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ABSTRACT 
Ubiquity of portable location-aware devices and popularity 
of online location-based services, have recently given rise 
to the collection of datasets with high spatial and temporal 
resolution. The subject of analyzing such data has 
consequently gained popularity due to numerous 
opportunities enabled by understanding objects’ (people 
and animals, among others) mobility patterns. In this paper, 
we propose a hidden semi-Markov-based model to 
understand the behavior of mobile entities. The hierarchical 
state structure in our model allows capturing spatio-
temporal associations in the locational history both at stay-
points and on the paths connecting them. We compare the 
accuracy of our model with a number of other spatio-
temporal models using two real datasets. Furthermore, we 
perform sensitivity analysis on our model to evaluate its 
robustness in presence of common issues in mobility 
datasets such as existence of noise and missing values. 
Results of our experiments show superiority of the 
proposed scheme compared with the other models. 
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INTRODUCTION 
Thanks to the emergence of ubiquitous location-aware 
personal devices such as smart-phones, large volumes of 
mobility data are being collected every day. In spite of 
general worries regarding privacy concerns, surprisingly, 
people do not show much hesitation to (at least partially) 
share their location data through various online location-

aware applications, services, and social networking 
websites [1] (for instance, through location tags in 
Facebook, Twitter, and Foursquare).  

Mining such data has become an interesting research topic 
during the past decade due to its public and personal 
benefits in various domains. Potential application areas 
incorporating these benefits range from animal migration 
analysis, urban planning, and disaster relief [2] to mobile 
advertising, and even improving opportunistic routing 
algorithms [3]. Recently, researchers have used tourist 
mobility data for analyzing crowd dynamics during 
festivals to avoid security issues [4]. Management of traffic 
delays and congestions [5] is also another example 
application. From personal point of view, different kinds of 
location-based services and applications are becoming 
popular as they provide a better quality of private and 
professional life for people [6, 7]. Apps such as Moves [8] 
learn people’s habits, and lifestyle through analyzing their 
location data. Athletes are also showing interest in location-
aware applications such as Mytracks app [9] to improve 
their physical status by tracking their location combined 
with other physiological and activity measurements during 
exercises. In smaller scale location prediction can be used 
in identification of people in smart homes [10].  

What all these applications and services have in common is 
their dependency on availability of knowledge about 
behavior of mobile entities. Having such knowledge helps 
predicting future mobility patterns, as well as identification 
of abnormal occurrences in the current patterns. A detailed 
movement model, which is more than extracting patterns of 
visit to a number of frequently visited places, can greatly 
contribute to acquiring such knowledge. 

Various spatio-temporal rules and dependencies are hidden 
in mobility data caused by different types of context 
variables such as type and frequency of activities 
performed, and means of transport between stay-points (or 
regions of interest). A detailed model should encompass all 
these rules and dependencies. To better elaborate the 
spatio-temporal rules hidden in mobility data, an example 
from a real dataset is shown in Figure 1. Two visited grid 
cells, denoted by  𝐺!  and 𝐺!, have been extracted from a 
user’s trajectory {𝑜! | t  ∈ [1,𝑇]}in Geolife dataset [11-13]. 
Figure 1.a represents the probability 𝑃!

!!  of user’s 
presence (𝑜!) in these two different grid cells during 
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different hours ℎ  of day (𝑃!
!! =

!!
!!

!!
!  if 𝑆!

!! = 𝑜! 𝑜! =

𝐺!&  𝑡  𝑚𝑜𝑑  24 = ℎ} and 
𝑆!! = 𝑜! 𝑜! = 𝐺!∈!...!  &  𝑡  𝑚𝑜𝑑  24 = ℎ}). Figure.1.c is 
the probability that visit to one place is followed by visit to 
another place in one hour and Figure.1.b represents the 
probability distribution of the duration of visits to these 
cells. 

A number of rules can be extracted from these images. It 
can, for instance, be seen from the duration distribution 
graph that presence of the user in each of these grid cells 
has a somewhat normal distribution (rule of duration of 
visits). Another interesting point is existence of a 
dependency in visits to these places. Although presence in 
each of these grid cells is of low probability, all visits to 
grid cell 𝐺! are followed by visit to grid cell 𝐺!, while no 
visit to 𝐺! has been followed by a visit to 𝐺! (rule of 
transition between grid cells). These are important pieces of 
information, which can be used to efficiently model 
movement of this particular entity. This model can be used 
later for different purposes such as predicting future 
movements or to identify changing points in the mobility 
habits.  

Designing a model, which can capture all the above-
mentioned dependencies from real-life mobility datasets, is 
a challenging task.  Firstly, trajectories are formed by 
components with different speeds (stay-points and 
transitions) being repeated with different frequencies. A 
model, which only captures frequency of visit to places, 
turns out to be biased to stay-points. On the other hand, 
preprocessing trajectories to take out segments with similar 
speed is time and energy consuming. Secondly, due to the 
inherent limitations of mobile data acquisition and 
collection methods, mobility data are extremely sparse and 
noisy. The sparseness is sometimes caused by the system 
designer as a tradeoff between accuracy and life-time 
requirements and sometimes it is caused by technical issues 
such as device mal-function. Mobility data is also noisy due 
to multipath and atmospheric effects.  

In this paper we propose a model, to understand movement 
behavior of mobile objects. More explicitly, our 
contributions are as follows:  

- We propose a hierarchal hidden semi-Markov-based 
model (HHSMM) which can capture both frequent and 
rare mobility patterns in the movement of mobile 
objects. Such model, in the first place, can be used in 
understanding mobility behavior of mobile entities 
such humans and animals. It can also be used in future 
movement prediction, which is an essential 
requirement in many ubiquitous applications such as 
urban planning, disaster relief, animal migration 
analysis, and mobile advertising. 

- We apply the proposed model on two real datasets and 
show how the model can find such patterns (e.g. 
frequent, rare, weekly) without a-priori knowledge 
about mobile object’s behavior. 

- We evaluate the performance of our model in terms of 
its correctness in prediction of mobility behavior and 
compare it with other spatio-temporal models. 

- We also, test the sensitivity of the proposed model in 
presence of noise and missing measurements, which 
are inherent characteristics of mobility datasets.	
  

  
(a)                               (b)                            (c) 

Figure 1. An example depicting spatio-temporal rules in 
a mobile object’s history, (a) presence probability in the 
grid cell over 24 hours, (c) duration distribution of visits, 

(b) transition probability from one place to another. 

The rest of this paper is organized as follows. The second 
section presents the related work. Background information 
on hidden Markov models are presented in the third 
section, while our proposed hierarchical model is explained 
in the fourth section. The performance evaluation using 
both synthetic and real datasets are presented in the fifth 
section, and a number of remarks in the last section 
concludes the paper. 

RELATED WORK 
The problem of mining different mobility patterns from 
trajectories has been the subject of various research papers 
previously. For instance, location data have been analyzed 
to find frequent and popular routes [14], extract social 
context [15], trajectory clustering [16], or finding abnormal 
trajectories [17], to name but a few.  

More recently, modeling movement has attracted attention 
in terms of models for movement prediction or frequent 
pattern detection [18-21]. Authors of [22], used semantic 
information to form semantically tagged trajectories in 
order to predict future mobility patterns. An ensemble 
method has been used by [23] to probabilistically model the 
movement on frequently visited places considering 
different context variables. Another group of researchers 
have used frequency domain analysis techniques to find the 
periodic patterns bound to activities of humans and 
animals. Both long-term and short-term periodic 
movements are found and presented. The periodic pattern 
mined in this way is used in prediction and abnormality 
detection [24, 25]. Authors of [26] have used the topic 
model Latent Drichlet Allocation to learn long duration 
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sequences. Another approach proposed in [19, 27] is to use 
principal component analysis and Eigen value 
decomposition to model the movement pattern. Typical 
pattern of different types of days (Weekdays, weekends, 
and public holidays) can be discovered by this technique.  

Irregular but highly ordered events that happen less often, 
yet with strong dependencies, are not effectively considered 
in the above models. This makes them unsuitable for cases, 
where online prediction of mobility behavior in near future 
is crucial. Having a very specific attribute of movement 
(such as semantic information, periodicity, Eigen values) in 
all the methods mentioned above, make them very specific 
to certain frequent patterns. 

Recently, a number of state-space models have been 
proposed to model movement of mobile objects. These 
models attempt to capture the variation in spatial 
dependencies. 

Markov model is one of the well-known state-space 
models. Different version of this model has so far been 
applied on mobility data. For instance, Order-k Markov 
model was used in [28] to predict movement of users in 
Wi-Fi network cells. In [20], a model is proposed based on 
hidden Markov models for modeling movements from one 
stay-point to another, while authors of [29] used mixed 
Markov model for the same purpose. A mixed 
autoregressive hidden Markov model is proposed in [30] on 
stay-points.  The main drawback of these methods is that 
they do not completely consider the temporal variability in 
the mobility data. In these models, a trajectory is only 
partially used either as a sequence of visited stay-points or 
just as the transition path between stay-points. Apart from 
being incomplete, these methods require pre-processing the 
data to extract regions of interest or stay-points. The 
required pre-processing phase is rather time/energy 
inefficient. The above-mentioned problem is due to the 
inherent limitation of hidden Markov Model which 
considers constant duration for each system state. 
Therefore, there is still need for a model, which can be 
applied on complete mobility data, consisting of both stay-
points, and transitions by considering their temporal 
variability. Hidden semi-Markov model addresses the 
above-mentioned issue by considering an additional 
duration property for each state. To the best of our 
knowledge there is only one previous research [31] which 
has considered using hidden semi-Markov model on 
mobility data. However, the authors have only evaluated 
their model on a synthetic dataset representing data of few 
hours. As we show when modeling large dataset of human 
mobility, composed of complex patterns (e.g. weekly), the 
technique used in [31] results in a very course grained 
model. To address this issue we propose a hierarchical 
hidden semi-Markov model offering the following 
advantages: (i) the fine-grained structure of the model 
provides higher accuracy; (ii) its granularity is adjustable to 

resources available, and (iii) hierarchical structure of the 
model improves the speed of parameter estimation. 

BACKGROUND 

State space models 
We begin this section by providing background information 
on different state space models and their parameters. In the 
original hidden Markov model, due to the first order 
Markov assumption, it is implicitly assumed that the 
duration of each system state is constant or exponentially 
distributed. As a consequence, in these models transition 
between states happens at any time and self-transition is 
allowed. The downside of this model is that it does not take 
any advantage of the information hidden in the duration 
probability of visit to different places. Stay-points and 
transition paths have different duration distributions, which 
also need to be taken into account. In order to deal with this 
problem, later the original hidden Markov model was 
extended to hidden semi-Markov model, where apart from 
the transition between states there is an additional 
parameter for explicitly modeling the duration of states. 
The hidden semi-Markov model (also known as explicit 
duration hidden Markov model or variable duration hidden 
Markov model) is represented by 𝜆 = (𝑄,𝑂,𝐴,𝐵,𝐶,𝜋). In 
the above model, 𝑂 = {𝑜!|𝑡 ∈ 𝑇} and 𝑄 = {𝑞!|𝑡 ∈ 𝑇} 
represent the entire observation sequence, and the entire 
high level state sequence, respectively (𝑇 is the set of 
uniformly distanced timestamps). 𝐴 is the 𝑀×𝑀 state 
transition probability matrix representing the probability of 
change between states expressed as (𝑎!" = 𝑝[𝑞!!! =
𝑠!|𝑞! = 𝑠!]). 𝐵 is 𝑀×𝑁 emission probability matrix 
representing the conditional probability between states and 
observations (𝑏!(𝑣!) = 𝑝[𝑜! = 𝑣!|𝑞! = 𝑠!]), and 𝜋  is the 
initial probability distribution vector of size 𝑀×1, 
(𝜋 = 𝑝[𝑞! = 𝑠!]). 𝐶 is the additional important (𝑀×𝐷) 
matrix added to the previously mentioned parameters of 
hidden Markov model where 𝐷 is the maximum state 
duration and (𝑐!(𝑑) =p[𝑐!! = 𝑑]) represents the probability 
of state 𝑠! last for 𝑑 time units. This type of model is 
previously used for presenting a sequence of events with 
different durations; for instance, in video image processing, 
and daily activity modeling [32]. 

Given an output sequence in form of a sequence of 
observations, a parameter-learning algorithm is performed 
to estimate the parameters of the model 𝜆. The best set of 
state transition, output probabilities, and state duration 
matrices is estimated in this way. One of the well-known 
decoding algorithms used for this purpose is Baum-Welch 
algorithm [33]. Among different variations of Baum-Welch 
used for modeling with hidden semi-Markov model, we 
have chosen the method proposed in [31], as it considers 
missing observations.  
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                                      (a)                                                                                             (b) 

Figure 2. (a) Hierarchical structure in mobility data, (b) Graphical model representing hierarchical hidden semi-Markov 
model 

PROBLEM OF HIDDEN SEMI-MARKOM MODEL (HSMM) 
AND OUR HIERARCHICAL SOLUTION (HHSMM) 
In this section, we explain our proposed hierarchical model 
for modeling movement. Let us assume that the movement 
dataset 𝑂  ={𝑜!! … 𝑜!!} of a moving object over several days 
is given. This dataset is composed of chronologically 
ordered two-dimensional geo-spatial points representing 
object’s location at time-stamp 𝑖, where the distance 
between 𝑡! and 𝑡!!! is variable. We are looking for a model 
𝜆 composed of a number of spatio-temporal rules relating 
the noisy and unevenly sampled movement data to their 
context related state Q={𝑞!! … 𝑞!!}. These states can 
represent the activity governing the movement.  

Our aim is to model the complete movement track in a way 
that each state in the model is either a stay-point or the 
transition path from one stay-point to another, where spatial 
coordinates have some form of spatio-temporal similarity. 
We assume that the sequence of places that the person 
visits is a Markovian process with hidden states being the 
context ruling person’s activities and the places that a 
person visits being observable two-dimensional spatial 
points. A possible solution would be to consider each 
spatial point as an observation and use hidden semi-Markov 
model to find the most probable sequence of states that 
explain the observations.  

However, when a series of behaviors are repeated 
periodically (for example, over a day) they will be found as 
one super-state, while the whole super-state might be 
composed of smaller states. This way the desirable 
granularity, which is required to relate observations to 
concepts such as stay-points and paths, is not provided. In 
fact, the spatial points, which are closer to each other 
spatially (i.e. stay-points) or spatio-temporally (i.e. paths) 
are more probable to belong to one state. Therefore, as the 
state duration distribution of different activities are 

different, simply considering each observation as a spatial 
point is not enough to find the states that are explainable 
with human logic. The problem is better explained in 
Figure 2.a. In this figure, the repetitive behavior of a person 
is illustrated. This behavior is consisted of three super-
states with duration of a day. As it can be seen, each super-
state is also composed of a number of smaller states, which 
represent visit to different places each with different 
durations. As will be shown in section 5, by using HSMM 
only the higher level states are found giving a very high 
granular view of the movement pattern where sometimes a 
complete day is discovered as a single state.  

We found the following problem with the original HSMM: 

The original HSMM treats observations as nominal values. 
Thereby, there is no consideration for the distance between 
the observations.  

In order to solve the problem mentioned above, we propose 
using a hierarchical hidden semi-Markov model taking into 
account the distance between observations in each state. 
This hierarchical model is defined as 𝜆 = (𝑄,𝑂,𝐴,𝐵,𝐶,𝜋) 
such that each state 𝑠! in the model is itself a hierarchical 
hidden semi-Markov model 𝜆!!

! , (ℎ > 1):  

𝜆!!
! = (𝑄!!

! ,𝑂!!
! ,𝐴!!

! ,𝐵!!
! ,𝐶!!

! ,𝜋!!
! ) 

The new observation sequence 𝑂!!
!  is only composed of the 

observations which were categorized into one higher-level 
state 𝑂!!

!={𝑜! |𝑞!!!! = 𝑠!!}. Each state in the final level (ℎ) is 
only composed of observations, which are spatially close to 
each other. Figure 2.b visualizes our proposed hierarchical 
hidden semi-Markov model through a graphical model. 

Algorithmic details 
Algorithm 1 summarizes the procedure of training our 
hierarchical model. 
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Algorithm 1 HHSMM 

INPUT: Maximum number of states in each level 𝑀!..! , distance threshold 𝑡ℎ, 
Maximum state duration 𝐷!..! ,  O observation sequence 

OUTPUT: State transition probability matrices  𝐴!!
! , Emission probability matrices 

𝐵!!
! , State duration probability matrices 𝐶!!

! , initial probability matrices 𝜋!!
!  

ALGORITHM: 

1 

2 

3 

[𝐴,𝐵,𝐶,𝜋,𝑄]=TrainHSMM(𝑀!,𝐷!, O); // Train the basic level HSMM; 

For  𝑖 = 2 to ℎ do  

     𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑒𝑠= all states  found in previous level;  

4 

5 

6 

    While 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑒𝑠 is not empty repeat 

         Remove any state from 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑡𝑎𝑡𝑒𝑠 with points lying within a    

         circle with radius 𝑡ℎ; 

    For 𝑗 = 1 to length(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑆𝑡𝑎𝑡𝑒𝑠) do 

                    𝑂!!
! ={𝑜! |𝑞!!!! = 𝑠!!!! }; 

         [𝐴!!
! ,  𝐵!!

! , 𝐶!!
! , 𝜋!!

! ,𝑄!]=TrainHSMM(𝑀! ,𝐷! ,𝑂!!
! ); 

7 

8 

9 

 
The algorithm gets the input sequence and models the 
mobility pattern. Due to various environmental (such as 
cloud cover) and technical reasons (such as device 
malfunction), it is improbable that equal coordinates are 
reported for one place. Therefore, we firstly map location 
coordinates into cells of a gridded map where each 
observation is replaced by the relevant cell id, where it is 
located. The algorithm further proceeds as follows. First, 
hidden semi-Markov model is used to model the input 
sequence and to find the super-states in the model (line 1). 
It is probable that regular days with similar repetitive 
sequence of places being visited are found as one state. To 
have a higher resolution insight, in case in each of these 
high level super-states, there are observations with a 
distance greater than a threshold then that state will be 
chosen for being remodeled. On the next step, we apply 
hidden semi-Markov model on each of these states (lines 7-
9). This step can be repeated until no other states with such 
condition are found. It should be mentioned that, the 
algorithm for training HSMM (TrainHSMM) is not 
presented due to space limitation but the interested user can 
refer to [34]. 

Complexity analysis 
Complexity of the light Baum-Welch training algorithm 
[34] TrainHSMM is 𝑂(𝑀𝐷 +𝑀!)𝑇 and the memory 
required for its training is 𝑂(𝑀𝑇). Like all hidden Markov 
based algorithms, in case a large number is chosen for the 
states and their duration (the maximum “naïve” number for 
𝑀 and 𝐷 is the number of unique observations, and length 
of observation sequence, respectively), the algorithm 
becomes computationally expensive. This, however, is not 
the case for our HHSMM algorithm. As shown in [35], 
there is high degree of temporal and spatial regularity in 
human trajectories, and each individual can be 
characterized by a significant probability of returning to a 
few frequently visited locations. Due to this, a high degree 
of people’s acts can be summarized using very little 

number of super-states, which can be analyzed in more 
detail in case of necessity. The advantage of this 
hierarchical model is that its complexity is adjustable. It is 
not required that the number of states are initially set equal 
to all unique observations. A limited number of states, with 
longer durations for the higher levels can be used. In each 
iteration of the algorithm the number of states 𝑀!  increases 
while the parameters 𝐷! and 𝑇! decrease, leaving the 
complexity of learning for each intermediate state in each 
level balanced 𝑂 𝑀!𝐷! +𝑀!

! 𝑇!, (𝑇! < 𝑇!!!,𝐷! <
𝐷!!!,𝑀! > 𝑀!!!). Therefore, the model can be efficiently 
trained with respect to the resources available and the 
granularity required. The hierarchical model, also gives the 
possibility of further improvements in sampling frequency 
and resolution of observations for each level. In higher 
levels the number of super-states is limited and low 
frequency sampling is enough. By adjusting the size of the 
grid based on the movement area, the number of distinct 
observations will be reduced requiring less number of states 
for higher-level states.  

PERFOMANCE EVALUATION AND COMPARISON 

Datasets 
For our experiments we have chosen the following real 
datasets:  

Geolife dataset [11-13]: This dataset is collected in 
GeoLife project organized by Microsoft Research. GPS 
trajectories in this dataset, collected by 165 users, have 
various sampling rates. For the majority of users the 
sampling frequency is as high as reporting a sample every 
five seconds. However, there are considerable long 
intervals (hours) when no data is available due to various 
reasons such as device mal-function or intentional turning 
off of the device. The users have recorded mobility data 
during various activities and habits of their daily life in this 
dataset.  

Capricorn dataset [36, 37]: This dataset is composed of 
GPS data collected by data loggers attached to a Capricorn. 
The Cretan Capricorn (Capra aegagrus-cretica) lives in the 
White Mountains and is endemic for Crete. Due to 
increasing livestock populations (goats) the population is 
threatened. As the species is difficult to locate very little is 
known about their habitat use in different seasons. Since 
mid-July of 2011 one male and two female Capricorns have 
been equipped with GPS collars. By deploying animal 
collars equipped with GPS, precise spatio-temporal data are 
provided in small time intervals [38]. The daily 16 GPS-
fixes acquisition schedule had very short intervals in the 
morning (08:00 – 11:00) and in the afternoon (20:00 – 
23:00) based on the daily behavior of the Capricorn and 
because they show more activity at these parts of the day 
[39].         

Three moving entities (two people, and one capricorn) have 
been chosen from these datasets with three different 
movement profiles. Table 1 summarizes the parameters of 
the movement profile of each of these moving entities. As 
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seen, these three cases represent three general movement 
profiles which are 1) high range movement, high average 
speed, 2) medium range movement, medium average speed, 
and 3) low range movement, low average speed. We see 
that for the second user, both maximum speed and 
movement area are large numbers. The maximum speed is 
in range of airplane speed (254 Km/h), which can also be 
explained by a number of coordinates in the dataset, which 
are in proximity of the airport.  

Parameter 
Moving Object 

Geolife User 
1 

Geolife User 
2 Capricorn 

Movement area 
(𝒌𝒎𝟐) 76.6 5.2×10! 2.8  ×10! 

Total disp 1.4×10! 9.7×10! 2.6  ×10! 

Dt (days) 76 254 332 

Average speed 
(km/h) 5  ×10!! 0.24 0.08 

Max speed 71.6 240 2 

Missing 76% 88% 71% 

Table 1. Movement profile of the moving entities. 

Case studies on Geolife dataset 
In order to show the process of training the hierarchical 
hidden semi-Markov model we show the procedure of 
building a two-level hierarchical model with algorithm 1 on 
first and second user of Geolife dataset.  

User 1 
Figure 5.a shows that the mobility data of User 1 is more 
concentrated in a small area. In order to train the HHSMM, 
we chose the values 168, and 24 for maximum state 
duration of first and second level, 10 for the number of 
states in each level, with a grid size of 10×10. After being 
gridded, all the points (observations) falling in the same 
cell are assigned with a unique number (Figure 3.b). In the 
first level, two super-states are found with different 
duration distributions shown in Figure 3.c (while we chose 
number 10 for the number of states, after training the rest of 
the states were not assigned to any observation). These two 
duration distributions, with means near 120 and 48 hours, 
evidently represent the general distinction in mobility 
behavior of this person in weekdays and weekends. This is 
an interesting positive characteristic of our model, as it can 
find proper duration distribution without us making any 
assumption on this typical weekly behavior. Such patterns 
were previously found with complex periodicity analysis 
[24, 25].  In order to see if this separation is valid we have 
also presented the probability of visit to different grid cells 

(𝐺!) over hours (ℎ)  of week in Figure 3.a (𝑃!
!! =

!!
!!

!!
!  if 

𝑆!
!! = 𝑜! 𝑜! = 𝐺!&  𝑡  𝑚𝑜𝑑  168 = ℎ} and 𝑆!! =
𝑜! 𝑜! = 𝐺!∈!...!  &  𝑡  𝑚𝑜𝑑  168 = ℎ}) (𝐺! =  0 represents 

missing data). As seen, some of the cells are visited 
“mainly” in the first 120 hours (2,3,12,13), some have only 
been visited in the last 48 hours (5,14,15) and some in both 
(1,4,6,7,11).  

After remodeling is done, super-states 1 (weekends) and 2 
(weekdays) are modeled by 4 and 2 numbers of lower-level 
states, respectively. Points that are assigned to each state 
with high probability are represented in Figure 3.d, 3.f 
(𝑝[𝑞! = 𝑠!|𝑜! = 𝑣!]) with “∗” sign. Those points which are 
drawn in a circle represent the observation, which 
represents states with highest probability (𝑝[𝑜! = 𝑣!|𝑞! = 𝑠!]). 

Looking at the duration distributions, and probability of 
presences (Figure, 3.a, 3.b, 3.e., 3.g), one can note that 
some of the states found are still dividable to more lower-
level states. For instance, in state 3 of super-state 1 (shown 
in black), observations 1 and 15, are relatively far from 
each other and can still be divided into two separate states.  
Unfortunately, due to space limit we cannot represent all 
possible lower-level states. It should also be mentioned that 
hidden semi-Markov models, not having a rough guess 
about the emission and transition matrices, do not always 
converge to the same results. In order to have 
understandable states, we repeat the learning process few 
times to get state durations, which follow a normal 
distribution.  

User 2 
As it can be seen from figure 5.b, the mobility data of user 
2 is composed of very long travel sequences. Using 
algorithm 1 with the previous parameters used for user 1 
and grid size 100×100, we found two general super-states 
for this user as shown in Figure 4.b. The super-state colored 
in blue represents the points corresponding to long 
traveling sequences. Due to its rare nature (9% of dataset) 
and average high speed of the user in this state, most of the 
points in this state are only observed once (the median and 
mean of number of times each observation is observed in 
the dataset is 1 and 3, respectively). However, as it can be 
seen in Figure 4.c, after the observations in this super-state 
are remodeled, 4 states are found which can represent the 
ways to and from two stay-points, as well as the stay-points 
in different cities. With previous Markov based methods 
such visible states are impossible to find when only stay-
points are used for modeling. The red super-state is a dense 
representation of points in an area where more than 91% of 
the observations are located. After the super-state is 
remodeled (Figure 4.d), two lower-level states are found. 
Although most of the points in this state are only observed 
once, the similarity between points in this state is that they 
are followed by visit to the points in the other state.  
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                           (a)                                                                       (b)                                              (c) 

   
(d)                                             (e)                                                (f)                                              (g) 

Figure 3. Modeling the mobility data of user 1 in Geolife dataset (a) Probability of presence in each grid cell, (b) 
Enumerated grid cells visited by user 1, (c) duration distribution of superstates, (d,e) modeling super-state 1, (f,g) 

modeling super state 2. 

 
                    (a)                                          (b) 

  
                   (c)                                            (d) 
Figure 4. Modeling the mobility data of user 2 in Geolife 
dataset. (a) Enumerated grid cells visited by user 2 (b) 
Superstates (c,d) Second level states in each superstate. 

Comparison with other models 
In this section we compare our proposed model with the 
other models in literature, using both synthetic and real 
datasets. As most of the previous research using HMM 
require pre-processing, we have chosen HSMM and a 
number of spatio/spatio-temporal models, which can be 
directly applied to complete trajectories. In each of these 

models different spatial and temporal priors are used. 
Inspired by [18], the models used for performance 
evaluations are: 

Spatial prior model (SP): In this model presence in each 
location depends on a prior location. SP is purely spatial 
and does not use any temporal context. 

𝑝!" 𝑜! = 𝑣!   𝑡 = 𝑡! , 𝑜!!! = 𝑣!) = 𝑝 𝑜! = 𝑣! 𝑜!!! = 𝑣!)   

Hourly prior model (HP): In this model presence in each 
location depends on its hourly visit distribution.  

𝑝!" 𝑜! = 𝑣!   𝑡 = 𝑡! , 𝑜!!! = 𝑣!)  

  = 𝑝 𝑜! = 𝑣! 𝑡!   𝑚𝑜𝑑  24 = ℎ)   

Spatial-hourly prior model (SHP): In this model presence 
in each location depends on the hourly distribution, as well 
as the prior location: 

𝑝!"# 𝑜! = 𝑣!   𝑡 = 𝑡! , 𝑜!!! = 𝑣!) 

= 𝑝 𝑜! = 𝑣! 𝑜!!! = 𝑣!&  𝑡!   𝑚𝑜𝑑  24 = ℎ)   

The hidden semi-Markov model (HSMM): This model is 
the basic hidden semi-Markov model where presence in 
each location depends on the current state, and the residual 
time of the states: 

𝑝!"## 𝑜! = 𝑣!   𝑡 = 𝑡!   ) 

= 𝑝(𝑜! = 𝑣!|     𝑞! , 𝜏! = (𝑠!,𝑑)) 

The hierarchical hidden semi-Markov model 
(HHSMM): This model is the one proposed in this paper 
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where presence in each location depends on a hierarchy of 
current states, and their remaining times: 

𝑝!!"## 𝑜! = 𝑣!   𝑡 = 𝑡!) 

 =   𝑝(𝑜! = 𝑣!|∀ℎ,   (𝑞!! , 𝜏!!) = (𝑠!! ,𝑑!))  

Evaluation in terms of correct prediction 
In order to evaluate the models, we chose to test how we 
can use them to accurately predict near future events. Our 
analysis is composed of two phases: 

• Training phase: First, all three datasets are equally 
sampled per hour forming a time-series where 
missing values are replaced by 0. Next, we divide 
each dataset into two parts. During training, the 
first half is completely given as input to algorithm 
1. The maximum state duration is 168 and 24 
hours, which represent states of maximum size of 
a week and a day. While these values are chosen 
with respect to the length of datasets used for 
training, longer durations for super-states can be 
used when the datasets are larger to find longer 
patterns. The number of states we chose for each 
level is set to 10. During tests, we observed that 
the number of states chosen is more than enough 
for all datasets, as some states are not assigned to 
any observation. The distance threshold used for 
algorithm to re-model a state is 1000 meters. After 
the model is trained, for HSMM and HHSMM 
models we calculate a 𝑁×𝑀 size matrix 𝑅 which 
represents the relation between observations and 
states (𝑟!(𝑠!) = 𝑝[𝑞! = 𝑠!|𝑜! = 𝑣!])). This matrix is 
used in prediction.  

• Prediction phase: we check predictability of the 
models on the second half of the dataset. For each 
two consecutive timestamps where data is not 
missing {∀  (𝑖, 𝑖 + 1)|   𝑜! , 𝑜!!!   𝑎𝑟𝑒  𝑛𝑜𝑡  𝑚𝑖𝑠𝑠𝑖𝑛𝑔}, 
and 𝑜!!! had been observed in the training dataset, 
we check to see how we can predict the data of the 
second timestamp (𝑜!!!) from the prior one (𝑜!).  

The procedure was repeated 50 times with different grid 
sizes (varying from 10×10-500×500 for the first user, 
500×500-1000×1000 for the second, and 1×1-50×50 for 
the capricorn). These sizes have been chosen based on the 
movement ranges. 

Graphs shown in Figure 5 compare the efficiency of each 
of these models in terms of their prediction accuracy. The 
first two columns are the results of performing experiments 
on the human dataset and the last column is that of 
Capricorn data. In each column the movement range of the 
moving object after being sampled, total prediction 
accuracy, prediction of change accuracy, and cost of wrong 

prediction are shown. These parameters are explained 
bellow: 

Total prediction accuracy: This graph represents the total 
correct predictions both when the next destination is in the 
same cell and when it is in another cell.  

Prediction of change accuracy: As the periods of stay and 
movement are unequal, it is almost always easier to predict 
points where the moving object is stable (predicting the 
current spatial point as the next destination (𝑜(𝑡 + 1) =
𝑜(𝑡))). Therefore, as well as showing the accuracy of 
models in terms of total prediction, we also show the 
results of predicting the points which represent a change 
from the previous timestamp (𝑜(𝑡 + 1) ≠ 𝑜(𝑡)). This helps 
in showing the difference of the algorithms in predicting 
these two different types of measurements. 

Cost of wrong prediction: This graph represents the 
number of cells proposed with highest probability for each 
wrong prediction. This will show the cost of each wrong 
prediction. The reason for showing this graph is that, for 
HSMM and HHSMM, it is possible that each state is 
composed of a group of observations. Therefore, by using 
the observation/state matrix (𝑅) this group of points, 
belonging to one state, will be suggested as next point 
prediction having the same probability ranges. In the other 
models, however, the most probable point has a higher 
probability which can be used in prediction. In order to be 
fair, we also compare the methods in terms of the cost of 
this inaccuracy. As the cost of HHSMM is lower than 
HSMM, we adjusted the cost of the other models with this 
model by accepting more predictions. In this way for the 
other models we always accept the top 5 most probable 
points for predicting the next destination. 

Looking at Figure 5, one notices the following remarks: 

For the first two datasets, the HSMM model performs 
considerably better than all the other models in terms of 
total and prediction of change accuracy. This comes, 
however, with a considerable high cost for each wrong 
prediction. This shows the high granularity of the states that 
are the outcome of HSMM. HHSMM follows HSMM in 
total and prediction of change accuracy with a cost of 
wrong prediction being much lower than that of HSMM 
and in range of other methods. Prediction of change 
accuracy with these two methods is higher than the other 
methods. This is resulted by correct duration estimation for 
each state. For the Capricorn dataset, HSMM and HHSMM 
are very close in prediction of change accuracy and total 
prediction accuracy of HSMM is higher than HHSMM. 
However, this time the cost of wrong prediction of two 
methods is very close. This can explain that the animal’s 
movement is less structured, and that the hierarchical 
structure has not been able to add to the accuracy. In this 
case, the higher granular model is successful. 
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(a)                                                               (b)                                                         (c) 

Figure 5. Comparison of different models on 3 moving objects. Column a, b, and c represent graphs of user 1, user 2 and 
Capricorn, respectively. 
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In most cases by increasing the grid size accuracy 
decreases. This is due to an increase in the number of 
unique observations. The uneven shape of lines is due to 
discretizing observations to grid cells and is caused by the 
fact that the data had not been preprocessed. The other 
reason is that for HSMM and HHSMM the result of training 
is not always a unique model. Therefore, the best model is 
chosen after ten times of training. 

Evaluation in terms of robustness against noise and 
missing values 
In this section, we show the validity of our approach in 
presence of noise and missing values. For this purpose we 
use a synthetic dataset. This test helps checking the 
sensitivity of the above-mentioned models to these issues in 
a controlled setting. In order to produce the synthetic data, a 
movement generator was written with the parameters 
mentioned in Table 2.  

Parameter Value 

σ!"#$" 120 min 

σ!"# 120 min 

𝑟 0.001 

𝐿 10 

K 8 

Missing samples (𝜃) 5-50% (N×24) 

Noise (𝜌) 5-50% (N×24) 

Number of Grid cells 100×100 

Total number of paths and places 7 

Table 2. Parameters chosen for the test with synthetic 
dataset 

This test sequence is composed of repetition of a sequence 
of geo-spatial points, which can represent a repetitive 
behavior of a person in visiting a number of places 
(𝑡𝑒𝑠𝑡! = 𝑥! , 𝑦! 𝑖 ∈ [1, 𝐿×24]}). 𝐾 number of places and 
the paths connecting them are chosen. The event of start 
and end of a visit to each of these places is expected to be at 
𝑡!"#$" and 𝑡!"# and the actual visit happens within 𝑡!"#$" ± 
𝜎!"#$" and 𝑡!"# ± 𝜎!"#. After forming this sequence we test 
the effect of missing samples and noise with the tests 
mentioned bellow: 

Test 1 (Missing samples): we generate 𝜃 random indexes 
and replace the indexing values  (𝑥!, 𝑦!) by (0, 0) 
(representing missing observations). Next, we train each of 
the models on the resulting sequence. The success of each 
model is in correctly finding observations, which can 
replace each missing value.  

Test 2 (Noise): we generate 𝜌 random indexes and replace 
(𝑥!, 𝑦!) with a noisy value (𝑥! + 𝑒!, 𝑦!+𝑒!) where 𝑒! and 

𝑒! are randomly chosen from [1, 𝑟]. The parameters of the 
test are presented in Table 2. The success of each model is 
on correctly replacing the noisy observation with the 
original value. 

 
                      (a)                                         (b) 

Figure 6. Success rate of algorithms in predicting the a) 
missing value and b) noise. 

For the models SP, SHP, and HP, we chose the values, 
which had a probability over 0.5 for predicting the missing 
and noisy values. For HSMM and HHSMM we chose the 
cells which belonged to the state detected with probability 
more than 0.5. 

As it can be seen from the Figure 6.a and 6.b, HSMM 
followed by HHSMM are superior to the other models both 
when missing values and noise are present in the dataset. 
Even when noise or missing values reach up to 50%, these 
two models perform considerably well. This is thanks to 
considering both forward and backward variables, which 
are able to find the best model representing the entire 
dataset. The accuracy of HSMM is higher than HHSMM as 
it predicts all points belonging to the super-states while 
HHSMM gives a finer grained predictions, albeit with a 
slightly reduced accuracy 

CONCLUSION 
In this paper the important and challenging problem of 
modeling movement tracks of mobile objects is addressed. 
A hierarchal hidden semi-Markov model is proposed to 
model the movement of mobile objects. This technique can 
model the movement both in stay-points and in the paths 
connecting them. As the evaluation results show, when 
applied to raw trajectories this method is robust in presence 
of noise and missing measurements. Furthermore, 
compared to the other models, this model can better capture 
dependencies in data to predict future movement patterns. 

In our future work, we plan to extend HHSMM model with 
a streaming training mechanism so that it better meets 
limited resources of ubiquitous devices.  
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