
are to the eventual outcome. As this metric is measured in the
same unit as the data, it is more understandable than the rest
of metrics. MAE = 1/n

∑n
t=1(|ft − at|)

Mean Error (ME), also measures the difference between the
predicted and actual value in the same unit as the original
data. However, being disproportionately positive or negative
it is more robust to bias in the forecasts. This way models that
do consistently under/over estimate are found.

Mean Absolute Percentage Error (MAPE), is the average
of the magnitude of error with respect to the magnitude of the
actual value. MAPE = 1/n

∑n
t=1(|(ft − at)/(at)|)

Mean Percentage Error (MPE), is an average of the per-
centage errors with respect to the magnitude of the actual
value. MPE = (100%/n)

∑n
t=1((at − ft)/(at)).

Table 1 compares the accuracy of the previously mentioned
algorithms in terms of these error metrics. None of the algo-
rithms is consistently better than the rest. As seen, the RMSE
of these algorithms which shows the average temperature er-



ALgorithms ME RMSE MAE MPE MAPE
Regression 0.003 0.4250 0.2858 0.0049 0.775
Bayesnet 0.0007 0.5336 0.3695 0.0152 0.999

NNet 0.0067 0.4101 0.2757 0.0177 0.744

Table 1: Comparison of different error metrics in forecasting
core temperature from selected features.

(a) (b)

Figure 4: ROC curves for comparing the classification accu-
racy of hazardous/safe classes from (a) complete (b) partial
set of features.

ror, is in range of 0.4 ∼ 0.5 ◦C. From the medical point of
view, this is a rather large error value and mostly unaccept-
able for critical medical applications. That is why building
a model for accurately predicting the core temperature is not
a useful option. The ultimate goal for predicting core tem-
perature is to infer only the hazardous events that will lead to
heat stress. Therefore, it is important to only correctly cap-
ture the nonhazardous core temperatures from the hazardous
ones. Prediction accuracy of lower temperatures does not pro-
vide any advantage in an application such as firefighting. A
model that can only predict temperature passing the danger
threshold and distinguish it from the temperatures below the
danger threshold will meet the requirements.
Model developement: Heat stress hazard model as an al-
ternative to core temperature prediction
Our important requirement is that temperatures in the heat
stress zone are correctly distinguished from those that are not.
Therefore, apart from the previous models that treat core tem-
perature as a numerical variable we perform analysis on core
temperature by treating it as a two-class categorical variable;
dangerous (above 38◦C)/safe (below 38◦C). In other words,
we turn the previous regression problem into a classification
problem. To build the new model, we discretized the core
temperature to its integer unit range. Next, we built and learnt
a Bayesian network on the discretized data.

EVALUATION
As this is a classification problem, we cannot use the previ-
ously mentioned error metrics for evaluation. ROC curves
can better be used for evaluation of a classification model
through cross-validation. In such curves, a bigger area under
the curve would suggest better classification. We have trained
the Bayesian network both from the complete and partial set
of features resulted from the feature selection phase. ROC
curves and the prediction accuracies are presented in Figure
4 and Table 2, respectively. Although using the complete set

Class Selected features All features
35 vs. 36 0.52 0.65
35 vs. 37 0.73 0.75
35 vs. 38 0.98 0.99
36 vs. 37 0.73 0.84
36 vs. 38 0.97 0.98
37 vs. 38 0.93 0.92

Table 2: Classification accuracy of different core-temperature
classes using complete and partial set of features.

of features in general might result in a higher area under the
curve, the partial set of features can also perform well, es-
pecially in distinguishing dangerous temperatures from non-
dangerous ones. In other words, in distinguishing the ones
above 38◦C from the ones below (35 vs 38, 36 vs 38, 37 vs
38).

Prediction accuracies presented in Table 2, also confirm that
in general by using all features we can have higher accuracy
for both temperatures in hazardous and non-hazardous zones.
However, the same plausible results can be achieved from the
partial set of features for only the temperatures above 38◦C.

CONCLUSION
In this paper, we proposed a model for real-time analysis of
physiological parameters for estimation of heat stress risk.
Using a dataset collected during a firefightling training ses-
sion, we studied the importance of different types of sensors,
their placement and effectiveness in prediction of core tem-
perature. Our results show that although precise prediction of
core temperature with high accuracy is a challenge, it is still
possible to classify core temperature in hazardous and safe
zones with high accuracy.
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